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Abstract. We formulate a hierarchy of models relevant for studying coupled
well-reservoir flows. The starting point is an integral equation representing
unsteady single-phase 3-D porous media flow and the 1-D isothermal Euler
equations representing unsteady well flow. This 2 × 2 system of conserva-
tion laws is coupled to the integral equation through natural coupling con-
ditions accounting for the flow between well and surrounding reservoir. By
imposing simplifying assumptions we obtain various hyperbolic-parabolic and
hyperbolic-elliptic systems. In particular, by assuming that the fluid is incom-
pressible we obtain a hyperbolic-elliptic system for which we present existence
and uniqueness results. Numerical examples demonstrate formation of steep
gradients resulting from a balance between a local nonlinear convective term
and a non-local diffusive term. This balance is governed by various well, reser-
voir, and fluid parameters involved in the non-local diffusion term, and reflects
the interaction between well and reservoir.

1. Introduction. We are interested in coupled well-reservoir flow modeling. For
that purpose we consider a model composed of a hyperbolic system of two conser-
vation laws corresponding to the isothermal Euler equations with source terms, and
an integral equation. It results from coupling a transient well flow model with a
transient reservoir model and is given on the following form.

∂t(ρ) + ∂x(ρu) =
1
η
ρqV, η > 0,

∂t(ρu) + ∂x(ρu2) + ∂xp(ρ) = qF, qF = qF(ρ, u),

p0 − p(x, t) =
∫ t

0

∫ 1

0

Hr(x, x′, t− t′)qV(x′, t′) dx′dt′,

(1)

for x ∈ [0, 1]. Here, ρ, u, and p(ρ) are, respectively, the mass density, fluid velocity,
and pressure, whereas qV represents volumetric flow rate accounting for flow between
well and reservoir. Thus, the unknown variables are ρ, u, and qV. Moreover, p0

which we assume to be constant, is initial reservoir pressure whereas η is a small
known constant parameter characterizing the well volume relatively the pore volume
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associated with the reservoir. The qF term represents friction between fluid and
wall, and we have assumed that the well is horizontal so that gravitation can be
neglected. Finally, the kernel Hr(x, x′, t−t′) is characteristic for the reservoir under
consideration as well as the geometry of the well-path. Typical applications of such
a model might be processes in conjunction with drilling, production, or injection
scenarios.

Advanced oil-well designs of increasing sophistication are now routinely used
throughout the industry. Complex wellbore trajectories combined with devices
for downhole measurements and regulations provide an overwhelming amount of
available data and operational flexibility. The challenge of identifying and utilising
significant information might well be regarded as a bottleneck of current operations.
Transients of interest will typically arise from production start-up or shut-down of a
single well, or adjustment of one or several downhole valves in an advanced comple-
tion. The perturbations induced across different zones or laterals of the same well or
between entirely different wells reflect characteristic behaviour of the reservoir. In
this context there is a need for an improved understanding of coupled well-reservoir
dynamics. This serves as our motivation for studying the well-reservoir model (1).

Transients in wellbore flow typically operates on time scales ranging from seconds
to minutes whereas the more relevant part of the reservoir dynamics will be the
compression waves, typically having relaxation times in the order of hours. Within
the petroleum engineering literature there has been some focus on modeling of
coupled well-reservoir flows relevant for production scenarios where main focus is
on prediction of reservoir inflow. For that purpose it is reasonable to consider a
steady well model, see for example [25]–[27], [33]–[35]. However, by starting with
the model (1) we intend to take a broader approach in the sense that we include
transient effects both from well and reservoir.

We may study various simplified versions of the well-reservoir model (1). For
instance, we can impose the following assumptions: (i) consider a straight line well-
path geometry, (ii) account only for a steady-state response from the reservoir, (iii)
apply an approximation argument for the kernel function Hr(x, x′, t− t′). Then we
arrive at a well-reservoir model on the form

∂t(ρ) + ∂x(ρu) = ρ(A−Bp(ρ) + p(ρ)xx),

∂t(ρu) + ∂x(ρu2) + ∂xp(ρ) = qF(ρ, u),
(2)

for appropriate chosen constants A,B > 0. This indicates that the impact from
the reservoir on the well-flow dynamic through the volumetric flow rate qV imposes
a regularization effect in the isothermal Euler model. Investigations of this model
will be addressed somewhere else.

However, as a first step in order to get some understanding of basic underlying
mechanisms present in the well-reservoir model (1), we take a step further and
assume that the fluid, both in the well and reservoir, is incompressible. In addition,
for simplicity reasons only, we consider the model on the whole real axis instead of
the bounded domain [0, 1]. We then get a scalar conservation law with a non-local
diffusion term on the form

∂tu + ∂x(u2) = −∂xp,

p0 − p(x, t) = ε

∫ +∞

−∞
Gr(x, x′)ux′(x′, t) dx′ = εGr ∗ ux,

(3)
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with

Gr(x, x′) =
r2

√
(x− x′)2 + r2

, r > 0, (4)

and

ε =
µD

4ρk
, (5)

where µ is fluid viscosity, k is permeability, D is a characteristic time, r the well
radius, and ρ denotes the constant fluid density. We may write (3) on the following
form

∂tu + ∂x(u2) = εGr
x ∗ ux = εGr

xx ∗ u, ε, r > 0,

u(x, 0) = u0(x).
(6)

The mission of this paper, in light of the preceding discussion, is three-folded.
• We present the background needed for deriving the dynamic, coupled well-

reservoir model (1) which takes into account the transients of the well flow as
well as the transients of the reservoir flow. In particular, this model contains
as a special case the “steady well-unsteady reservoir” model previously studied
within the petroleum science literature [25].

• We identify various simplified versions of the well-reservoir model (1) by im-
posing appropriate assumptions. Examples are given by (2) and (3). The
motivation for this is to search for models more amenable to mathematical
analysis, and still able to capture one aspect or another of the more general
model (1).

• Having identified the incompressible well-reservoir model (3), we provide a
mathematical framework appropriate for exploring its mathematical prop-
erties. We also present numerical calculations demonstrating characteristic
behaviour like formation of discontinuities.

Regarding the mathematical analysis of the well-reservoir model (3), a main
observation is that the form of this model bears similarities to the so-called radiating
gas model [14, 12, 28] as well as a Burger-Poisson type of model studied in [10].
Motivated by this, we propose a notion of entropy weak solutions that allows for
discontinuities and provide existence and uniqueness results. The framework we use
is fairly general and might be applied for more general models than (3) obtained by
taking into account effects which are included in the original well-reservoir model
(1) but not in (3). A main difference between our model problem (3) and the models
studied in [14, 10] is that the involved kernel (4) does not correspond to a differential
operator. This additional information is explicitly used, for example, in travelling
wave analysis performed for the radiating gas model [14, 15, 16, 24, 21, 30] and the
Burger-Poisson type model [10] mentioned above. Thus, such techniques may not
directly apply to our model problem.

To be more specific about the mathematical results, first, we provide a local
existence result for smooth solutions of (3). Then we provide global existence
results under various regularity on initial data. More precisely, we prove that there
exists a unique entropy weak solution for initial data

u0(x) ∈ L1(R) ∩ L∞(R). (7)

Then, we prove that there exists at least one weak solution for initial data

u0(x) ∈ L2(R) ∩ L4(R). (8)
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An interesting by-product of this analysis is that it allows us to explore the depen-
dence on the well-radius r. More precisely, we observe that as the well radius r goes
to zero, the entropy weak solution of (6) converges to the entropy weak solution of
the conservation law ut + (u2)x = 0.

The remaining part of the paper is organized as follows: In Section 2 we give a
more detailed description of the underlying ideas which lead to the system (1) as
well as the simplified variants (2) and (3). In Section 3 we identify links between
the incompressible well-reservoir model (3) and related models known from the
literature and give some motivation for the framework we shall use to obtain well-
posedness. In particular, the notion of weak solution and entropy weak solution are
introduced. In Section 4 an existence and uniqueness result are given for solutions in
L∞ whereas existence is proved in a L2 setting in Section 5. Finally, in Section 6 we
show some numerical results and illustrate characteristic behaviour of the balance
of the local convective term and the non-local diffusive term appearing in (3).

2. Mathematical models for single-phase reservoir and well flow. In this
section we first set up relevant single-phase models for reservoir flow and well (pipe)
flow, respectively. Then, following the line of previous studies within the petroleum
science literature [25]–[27], [33]–[35], we formulate coupled well-reservoir models.
More precisely, in Section 2.1 we identify a transient reservoir model by using a
density formulation whereas in Section 2.2 we use a pressure formulation for the
same model. Then, in Section 2.3 we describe a basic well flow model (compress-
ible and incompressible). Section 2.4, 2.5, and 2.6 are devoted to a discussion of
compressible coupled well-reservoir flow models as well as incompressible variants,
corresponding to the flow models (1), (2), and (3).

2.1. Reservoir flow: Compressible fluid flow via a density formulation.
We consider the flow of a compressible single-phase fluid in a 3D reservoir. Darcy’s
law gives us

U = −K
µ

(∇p− gg).

The continuity equation for flow in porous medium is given in the form

∂φρ

∂t
+∇ · (ρU) = Qmass(x, t), x ∈ Ω.

The unknown are p pressure, ρ density (which is a function of p), φ porosity, µ
viscosity. Here we have also included a source term Qmass(x, t) which accounts
for the mass flow through wells. These two equations may be combined to give a
dynamic equation

∂φρ

∂t
= ∇ ·

[
ρ
K
µ

(∇p− ρg)
]

+ Qmass(x, t). (9)

We assume that K = diag(kx, ky, kz) is a diagonal tensor. Moreover, we assume
that the the fluid has constant compressibility c, i.e.,the density is given by an
equation of state of the form

ρ = ρ(p) = ρ0 exp[c(p− p0)], c = ρ−1∂ρ/∂p. (10)

In this case, since ∇ρ = cρ∇p, we see that (9) takes the form

∂φρ

∂t
= ∇ ·

[ K
cµ

(∇ρ− cρ2g
)]

+ Qmass(x, t), x ∈ Ω. (11)



HYPERBOLIC-ELLIPTIC MODELS FOR WELL-RESERVOIR FLOW 643

This type of equation enters the discussion when gas expands in a porous medium
and in pressure tests used in oil production. In the following we will neglect the
gravity term (as in horizontal flow).

Let Xw(s) = (xw(s), yw(s), zw(s)) with s ∈ [0, 1] (dimensionless) be a parametriza-
tion of the line Γw representing the well path with X′

w(s) continuous on [0, 1]. Let
α denote the arc-length function defined by

α(s) =
∫ s

0

‖X′
w(u)‖ du, ‖x‖ =

√
x2 + y2 + z2. (12)

We assume that the length of the well path is Lw, i.e., α(1) =
∫ 1

0
‖X′

w(s)‖ ds = Lw.
The source term Qmass(x, t) represents a delta function singularity along the well

path Γw given by

Qmass(x, t) =
∫

Γw

qM(α, t)δ(x−Xw(α)) dα, qM = ρqV, (13)

where δ(x) is a three-dimensional Dirac function δ(x) = δ(x)δ(y)δ(z), qM(α, t) is the
mass flow rate per unit wellbore length and qV(α, t) the volumetric influx or efflux
rate per unit wellbore length. By this we mean that Qmass(x, t) is a distribution
with the property that∫

Qmass(x, t)φ(x) dx =
∫

Γw

qM(α, t)φ(Xw(α)) dα, (14)

for any smooth test function φ(x). Then the line integral with respect to arc length
along Γw appearing on the right hand side of (14) is evaluated as follows

∫

Γw

qM(α, t)φ(Xw(α)) dα =
∫ 1

0

qM(s, t)φ(Xw(s))‖X′
w(s)‖ ds

= Lw

∫ 1

0

qM(s, t)φ(Xw(s)) ds,

(15)

if we consider a well with a straight line geometry, since ‖X′
w(s)‖ = Lw. In the

following we restrict ourselves to this well geometry.
Generally, the model equation (11) is subject to initial and boundary conditions

given by

ρ = ρ0 = ρ(p0), at t = 0, (p0 is the initial reservoir pressure) (16)

ρ = ρR or
∂ρ

∂n
= qR, for x ∈ ∂Ω. (17)

In this work we shall assume that the medium is isotropic, i.e., kx = ky = kz = k.
The corresponding density equation takes the form

φ
∂ρ

∂t
− k

cµ

[∂2ρ

∂x2
+

∂2ρ

∂y2
+

∂2ρ

∂z2

]
= Qmass(x, t), (18)

where (x, t) = (x, y, z, t) ∈ Ω× [0, T ]. In the following we assume that Ω is a cube
of length L. It is convenient to introduce dimensionless variables in space and time
on the form [25]

x̂ =
x

L
, ŷ =

y

L
, ẑ =

z

L
, t̂ = t

k

L2cµφ
=

t

D
, (19)

where L is the characteristic length of the reservoir domain such that our domain
of interest will have length one and D = L2cµφ

k is a characteristic length of the
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reservoir time period. We also introduce a non-dimensional density ρ̂ and mass flow
rate q̂M defined by

ρ̂ =
ρ

ρ̄
, q̂M =

qM

q̄M
, (20)

where ρ̄ is a characteristic density whereas q̄M is the characteristic mass flow rate
given by

q̄M =
total reservoir fluid mass
reservoir time · well length

=
L3φρ̄

D · Lw
=

Lkρ̄

Lwcµ
. (21)

In terms of the new variables (19) and (20) the model (18) takes the following form
for ρ̂ = ρ̂(x̂, t̂)

∂ρ̂

∂t̂
−

[∂2ρ̂

∂x̂2
+

∂2ρ̂

∂ŷ2
+

∂2ρ̂

∂ẑ2

]
=

L2cµ

kρ̄
Qmass(Lx̂, t) =

cµ

Lkρ̄
Qmass(x̂, t)

def
:= Q̂mass(x̂, t̂),

(22)

for (x̂, t̂) ∈ Ω̂× [0, T̂ ] where T̂ = T
D . Here we have used that

Qmass(Lx̂, t) =
∫

Γw

qM(α, t)δ(L[x̂− X̂w(α)]) dα

=
1
L3

∫

Γw

qM(α, t)δ(x̂− X̂w(α)) dα =
1
L3

Qmass(x̂, t),

since δ(Lx̂) = δ(Lx̂)δ(Lŷ)δ(Lẑ) = 1
L3 δ(x̂). Moreover, in view of (14) and (15), the

meaning of the source term Q̂mass(x̂, t̂) in (22) is

∫
Q̂mass(x̂, t)φ(x̂) dx̂ =

∫ 1

0

q̂M(s, t̂)φ(X̂w(s)) ds, q̂M =
Lwcµ

Lkρ̄
qM =

qM

q̄M
, (23)

in accordance with (20) and (21). In the following, if nothing else is said, we work
with the above dimensionless variables although this distinction is not expressed
explicitly in the notation.

Regarding the solution of (22) and (23), we note that generally, when smart
well systems are used (which involve a number of wells with any number of laterals
of arbitrary configuration), the source term of (22) can have a rather complicated
impact on the solution [25]. Following in the footsteps of [25]–[27], [33]–[35] we
assume that each well and lateral is represented by a line source or sink. This leads
to an integral representation of the model (22) and (23) on the form

ρ0(x)− ρ(x, t) =
∫ t

0

∫

Γ

G(x,x′, t− t′)Qmass(x′, t′) dx′dt′, x ∈ Ω, t ∈ [0, T ],

=
∫ t

0

∫ 1

0

G(x,Xw(s′), t− t′)qM(s′, t′) ds′dt′.

(24)

Note that in this formulation a positive mass flowrate qM represents radial inflow
and is associated with a pressure drop p < p0 which leads to a corresponding drop
in density ρ < ρ0.

Moreover, G is the fundamental solution of the heat equation in Ω = [0, 1]3 whose
specific form depend on the boundary conditions (Dirichlet or Neumann). The
integral representation above is flexible and may be applied to reservoir problems
with complex well configurations. Successful applications of this approach have
been reported by Economides et al [6] and Ouyang et al [27], see also references
therein.
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Next, we follow [9], and let G(x,x′, t − t′) be the Green’s function for the heat
equation in 3D where outer boundary conditions have been neglected (i.e., the free-
space kernel is considered), given by

G(x,x′, t− t′) =
1

[4π(t− t′)]3/2
exp

[
−‖x− x′‖2

4(t− t′)

]
, t > t′. (25)

For short-time well-reservoir processes this seems to be a natural simplification since
it takes time before the impact from the boundaries is actuated.

By setting x = Xw(s) + rw for s ∈ [0, 1] in (24), we note that qM(s′, t′) satisfies
the integral equation

∆ρ(Xw(s) + rw, t) =
∫ t

0

∫

Γ

G(Xw(s) + rw,x′, t− t′)Qmass(x′, t′) dx′dt′,

=
∫ t

0

∫ 1

0

G(Xw(s) + rw,Xw(s′), t− t′)qM(s′, t′) ds′dt′.

(26)

Here ∆ρ(Xw(s)+ rw, t) = ρ0(Xw(s)+ rw)− ρ(Xw(s)+ rw, t) represents the change
in density at the well boundary, i.e., a radial displacement rw away from the well
centerline Γw described by Xw and such that this radial displacement is equal to
the wellbore radius rw = ‖rw‖. Equation (26) is an integral equation of first kind,
Fredholm in space and Volterra in time. For later use, we observe the following
identity

B(x, t; t1, t2) =
∫ t2

t1

G(x,x′, t− t′) dt′, t > t′ ∈ [t1, t2]

=
1

4π‖x− x′‖ ·
[
erf

(‖x− x′‖
2
√

t− t2

)
− erf

(‖x− x′‖
2
√

t− t1

)]
.

(27)

Remark 2.1. From a numerical point of view one should note that it is in general
very challenging to solve the model (22) and (23) accurately due to the delta function
singularity. For a discussion of this issue in various contexts, as well as description
of some proposed techniques for handling this problem, we refer to [20, 5, 7, 8] and
references therein.

2.2. Reservoir flow: Compressible and incompressible fluid flow via a
pressure formulation. Assuming that the compressibility is weak we may take ρ
outside the nabla operator on the right hand side of (9), i.e., we neglect a term on
the form cρ

µ ∇p · (K∇p). In addition, we assume the porosity is constant. Then, in
view of (10), we obtain the pressure equation

cφ
∂p

∂t
−∇ ·

[K
µ

(∇p− ρg)
]

=
Qmass(x,t)

ρ
= Qvol(x, t), (28)

where

Qvol(x, t) =
∫

Γw

qV(α, t)δ(x−Xw(α)) dα. (29)

The two equations (9) and (28) are often used in reservoir engineering [1]. Again, we
consider the transformed variables (19) together with a non-dimensional pressure p̂
and volumetric flow rate q̂V defined by

p̂ =
p

p̄
, q̂V =

qV

q̄V
, (30)



646 STEINAR EVJE, KENNETH H. KARLSEN

where p̄ is a characteristic reservoir pressure whereas q̄V is the characteristic volu-
metric flow rate given by

q̄V =
total pore volume

reservoir time · well length
· p̄c =

L3φ·
D · Lw

· p̄c =
Lkp̄

Lwµ
. (31)

Assuming isotropic medium and neglecting the gravitation term, the pressure equa-
tion (28) takes the form

∂p̂

∂t̂
−

[∂2p̂

∂x̂2
+

∂2p̂

∂ŷ2
+

∂2p̂

∂ẑ2

]
=

L2µ

kp̄
Qvol(Lx̂, t) =

µ

kLp̄
Qvol(x̂, t)

def
:= Q̂vol(x̂, t̂), (32)

where the meaning of Q̂vol(x̂, t̂), in light of (14) and (15), is
∫

Q̂vol(x̂, t)φ(x̂) dx̂ =
∫ 1

0

q̂V(s, t̂)φ(X̂w(s)) ds, q̂V =
Lwµ

Lkp̄
qV =

qV

q̄V
. (33)

Following the approach as described above for the density equation we arrive at
the following integral equation, where qV(s′, t′) and p(s, t) now are non-dimensional
variables

∆p(Xw(s) + rw, t) =
∫ t

0

∫

Γ

G(Xw(s) + rw,x′, t− t′)qV(x′, t′) dx′dt′,

=
∫ t

0

∫ 1

0

G(Xw(s) + rw,Xw(s′), t− t′)qV(s′, t′) ds′dt′,

(34)

where ∆p(Xw(s)+rw, t) = p0(Xw(s)+rw)−p(Xw(s)+rw, t) for (s, t) ∈ [0, 1]×[0, T ].
Assuming that the fluid is incompressible, the temporal term in (28) vanishes,

i.e., we have

−∇ ·
[K

µ
(∇p− ρg)

]
=

Qmass(x,t)

ρ
= Qvol(x, t), (35)

where Qvol is given by (29). Now, we consider the transformed variables (19) (only
the spatial variables are relevant) together with a non-dimensional pressure p̂ and
volumetric flow rate q̂V defined by (30) and (31). Assuming isotropic medium and
neglecting the gravitation term, the pressure equation (35) takes the form

−
[∂2p̂

∂x̂2
+

∂2p̂

∂ŷ2
+

∂2p̂

∂ẑ2

]
= Q̂vol(x̂, t̂), (36)

where Q̂vol is defined by (33). Following the approach as described above for the
density equation, we arrive at the following integral equation where qV(s′, t) and
p(s, t) now are non-dimensional variables

∆p(Xw(s) + rw, t) =
∫

Γ

G(Xw(s) + rw,x′)Qvol(x′, t) dx′, s ∈ [0, 1],

=
∫ 1

0

G(Xw(s) + rw,Xw(s′))qV(s′, t) ds′,
(37)

where ∆p(Xw(s) + rw, t) = p0(Xw(s) + rw)− p(Xw(s) + rw, t). Here the kernel G
is the Green’s function associated with the pressure equation

−∆p = δ(x−Xw) (38)

in 3D. That is,

G(x,x′) =
1

4π‖x− x′‖ . (39)
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This may be seen from the fact that the heat kernel G(x,x′, t− t′) is related to the
Green function to the Laplace equation (39), let’s denote is as K(x,x′), through
the relation (see for example [11, 31])

K(x,x′) =
∫ ∞

0

G(x,x′, t− t′) dt,

that is, for the free-space kernel (25), as observed in (27), we get
∫ t2

t1

G(x,x′, t− t′)dt =
1

4π‖x− x′‖
[
erf

(‖x− x′‖
2
√

t2

)
− erf

(‖x− x′‖
2
√

t1

)]
,

which tends to 1
4π‖x−x′‖ as (t1, t2) → (0,+∞).

2.3. Well flow: Compressible and incompressible fluid flow. The purpose
of this section is to present a basic well-type model for a compressible fluid as well
as the corresponding model for an incompressible fluid.

Compressible fluid. A single-phase, compressible, isothermal and unsteady well
flow model is given on the form

∂t(Aρw) + ∂α(Aρwu) = qM = ρwqV

∂t(Aρwu) + ∂α(Aρwu2) + A∂αpw = −Aρwg sin θ − τwS,
(40)

where α is the arc-length variable associated with the well path Γw defined in
(12) and t is the time variable. Here ρw is the fluid density, u the fluid velocity,
pw = p(ρw) the pressure, qM mass flow rate per unit wellbore length whereas qV

represents volumetric flux per unit wellbore length. Moreover, τw represents wall
fraction shear rate given by

τw =
1
2
fρwu|u|,

where f is the Fanning factor and A = πr2
w is the pipe cross-sectional area and

S = 2πrw is the pipe perimeter for a well of radius rw. In addition, the well model
is subject to the following initial data

p(α, 0) = p0(α), u(α, 0) = u0(α). (41)

Introducing a characteristic time according to (19) as well as applying (12), which
corresponds to α(s) = Lws for s ∈ [0, 1], we see that the model (40) can be written
as

∂t̂(Aρw) + ∂s(
AD

Lw
ρwu) = DqM

∂t̂(Aρwu) + ∂s(
AD

Lw
ρwu2) +

AD

Lw
∂spw = −ADρwg sin θ − τwSD,

(42)

for (s, t̂) ∈ [0, 1]× [0, T̂ ]. In order to be consistent with the reservoir model, we here-
after neglect the gravity term and write the model on the following form (skipping
the “hat” notation)

∂t(ρw) + ∂s(aρwu) = bqM, a =
D

Lw
, b =

D

A

∂t(ρwu) + ∂s(aρwu2) + a∂spw = −Sb
1
2
fρwu|u|,

(43)
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where (s, t) ∈ [0, 1] × [0, T ]. Note that A represents the well cross-sectional area
A = πr2

w where the well radius rw is related to the non-dimensional well radius r
by rw = Lr. Next, we introduce non-dimensional variables as follows:

û =
u

ū
, p̂w =

pw

p̄
, ρ̂w =

ρw

ρ̄
, q̂M =

qM

q̄M
(44)

where p̄ is the characteristic pressure introduced in (30) and ρ̄ and q̄M are the
characteristic density and mass flow rate used in (20). The characteristic fluid
velocity ū is chosen to be

ū =
1
a

=
Lw

D
, (45)

where D is a characteristic time. If the well model is coupled to a time-dependent
reservoir model as described in Section 2.1 and 2.2, D is given by (19), i.e.,

D =
L2cµφ

k
, (46)

which is a characteristic length of the time period associated with the reservoir. If
we are interested only in a steady response from the reservoir, i.e. we consider the
model (36), we may choose D as a characteristic time period associated with the
well flow dynamic. In terms of the non-dimensional variables (44), (45), and (46),
the model (43) takes the form

∂t(ρ̂w) + ∂s(ρ̂wû) =
1
ν

q̂M, ν =
total well volume
total pore volume

=
LwA

L3φ

∂t(ρ̂wû) + ∂s(ρ̂wû2) + h0∂sp̂w = −Lw

rw
fρ̂wû|û|, h0 =

p̄

ρ̄ū2
.

(47)

Remark 2.2. A more natural non-dimensional form of the well model when we
are interested in the well-reservoir process under the whole lifespan of the reservoir,
i.e., a typical production scenario is to replace the characteristic fluid velocity (45)
with the following one

ũ =
1
ν

ū. (48)

In terms of the corresponding non-dimensional variables, the model (43) now takes
the form

ν∂t(ρ̂w) + ∂s(ρ̂wû) = q̂M, ν =
total well volume
total pore volume

=
LwA

L3φ

ν∂t(ρ̂wû) + ∂s(ρ̂wû2) + h0∂sp̂w = −Lw

rw
fρ̂wû|û|, h0 =

p̄

ρ̄ũ2
.

(49)

In this light it is a reasonable assumption to neglect the temporal terms of the well
model for coupled well-reservoir modeling where focus is on reservoir transients and
not the well transients, see for example [25]–[27], [33]–[35].

Incompressible fluid. We assume that the fluid is incompressible, i.e. ρw is
constant. In view of (43) we then obtain the following equations

∂s(au) = bqV, a =
D

Lw
, b =

D

A

∂t(u) + ∂s(au2) +
a

ρw
∂spw = −Sb

1
2
fu|u|,

(50)
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In addition to the nondimensional volumetric flow rate q̂V given by (31), we in-
troduce a nondimensional fluid velocity û and pressure p̂w given by (44) and (45),
where D is a characteristic time for the well flow dynamic which must be specified,
e.g. by (46). In terms of non-dimensional variables the model (50) takes the form

∂s(û) =
1
k0

q̂V,
1
k0

=
q̄VLw

ūA
=

Lkp̄D

LwµA
,

∂t(û) + ∂s(û2) + h0∂sp̂w = −Sb
ū

2
fû|û| = −Lwf

rw
û|û|, h0 =

p̄

ρwū2
.

(51)

2.4. Coupled Well-Reservoir flow: Compressible fluid. The plan is now to
follow along the same line as [25]–[27], [33]–[35] in order to obtain coupled well-
reservoir models. In view of the density and pressure-based reservoir models (26)
and (34), it seem convenient to formulate corresponding density and pressure-based
coupled models.

Variant I. Let ρw(s, t) be the fluid density associated with the well flow model
(47) whereas ρ(Xw(s) + rw, t) is the fluid density described by the density-based
reservoir model (26) along the well path. If we assume that the fluid is entering or
leaving the wellbore through the porous pipe wall such as in open-hole horizontal
well situations, then it is reasonable that ρw(s, t) and ρ(Xw(s) + rw, t) are linked
through the relation

ρw(s, t) = ρ(Xw(s) + rw, t)
def
:= ρ(s, t). (52)

This results in the following coupled well-reservoir model

∂t(ρ) + ∂s(ρu) =
1
ν

qM, ν =
LwA

L3φ

∂t(ρu) + ∂s(ρu2) + ∂sP (ρ) = qF, P (ρ) = h0pw(ρ), h0 =
p̄

ρ̄ū2
,

ρ0 − ρ(s, t) =
∫ t

0

∫ 1

0

G(Xw(s) + rw,Xw(s′), t− t′)qM(s′, t′) ds′dt′,

(53)

with qF = −Lw

rw
fρu|u| and where we have assumed that initial density ρ0 is a

constant. In this model, the density ρ = ρ(P, qM) is pointwise (locally) related to
the pressure P , whereas it is related to the mass rate qM in a non-local manner (via
a functional).

Variant II. A closely related well-reservoir model is obtained by coupling the well
model (47) with the pressure-based reservoir model (34) using the assumption

pw(ρ(s, t)) = p(Xw(s) + rw, t)
def
:= p(s, t). (54)

Noting that (21) and (31) gives us q̄M = ρ̄
p̄c q̄V, we get a model on the form

∂t(ρ) + ∂s(ρu) =
1
η
ρqV, η =

ν

p̄c
,

∂t(ρu) + ∂s(ρu2) + ∂sP (ρ) = qF, P (ρ) = h0pw(ρ), h0 =
p̄

ρ̄ū2
,

P0 − P (s, t) = h0

∫ t

0

∫ 1

0

G(Xw(s) + rw,Xw(s′), t− t′)qV(s′, t′) ds′dt′,

(55)

with qF = −Lw

rw
fρu|u| and where we have assumed that initial pressure p0 is a

constant. In this formulation the pressure P = P (ρ, qV) is related to the density
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ρ in a local manner whereas its relation to the volumetric rate qV is non-local
(functional dependence). We note that this model corresponds to the model problem
(1) presented in Section 1.

2.5. A simplified “compressible well-incompressible reservoir” model. In
order to explore some aspects of the well-reservoir model (55), we here propose a
simplified variant by neglecting the transient response from the reservoir. In other
words, we treat the reservoir fluid as an incompressible fluid. In view of (37) and
(39) we obtain a well-reservoir model on the form

∂t(ρ) + ∂s(ρu) =
1
η
ρqV, η =

ν

p̄c
, ν =

LwA

L3φ
,

∂t(ρu) + ∂s(ρu2) + ∂sP (ρ) = qF, P (ρ) = h0pw(ρ), h0 =
p̄

ρ̄ū2
,

P0 − P (s, t) =
∫ 1

0

Hr(s, s′)qV(s′, t) ds′,

(56)

where qF = −Lw

rw
fρu|u| and

Hr(s, s′) = h0G(Xw(s) + r,Xw(s′)), G(x,x′) =
1

4π‖x− x′‖ . (57)

Thus, (55) becomes a hyperbolic-elliptic type of model instead of a hyperbolic-
parabolic. Next, we may seek more insight into characteristic properties of this
model by specifying a well geometry. For that purpose we assume that the well-line
is described by a straight line placed in the center of the unit box and given by

Xw(s′) =
(
[1− s′]a + s′b,

1
2
,
1
2

)
, Xw(s) + r =

(
[1− s]a + sb,

1
2

+ r,
1
2

)
,

with r = (0, r, 0), r =
rw

L
, b− a =

Lw

L
,

(58)

for s, s′ ∈ [0, 1] and constants a < b in (0, 1) where r is the dimensionless well
radius and the dimensionless length of the well is b− a = Lw/L. It is convenient to
introduce the dimensionless radius r̄ defined by

r̄ =
rw

Lw
, (59)

which implies that r = r̄ Lw

L = r̄(b− a). We then arrive at the following expression
for the kernel Hr(s, s′) in (57).

Hr(s, s′) = h0G(Xw(s) + r,Xw(s′))

= h0
1

4π
√

(b− a)2(s− s′)2 + (b− a)2r̄2
·

=
Lh0

Lw

1
4π

√
(s− s′)2 + r̄2

= ε1
1√(

s−s′
r̄

)2 + 1
, ε1 =

h0L

4πr̄Lw
.

(60)

In order to get a better understanding of the interaction between well and reservoir
present in the model (56) we may consider the following approximation of the kernel
function Hr:

Hr(s) = ε1
1√

(s/r̄)2 + 1
≈ ε1

1√
exp( 2α

r̄ |s|)
= ε1e

−α
r̄ |s| = ε1K

r,α(s), (61)
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for some choice of α > 0 that might depend on r̄. This corresponds to the approxi-
mation

hr̄,α(x) =
1√

exp(α|(x/r̄)|) ≈
1√

1 + (x/r̄)2
= gr̄(x), x ∈ (−δ,+δ),

for some δ > 0. For a case with r̄ = 0.001, and α = 0.2, 0.5 and α = 1.0, see Fig. 1
for a comparison of these two functions. Note that the role of the parameter α
is to determine to what extent the convolution has a local effect or a more global
effect. “Small” values for α implies that the kernel hr̄,α(x) is centered around a
larger interval of zero, see Fig. 1. “Large” values for α implies that hr̄,α(x) is
centered around a smaller interval of zero, i.e., the convolution operator is more
localized. Regarding the approximation (61) we note that, from the point of view
of applications, we may argue that there is naturally room for various choices for the
kernel function since this represents the unknown reservoir. In fact, we are satisfied
with a kernel that are able to represent some characteristic information about the
reservoir which surrounds the well.

Next, we observe that Kr,α(s, s′) satisfy the equation,

λ2Kr,α −Kr,α
ss = 2λδ(s− s′)e−λ|s−s′|, λ =

α

r̄
.

Observing from (56), where we now make use of the approximation (61), that

P0 − P = Hr ∗ qV ≈ ε1K
r,α ∗ qV, ε1 =

h0L

4πr̄Lw

it follows that

λ2(P0 − P ) + Pss = ε1(λ2Kr,α −Kr,α
ss ) ∗ qV

= 2λε1δ(s− s′)e−λ|s−s′| ∗ qV = 2λε1qV.
(62)

That is,

qV =
1

2ε1λ

(
λ2(P0 − P ) + Pss

)
=

1
2ε1λ

(
A−BP (ρ) + CP (ρ)ss

)
.

Inserting this in the continuity equation of (56) we obtain a model on the form

∂tρ + ∂s(ρu) =
1
ε

(
Aρ−BρP (ρ) + ρP (ρ)ss

)
, ε = 2ε1λη,

∂t(ρu) + ∂s(ρu2) + ∂sP (ρ) = qF,
(63)

where A,B > 0 are given by

A = λ2P0, B = λ2.

We note that this model corresponds to the model problem (2) mentioned in Section
1.

Remark 2.3. We may consider the above models (56) and (63) as approximative
models that still are able to give some insight into characteristic behavior possessed
by the original well-reservoir models (53) and (55). Hopefully, we should be able to
demonstrate that the simplified models are able to capture one aspect or another of
the more general ones. The simplified model may allow us to draw rigorous conclu-
sions that explain rather satisfactorily some aspects of specific physical situations
which may also be observed experimentally.
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Figure 1. Plot of the functions g and h for various α with r =
0.001. Left: α = 0.2. Middle: α = 0.5. Right: α = 1.0.

2.6. Coupled Well-Reservoir flow: Incompressible fluid. We take a step
further and impose another simplification in model (56) by assuming that the well
fluid is incompressible, i.e. ρ̄ = ρ = ρw = const. In other words, we replace the
compressible well model in (56) by the incompressible well model (51) which yields
the following simplified well-reservoir model

∂s(u) =
1
k0

qV,
1
k0

=
Lkp̄D

LwµA
, A = πr2

w = π(r̄Lw)2,

∂t(u) + ∂s(u2) + ∂sP = qF, P = h0p, h0 =
p̄

ρ̄ū2
, qF = −1

r̄
fu|u|,

P0 − P (s, t) =
∫ 1

0

Hr(s, s′)qV(s′, t) ds′.

(64)

In view of (60), we have that

Hr(s, s′) =
h0L

4πr̄2Lw

r̄2

√
(s− s′)2 + r̄2

=
h0L

4πr̄2Lw
Gr(s, s′), (65)

where the kernel Gr is defined as

Gr(s, s′) =
r̄2

√
(s− s′)2 + r̄2

, r̄ =
rw

Lw
. (66)

Inserting the first equation of (64) in the integral equation of (64), we get

P0 − P (s, t) =
∫ 1

0

Hr(s, s′)qV(s′, t) ds′

=
h0k0L

4πr̄2Lw

∫ 1

0

Gr(s, s′)us′ ds′ = ε

∫ 1

0

Gr(s, s′)us′ ds′,

where

ε =
h0k0L

4πr̄2Lw
=

µD

4ρ̄k
. (67)

Thus, the model (64) is equivalently written on the form
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∂tu + ∂s(u2) = −∂sP + qF,

P0 − P (s, t) = ε

∫ 1

0

Gr(s, s′)us′(s′, t) ds′ = εGr ∗ us,
(68)

where ε and Gr are given, respectively, by (67) and (66). This model corresponds to
the model problem (3)–(5), presented in Section 1 but where we now, for simplicity,
have replaced the finite domain [0, 1] by the real axis as well as neglected the friction
term qF.

Remark 2.4. The well-reservoir interaction is clearly reflected through the model
(68) which involves a balance between a local convective force and a non-local
diffusive force. By letting the permeability go to zero (i.e., the flow between well and
reservoir must also go to zero) we see from (67) that ε becomes large. Consequently,
an initial disturbance in the fluid velocity, e.g. a Gaussian pulse, is quickly damped
to zero due to a strong (non-local) diffusive force, see Section 6. On the other hand,
by letting k becomes large, the fluid is allowed to flow with low resistance between
well and reservoir. For this case, ε becomes small and the convective force becomes
the more dominating one.

Remark 2.5. By making use of the approximation (62) we see that the model (68)
(without friction term) takes the form

∂tu + ∂s(u2) = −∂sP,

λ2(P0 − P ) + Pss = s0us, λ =
α

r̄
, s0 = 2λε1k0 = 2λεr̄ = 2αε.

(69)

From the first equation of (69) we formally obtain the following two equations:

λ2ut + λ2(u2)s + λ2Ps = 0

−utss − (u2)sss − Psss = 0.
(70)

From the second equation of (69) we also obtain the equation

−Psss + λ2Ps = −s0uss. (71)

Summing the two equations in (70) and using (71), we arrive at the equation

ut +(u2)s− c0utss− c0(u2)sss− s1uss = 0, c0 =
1
λ2

, s1 = c0s0 =
s0

λ2
. (72)

We may write it on the form

ut + (u2)s − c0utss − 2c0(u2
s + uuss)s = s1uss, (73)

or the form

ut + (u2)s − c0utss = 6c0ususs + 2c0uusss + c0s0uss. (74)

Remark 2.6. We note that by letting the compressibility c go to zero in the
equation of state (10) such that ρ → ρ0 = constant, then the model (63) formally is
reduced to the incompressible model (69), alternatively (72). It would be interesting
to explore this limit in a rigorous mathematical sense.

In the remaining part of this paper we focus exclusively on the model problem
(4)–(6). We are interested in general existence and uniqueness results that apply for
our model problem, which might be considered as a simplest possible approximation
to the more general well-reservoir model (1). In the next section we first present
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some motivation for the solution concept to be used, together with a local existence
result. Global existence results are then presented in Section 4 and 5.

3. Preliminaries. In Section 3.1 we relate our model problem to other non-local
conservation laws. This section also serves as motivation for the solution concept
introduced in Section 3.2. Finally, in Section 3.3. we also include a local existence
result.

3.1. Relation to some other models. As a first approach, it is instructive to
compare our model problem (4)–(6) with similar non-local conservation laws already
explored in the literature, however, within different contexts. Here we will mention
two of them to which it seems particularly relevant to relate our model equation.

Fellner and Schmeiser [10] studied a Burgers-Poisson type of model on the form

∂tu + ∂x(
1
2
u2) = −∂xp, p(x, t) =

∫ +∞

−∞
H(x, x′)u(x′, t) dx′ = H ∗ u, (75)

with

H(x, x′) =
1
2
e−|x−x′|. (76)

Alternatively, we may write (75) on the form

∂tu + ∂x(
1
2
u2) = −H ∗ ux = −Hx ∗ u. (77)

Due to the fact that the kernel H(x, x′) corresponds to the operator (1− ∂2
xx), (77)

can be written on the form

ut + uux = −px, −pxx + p = u. (78)

Another model which has attracted much attention more lately is the so-called
radiating gas model [28, 12, 14, 15, 16, 24, 21, 18, 30, 17, 19]. This model is obtained
by replacing p = H ∗ u by p = −H ∗ ux in (75). That is, we get the equation

∂tu + ∂x(
1
2
u2) = −∂xp, p(x, t) = −

∫ +∞

−∞
H(x, x′)ux′(x′, t) dx′ = −H ∗ ux. (79)

As before, we may write (79) on the form

∂tu + ∂x(
1
2
u2) = Hx ∗ ux = Hxx ∗ u = [H − δ] ∗ u = H ∗ u− u, (80)

where δ represents the Dirac delta function. Again, since the convolution kernel
H(x, x′) corresponds to the operator (1− ∂2

xx), (80) can be written on the form

ut + uux = −px, −pxx + p = −ux. (81)

It is instructive to observe that the three models (6), (77), and (80) can all be
written on the form

ut + f(u)x = Liu = Gi ∗ ux, i = 1, 2, 3, (82)

where Gi(x, x′) corresponds to the following different choices

G1(x, x′) = εGr
x(x, x′) (well reservoir),

G2(x, x′) = −H(x, x′) (Burgers Poisson),

G3(x, x′) = Hx(x, x′) (radiating gas).

(83)

The plots in Fig. 2 (compare left and right plot) show that the kernels corresponding
to the well-reservoir model and the radiating gas model, respectively, bear strong
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Figure 2. Plot of kernels corresponding to Left: well-reservoir
model G1(x); Middle: Burger Poisson G2(x), Right: radiating
gas G3(x).

similarities. Thus, we may expect to see (at least numerically) that the two models
possess similar properties. However, as far as mathematical results are concerned
we should bear in mind that the the radiating gas model possesses a particularly
nice structure since the right hand side also can be written on the form

L3u = G3 ∗ ux = Hxx ∗ u = H ∗ u− u, H ≥ 0,

∫

R
H(x) dx = 1, (84)

where the L3 operator now can be shown to be a L1-contractive operator. This
feature strongly hang on the special form of the right hand side given by (84).

Remark 3.1. One important difference between the models (6), (77), and (80) is
that the two last ones can be written as hyperbolic-elliptic coupled systems, corre-
sponding to (78) and (81), which involve no convolution operator. In general, we
cannot expect the kernel Gr involved in (6) to correspond to a differential operator.
The reformulations (78) and (81) are, for instance, explicitly used in travelling wave
analysis, see [10, 15, 16, 24].

Remark 3.2. A common feature of the above three models (6), (77), and (80),
written on the form (82) and (83), is that the right hand side can be written on
the form Gi ∗ ux = Gi,x ∗ u. This contrasts other nonlinear dispersive models like
the Camassa-Holm and Degasperis-Proces models which involve nonlinear terms
respectively on the form H ∗ ( 3

2u2 + 1
2 (ux)2) and H ∗ (3

2u2), where H is given by
(76). This makes it considerably more delicate to obtain a priori estimates for these
models, see for example [2, 3].

3.2. Solution concept. In [21] it is shown that for the radiating gas model (80)
there are initial data such that the corresponding solution to the Cauchy problems
develop discontinuities in finite time. Similarly, for the Burgers-Poisson equation
(77) numerical results indicate that the model features wave breaking in finite time
[10]. In view of the similarity between (77), (80), and (6), we may expect that the
non-local diffusion term L1u = εGr

xx ∗ u appearing in (6) in general cannot prevent
shock formation. Numerical simulations in Section 6 also indicate that one must
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expect loss of regularity. Thus, it is reasonable to use weak solution concepts similar
to those that has been used for models (77) and (80).

Definition 3.1. (Weak solution) We call a function u : (0, T ) × R → R a weak
solution of (6) provided

i) u ∈ L∞
(
(0, T ); L2(R)

)
, and

ii) ∂tu + ∂x(u2) + ∂xp = in D′ ((0, T )× R), that is, ∀φ ∈ C∞0 ([0, T )× R) there
holds the equation

∫ T

0

∫

R

(
u∂tφ + u2∂xφ− ∂xpφ

)
dx dt +

∫

R
u0(x)φ(x, 0) = 0, (85)

where
p0 − p(x, t) = εGr

x ∗ u = ε

∫

R
Gr

x(x, x′)u(x′, t) dx′.

Definition 3.2. (Entropy weak solution) We call a function u : (0, T )×R→ R an
entropy weak solution of (6) provided

i) u ∈ L∞ ((0, T )× R) ∩ C
(
[0, T ];L1(R)

)
for any T > 0, and

ii) for any convex C2 entropy η : R→ R with corresponding entropy flux q : R→
R defined by q′(u) = 2uη′(u) there holds the inequality

∂tη(u) + ∂xq(u) + η′(u)∂xp ≤ 0, in D′ ((0, T )× R),

that is, ∀φ ∈ C∞0 ([0, T )× R), φ ≥ 0, there holds the inequality∫

R+

∫

R

(
η(u)∂tφ + q(u)∂xφ− η′(u)∂xpφ

)
dx dt +

∫

R
η(u0(x))φ(x, 0) dx ≥ 0, (86)

where
p0 − p(x, t) = εGr

x ∗ u = ε

∫

R
Gr

x(x, x′)u(x′, t) dx′.

In the next section we shall repeatedly apply the following well known result.

Lemma 3.1 (Young’s inequality). Suppose 1 ≤ p, q ≤ ∞ and 1/r = 1/p+1/q−1 ≥
0. If f ∈ Lp and g ∈ Lq, then f ∗ g ∈ Lr and

‖f ∗ g‖r ≤ ‖f‖p‖g‖q.

Note that for the special case r = p and q = 1 we get

‖f ∗ g‖p ≤ ‖f‖p‖g‖1.
We also note that we have the following relations relevant for the kernel Gr:

Gr
x =

−r2[x− x′]
(
[x− x′]2 + r2

)3/2
, Gr

xx =
r2

(√
2[x− x′]− r

)(√
2[x− x′] + r

)

(
[x− x′]2 + r2

)5/2
. (87)

Particularly, we observe that∫

R
Gr

xx dx = 0,

‖Gr
x‖L1(R) = 2

∫ 0

−∞
Gr

x dx = 2r,

‖Gr
xx‖L1(R) = −4

∫ r/
√

2

0

Gr
xx dx =

8
3
√

3
≤ 2.

(88)
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Moreover,

‖Gr
x‖L∞(R) = Gr

x(r/
√

2) =
2

3
√

3
, ‖Gr

xx‖L∞(R) = |Gr
xx(0)| = 1

r
. (89)

3.3. A local existence result. Along the line of [10] we can obtain the following
local existence result for the model problem (6).

Theorem 3.1 (Local strong solution). Assume u0 ∈ Hk(R) with k > 3
2 . Then,

there exists a time T > 0 and a unique solution

u ∈ L∞
(
(0, T ); Hk(R)

) ∩ C
(
[0, T ];Hk−1(R)

) def
:= X,

of (6).

Proof. For completeness we include the proof of this theorem. We first define a map
ST as follows: for any function v ∈ BT , with

BT := {w ∈ X : sup
t∈[0,T ]

‖w(·, t)‖Hk(R) ≤ 2‖u0‖Hk(R)},

let the image ST (v) be the unique solution u of

∂tu + ∂x(u2) = εGr
xx ∗ v, ε, r > 0, u(x, 0) = u0(x). (90)

Step 1. We must show that ST is a mapping BT → BT for some choice of T > 0.
We take the derivative ∂α

x for α ≤ k to (90) which yields

(∂α
x u)t + ∂α

x (2uux) = εGr
xx ∗ ∂α

x v.

Then we multiply with ∂α
x u and integrate in space and obtain

1
2

(∫

R
[∂α

x u]2 dx

)

t

+
∫

R
∂α

x (2uux)∂α
x u dx = ε

∫

R
[Gr

xx ∗ ∂α
x v]∂α

x u dx. (91)

The second term on the left hand side is treated as follows. First, we see that the
product rule gives

∂α
x (2uux) = 2u∂α+1

x u + 2
α∑

l=1

(
α
l

)
∂l

xu∂α+1−l
x u,

so we have to deal with a term on the form
∫

R
∂α

x (2uux)∂α
x u dx = 2

∫

R
u∂α+1

x u∂α
x u dx+2

∫

R

α∑

l=1

(
α
l

)
∂l

xu∂α+1−l
x u∂α

x u dx. (92)

The first term on the right hand side of (92) is estimated as follows:
∣∣∣∣
∫

R
u∂α+1

x u · ∂α
x u dx

∣∣∣∣

=
1
2

∣∣∣∣
∫

R
u∂x

(
[∂α

x u]2
)

dx

∣∣∣∣ ≤
1
2
‖ux‖L∞‖u‖2Hα ≤ 1

2
‖ux‖L∞‖u‖2Hk .

(93)
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The second term on the right hand side of (92) is estimated as follows:
∣∣∣∣∣
∫

R

α∑

l=1

(
α
l

)
∂l

xu∂α+1−l
x u · ∂α

x u dx

∣∣∣∣∣

≤ C

α∑

l=1

∫

R

∣∣∂l
xu∂α+1−l

x u · ∂α
x u

∣∣ dx ≤ C

α∑

l=1

‖∂l
xu∂α+1−l

x u‖L2‖∂α
x u‖L2

≤ CD

α∑

l=1

(
‖ux‖L∞‖u‖Hα + ‖u‖Hα‖ux‖L∞

)
‖∂α

x u‖L2

≤ 2αCD
(
‖u‖Hα‖ux‖L∞

)
‖u‖Hα ≤ 2αCD‖u‖2Hα‖ux‖L∞ ,

(94)

where we have applied the following interpolation estimate [10]

‖(∂l−1
x fx)(∂α−l

x gx)‖L2 ≤ D (‖fx‖L∞‖g‖Hα + ‖f‖Hα‖gx‖L∞) . (95)

Consequently, in view of (93) and (94), we get
∣∣∣∣
∫

R
∂α

x (2uux) · ∂α
x u dx

∣∣∣∣ ≤ E‖u‖2Hk‖ux‖L∞ ≤ E′‖u‖3Hk , (96)

by using the Sobolev imbedding result W 1,∞(R) ↪→ Hk(R) for k > 3/2.
For the right hand side of (91) we get
∣∣∣∣
∫

R
[Gr

xx ∗ ∂α
x v]∂α

x u dx

∣∣∣∣ ≤ ‖Gr
xx ∗ ∂α

x v‖L2‖∂α
x u‖L2 ≤ ‖Gr

xx‖L1‖v‖Hk‖u‖Hk . (97)

Thus, in view of (91), (96), and (97), we get

‖u‖Hk

d

dt
‖u‖Hk ≤ c‖u‖Hk(‖v‖Hk + ‖u‖2Hk),

or
d

dt
‖u‖Hk ≤ c(‖v‖Hk + ‖u‖2Hk).

For T small enough, a comparison principle shows that ‖u(·, t)‖Hk ≤ 2‖u0‖Hk for
t ∈ [0, T ]. Since u ∈ C

(
[0, T ];Hk−1(R)

)
we may conclude that ST : BT → BT .

Step 2. We shall show that ST is a contraction with respect to the topology in
C

(
[0, T ];Hk−1(R)

)
in the sense that

‖ST (v1)− ST (v2)‖Hk−1(R) < ‖v1 − v2‖Hk−1(R)

for two elements v1, v2 in BT . Setting ui = ST (vi) for i = 1, 2 and u = u1 − u2 and
v = v1 − v2, we get an equation for the difference u on the form

∂tu + 2u∂xu1 + 2u2∂xu = εGr
xx ∗ v, u(x, t = 0) = 0.

We proceed as in the step above and apply the operator ∂α
x and then take the

L2-scalar product with ∂α
x u:

1
2

d

dt

(∫

R
[∂α

x u]2 dx

)
+

∫

R
∂α

x (2uu1,x)∂α
x u dx +

∫

R
∂α

x (2u2ux)∂α
x u dx

= ε

∫

R
[Gr

xx ∗ ∂α
x v]∂α

x u dx.

(98)
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Now we must deal with the following term:

∫

R
∂α

x (2uu1,x)∂α
x u dx = 2

∫

R
u∂α+1

x u1∂
α
x u dx + 2

∫

R

α∑

l=1

(
α
l

)
∂l

xu∂α+1−l
x u1∂

α
x u dx.

(99)
The first term on the right hand side of (99) is estimated as follows:

∣∣∣∣
∫

R
u∂α+1

x u1 · ∂α
x u dx

∣∣∣∣
≤ ‖u‖L∞‖u1‖Hα+1‖u‖Hα ≤ ‖u‖L∞‖u1‖Hk‖u‖Hk−1 ≤ ‖u1‖Hk‖u‖2Hk−1 ,

(100)

by choosing that α ≤ k−1 and using the embedding L∞(R) ↪→ Hk−1(R) for k > 3/2.
In other words, at this point we are forced to reduce the order of differentiation by
one. Moreover, the second term on the right hand side of (99) is estimated as
follows:

∣∣∣∣∣
∫

R

α∑

l=1

(
α
l

)
∂l

xu∂α+1−l
x u1 · ∂α

x u dx

∣∣∣∣∣

≤ C

α∑

l=1

∫

R

∣∣∂l
xu∂α+1−l

x u1 · ∂α
x u

∣∣ dx ≤ C

α∑

l=1

‖∂l
xu∂α+1−l

x u1‖L2‖∂α
x u‖L2

≤ CD

α∑

l=1

(
‖u‖L∞‖u1‖Hα+1 + ‖u‖Hα‖u1,x‖L∞

)
‖∂α

x u‖L2

≤ αCD
(
‖u‖L∞‖u1‖Hk + ‖u‖Hk−1‖u1,x‖L∞

)
‖u‖Hk−1

≤ 2αCD‖u‖2Hk−1‖u1‖Hk ,

(101)

where we have applied the interpolation estimate (95) in the following way

‖(∂(l+1)−1
x u2,x)(∂(α+1)−(l+1)

x u1,x)‖L2 ≤ D (‖u2,x‖L∞‖u1‖Hα+1 + ‖u2‖Hα+1‖u1,x‖L∞) ,

with u2,x = u. Consequently, in view of (100) and (101), we get
∣∣∣∣
∫

R
∂α

x (2uu1,x) · ∂α
x u dx

∣∣∣∣ ≤ E‖u1‖Hk‖u‖2Hk−1 ≤ 2E‖u0‖Hk‖u‖2Hk−1 . (102)

Similarly, we get
∣∣∣∣
∫

R
∂α

x (2u2ux) · ∂α
x u dx

∣∣∣∣ ≤ E‖u2‖Hk‖u‖2Hk−1 ≤ 2E‖u0‖Hk‖u‖2Hk−1 . (103)

The right hand side of (98) is estimated as in (97) and we get

d

dt
‖u‖Hk−1 ≤ c(‖u‖Hk−1 + ‖v‖Hk−1),

and we conclude that

‖u‖Hk−1 < ‖v‖Hk−1

for sufficient small T , i.e., ST is a strict contraction.
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4. Global existence theory in L1 ∩ L∞.

Theorem 4.1 (Well-posedness in L1 ∩ L∞). Assume that (7) holds. Then there
exists an entropy weak solution to (6) in the sense of Definition 3.2. Moreover, for
any (fixed) T > 0, let u, v : (0, T ) × R → R be two entropy weak solutions with
initial data u0, v0 ∈ L1(R) ∩ L∞(R), respectively. Then for any t ∈ (0, T )

‖u(·, t)− v(·, t)‖L1(R) ≤ KT ‖u0 − v0‖L1(R), (104)

with
KT = (1 + 2εTe2εT ).

As a consequence, there is at most one entropy weak solution to (6). The entropy
weak solution u satisfies the following estimates for any t ∈ (0, T ):

‖u(·, t)‖L1(R) ≤ C1(T, ‖u0‖L1(R)) (105)

‖u(·, t)‖L∞(R) ≤ C2(r, T, ‖u0‖L∞(R), ‖u0‖L1(R)). (106)

If u0 ∈ BV (R), then u also satisfies

‖u(·, t)‖BV (R) ≤ C3(T, ‖u0‖BV (R)) (107)

‖u(·, t)‖L∞(R) ≤ C3(T, ‖u0‖BV (R)). (108)

Furthermore, for all t1, t2 ∈ [0, T ],

‖u(·, t2)− u(·, t1)‖L1(R) ≤ C4(T, ‖u0‖L∞ , ‖u0‖L1 , ‖u0‖BV )|t2 − t1|. (109)

Proof. In view of Theorem 4.2, the existence result and various estimates (105)–
(109) hold for u0 ∈ BV ∩ L1 ∩ L∞ whereas the stability (uniqueness) result (104)
holds for u0 ∈ L1 ∩L∞, due to Theorem 4.3. Next, for u0 ∈ L∞ ∩L1 we can find a
sequence uk

0 in BV such that uk
0 → u0 as k →∞. Then the L1-stability result im-

plies that the corresponding entropy weak solution sequence uk ∈ L∞ ((0, T )× R)∩
C

(
[0, T ];L1(R)

)
with initial data uk

0 is a Cauchy sequence relatively L1(R)-norm
which yields a subsequence converging to u ∈ L∞ ((0, T )× R) ∩ C

(
[0, T ];L1(R)

)
.

Clearly, u inherits the estimates (105) and (106) from uk.

For the existence results presented below we will follow the usual procedure and
consider the following viscous approximation

∂tu
µ + ∂xf(uµ) = εGr

xx ∗ uµ + µuµ
xx, µ > 0, f(u) = u2,

uµ(x, 0) = uµ
0 (x).

(110)

4.1. Estimates. In this section we derive a priori estimates. First, we want to
bound uµ in L1. For that purpose, we need to make the assumptions that

u0, u
µ
0 ∈ L1(R), ‖uµ

0‖L1(R) ≤ ‖u0‖L1(R). (111)

Lemma 4.1 (L1-estimate). Under the assumption of (111), for each T > 0 there
is a constant C(T, ‖u0‖1) such that the following estimates hold:

‖uµ(t)‖L1(R) ≤ C(T, ‖u0‖1), (112)

for t ∈ (0, T ).

Proof. Let η ∈ C2(R) and q : R → R be such that q′(u) = f ′(u)η′(u). Multiplying
(110) by η′(uµ) and using the chain rule we arrive at

η(uµ)t + q(uµ)x = η′(uµ)εGr
xx ∗ uµ + µη(uµ)xx − µ(uµ

x)2η′′(uµ). (113)
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Identifying η(.) with |.| (modulo an approximation argument), and then integrating
over x ∈ R yields

d

dt

∫

R
|uµ| ≤ ε

∫

R
|Gr

xx ∗ uµ| dx ≤ ε‖Gr
xx‖L1(R)‖uµ‖L1(R) ≤ 2ε‖uµ‖L1(R), (114)

by an application of Young’s inequality and (88). Gronwall’s lemma then gives

‖uµ‖L1(R) ≤ e2εt‖u0‖L1(R),

which gives us (112).

Next, we derive BV estimates. For that purpose, we need to make the assump-
tions that

u0, u
µ
0 ∈ BV (R), ‖uµ

0‖BV (R) ≤ ‖u0‖BV (R). (115)

We here use standard arguments and let ρ be a mollifier. Then we define the
mollification of u0 to be

uµ
0 = (u0χµ) ∗ ρµ,

where ρµ(x) = 1
µρ( x

µ ) and χµ(x) = 1 for |x| ≤ 1/µ and 0 otherwise. In particular,
we see that ‖∂xxuµ

0‖L1 ≤ 1
µ‖∂xuµ

0‖L1 ≤ 1
µ‖u0‖BV .

Lemma 4.2 (BV -estimate). Under the assumption of (115), for each T > 0 there
is a constant C(T, ‖u0‖BV ) such that the following estimates hold:

‖uµ(t)‖BV (R) ≤ C(T, ‖u0‖BV ), (116)

for t ∈ (0, T ).

Proof. Let vµ = uµ
x. Differentiating (110) with respect to x yields the following

equation

∂tv
µ + ∂x(f ′(uµ)vµ) = εGr

xx ∗ vµ + µvµ
xx, µ > 0, f(v) = v2. (117)

Let η be a function η ∈ C2(R). Multiplying (117) by η′(vµ) and using the chain
rule we arrive at

η(vµ)t + (f ′(uµ)vµη′(vµ))x − f ′(uµ)vµη′′(vµ)vµ
x

= η′(vµ)εGr
xx ∗ vµ + µη(vµ)xx − µ(vµ

x )2η′′(vµ).

Identifying η(.) with |.| (modulo an approximation argument), and then integrating
over x ∈ R yields

d

dt

∫

R
|vµ| ≤ ε

∫

R
|Gr

xx ∗ vµ| dx ≤ ε‖Gr
xx‖L1(R)‖vµ‖L1(R) ≤ 2ε‖vµ‖L1(R),

by an application of Young’s inequality and (88). Here we also have used the fact
that vµη′′(vµ) = 0 by an approximation argument where η′′ is an approximation to
the delta-function. Gronwall’s lemma then gives

‖vµ‖L1(R) ≤ e2εt‖v0‖L1(R),

which gives us (116).

Lemma 4.3 (L∞-estimate). Under the assumption (115), for each T > 0 there is
a constant C(T, ‖u0‖BV ) such that the following estimate hold:

‖uµ(t)‖L∞(R) ≤ C(T, ‖u0‖BV ), (118)
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for t ∈ (0, T ). Moreover, under the assumption (111) there is a constant
C(T, ‖u0‖L∞(R), ‖u0‖L1(R)) such that the following estimate hold:

‖uµ(t)‖L∞(R) ≤ C(r, T, ‖u0‖L∞(R), ‖u0‖L1), (119)

Proof. Estimate (118) follows directly from the estimate

|uµ(x, t)| ≤
∫

R
|∂xuµ(y, t)| dy ≤ C(T, ‖u0‖BV ),

where we have applied the previous lemma. Estimate (119) follows from the maxi-
mum principle

|uµ(x, t)| ≤ ‖uµ
0‖L∞(R) + εt‖Gr

xx ∗ uµ‖L∞(R×(0,T )).

Now we observe that

|Gr
xx ∗ uµ(x, t)| ≤ ‖Gr

xx‖L∞(R)‖uµ(t)‖L1(R) ≤
1
r
C(T, ‖u0‖L1),

in view of Lemma 4.1 and (89), from which (119) follows.

Lemma 4.4 (BV -estimate in time). Under the assumption of (115), for each T > 0
there is a constant C(T, ‖u0‖L1 , ‖u0‖BV ) such that the following estimates hold:

‖∂tu
µ(t)‖L1(R) ≤ C(T, ‖u0‖L1 , ‖u0‖BV ), (120)

for t ∈ (0, T ).

Proof. We follow the same approach as in Lemma 4.2, where vµ = uµ
t , and we end

up with an inequality

‖vµ‖L1(R) ≤ e2εt‖vµ
0 ‖L1(R).

From this we get the estimate

‖∂tu
µ(t)‖L1(R) ≤ e2εt‖∂tu

µ
0‖L1(R)

≤ e2εt
(
2‖uµ

0‖L∞‖∂xuµ
0‖L1 + 2ε‖uµ

0‖L1 + µ‖∂xxuµ
0‖L1

)
.

In view of the comments which follow after (115), the result of the lemma follows.

Remark 4.1. Note that the above L∞ estimates (118) and (119) are not sharp
enough to ensure that we can demonstrate threshold for the breakdown of solutions
(i.e. formation of discontinuity) along the line of [21]. Such results hang on the
time independent results

min
x∈R

u0(x) ≤ u(x, t) ≤ max
x∈R

u0(x),

whereas the estimates of Lemma 4.3 involves a constant on the form e2εT . Numerical
results in Section 6, however, clearly indicate that discontinuities can form. This
reflects that sharper estimates than those obtained above seem to hold for the model
(6).
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4.2. Existence of BV entropy weak solutions.

Theorem 4.2 (Existence of solution in BV ). Assume that u0 ∈ BV ∩ L1. Then
there exists at least one entropy weak solution in BV to (6) which satisfies the
estimates (105)–(109).

Proof. We assume that the approximating solutions {uµ}µ>0 is chosen such that
(111) and (115) hold. Then, in view of the a priori estimates of Section 4.1, it
follows by standard arguments that there exists a function u ∈ L∞ ((0, T )× R) ∩
C

(
[0, T ];L1(R)

)
and a sequence {µk} tending to zero as k →∞ such that

uµk → u in L1
loc((0, T )× R), uµk → u a.e. in (0, T )× R,

and uµk → u a.e. in C
(
[0, T ]; L1

loc(R)
)
,

for all T > 0. Moreover, the a priori estimates in Section 4.1 imply immediately
that the limit function u satisfy the estimates (105)–(109). Finally, to show that u is
an entropy weak solution we rely on standard limit operations, see also Lemma 5.7
for relevant details.

4.3. L1-stability and uniqueness of entropy weak solutions. Now, L1 sta-
bility (and thus uniqueness) of entropy weak solutions can be shown relying on a
straightforward adaption of Kruzkov’s device of doubling the variables.

Theorem 4.3 (L1 stability). Let u, v be two entropy weak solutions of (6) with
corresponding initial data u0, v0 satisfying (7). Fix any T > 0. Then

‖u(·, t)− v(·, t)‖L1(R) ≤ KT ‖u0 − v0‖L1(R), t ∈ [0, T ], (121)

with KT given in Theorem 4.1.

Proof. By standard arguments it suffices to work with the entropy inequality (86)
with Kruzkov entropies/entropy fluxes given by

η(u) = |u− k|, q(u) = sgn(u− k)
(
u2 − k2

)
, k ∈ R. (122)

We set QT = (0, T )×R, and let ψ(t, x, s, y) be a positive C∞ function with compact
support. Since u, v are entropy weak solutions according to (86) with (122), we find
by standard arguments

∫∫

QT×QT

(
|u(x, t)− v(y, s)|(∂tψ + ∂sψ)+

sgn(u(x, t)− v(y, s))
[
u(x, t)2 − v(y, s)2

]
(∂xψ + ∂yψ)

)
dt dx ds dy

≥ −ε

∫∫

QT×QT

∣∣∣[Gr
xx ∗ u](x, t)− [Gr

yy ∗ v](y, s)
∣∣∣ψ dt dx ds dy.

(123)

Next, we let h ∈ C∞(QT ) be such that

supp(h) ⊂ [−1, 1], 0 ≤ h ≤ 1,

∫

R
h(x) dx = 1.

For δ > 0, define

hδ(x) :=
1
δ
h(

x

δ
),

Consider a C∞(QT ) function ω with compact support, and define

ψδ(t, x, s, y) = ω(
t + s

2
,
x + y

2
)hδ(

t− s

2
)hδ(

x− y

2
).
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With ψ = ψδ as the choice of test function and using a standard argument which
only require that

u, v,Gr
xx ∗ u, Gr

yy ∗ v ∈ L1
loc((0, T )× R),

we can let δ go to zero in (123) which gives
∫∫

QT

(
|u− v|∂tω + sgn(u− v)

[
u2 − v2

]
∂xω

)
dt dx

≥ −ε

∫∫

QT

∣∣∣Gr
xx ∗ [u− v]

∣∣∣ω dt dx.

(124)

By standard arguments choosing ω(x, t) = ω1(t)ω2(x), and letting ω2 tend to the
function that is identically one, we obtain

∫∫

QT

|u(x, t)− v(x, t)|ω1,t dt dx + ε

∫∫

QT

∣∣∣Gr
xx ∗ [u(x, t)− v(x, t)]

∣∣∣ω1 dt dx ≥ 0.

(125)

Letting ω1(t) = χ[0,t], and noting that for t ∈ (0, T )
∫

R
|Gr

xx ∗ [u(x, t)− v(x, t)]| dx ≤ ‖Gr
xx‖L1(R)‖u(·, t)− v(·, t)‖L1(R)

≤ 2‖u(·, t)− v(·, t)‖L1(R),

we conclude from (125) that

‖u(·, t)− v(·, t)‖L1(R) ≤ ‖u0 − v0‖L1(R) + 2ε

∫ t

0

‖u(·, τ)− v(·, τ)‖L1(R) dτ.

The result then follows by using Gronwall’s lemma.

5. Global existence theory in L2. In this section we prove existence of at least
one weak solution to (6) under assumption (8) in which we are outside the BV/L∞

framework. Since no L∞ bound is available we can only prove that this weak solu-
tion satisfies the entropy inequality for convex C2 entropies η possessing a bounded
second order derivative η′′.

Theorem 5.1 (Existence in L2). Suppose (8) holds. Then there exists a function
u which is a weak solution of (6) in the sense of Definition 3.1. That is,

u ∈ L∞
(
(0, T ); L2(R)

)
, for any T > 0,

which solves the Cauchy problem (6) and (8) in D′([0, T )× R).

Proof. This follows directly from the Lemmas 5.6 and 5.7.

For the initial data we assume that

u0 ∈ L2(R), (126)

and

uµ
0 ∈ Hs(R), s ≥ 2, ‖uµ

0‖L2(R) ≤ ‖u0‖L2(R), uµ
0 → u0 in L2(R). (127)
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5.1. Estimates.

Lemma 5.1 (energy estimate). Under the assumption of (126) and (127), for each
T > 0 there is a constant C(T, ‖u0‖2) such that the following estimates hold:

‖uµ(t)‖L2(R) ≤ C(T, ‖u0‖2), √
µ‖∂xuµ‖L2((0,T )×R) ≤ C(T, ‖u0‖2), (128)

for t ∈ (0, T ).

Proof. First we derive a uniform L2(R) bound for the approximate solutions. Mul-
tiplying (110) by uµ and integrating in x ∈ R, we arrive at

d

dt

∫

R

|uµ|2
2

dx + µ

∫

R
|∂xuµ|2 dx = ε

∫

R
uµGr

xx ∗ uµ dx

Applying Holder’s inequality, followed by an application of Young’s inequality gives∫

R
uµGr

xx ∗ uµ dx ≤ ‖uµ‖L2(R)‖Gr
xx ∗ uµ‖L2(R)

≤ ‖uµ‖2L2(R)‖Gr
xx‖L1(R) ≤ 2‖uµ‖2L2(R) = 4

∫

R

|uµ|2
2

dx.

By Gronwall’s inequality we get
∫

R

|uµ(t)|2
2

dx + e4εtµ

∫ t

0

∫

R
|∂xuµ|2 dx dt ≤ e4εt

∫

R

|uµ
0 |2
2

dx.

Thus, we conclude that for all T > 0, there exists C(T, ‖u0‖2) such that

‖uµ(t)‖2L2(R) + µ

∫ T

0

∫

R
|uµ

x(x, t)|2 dx dt ≤ C(T, ‖u0‖2), t ∈ (0, T ). (129)

Next, we derive a Lp estimate. That is, assume that

u0, u
µ
0 ∈ Lp(R), ‖uµ

0‖Lp(R) ≤ ‖u0‖Lp(R), p ≥ 1. (130)

Lemma 5.2 (Lp-estimate). Under the assumption of (130), for each T > 0 there
is a constant C(T, ‖u0‖p) such that the following estimates hold:

‖uµ(t)‖Lp(R) ≤ C(T, ‖u0‖p), (131)

for t ∈ (0, T ).

Proof. The starting point is (113), however, now we associated η(·) with the function
| · |p. Consequently, η′(·) = p| · |p−1sgn(·) and (114) is replaced by

d

dt

∫

R
|uµ|p dx ≤ pε

∫

R
|uµ|p−1|Gr

xx ∗ uµ| dx. (132)

Moreover, for the right hand side of (132) we observe that setting g = |u|p−1 ∈ Lp′

and h = |Gr
xx ∗ u| ∈ Lq′ with p′ = p/(p− 1) and q′ = p the Holder inequality gives

us
∫ |gh| ≤ ||g||p′ ||h||q′ , that is,

∫

R
|u|p−1|Gr

xx ∗ u| ds ≤
(∫

R
|u|p ds

) p−1
p ·

(∫

R
|Gr

xx ∗ u|p ds
) 1

p

= ‖u‖p−1
Lp(R) · ‖Gr

xx ∗ u‖Lp(R).

Moreover,
‖Gr

xx ∗ u‖Lp(R) ≤ ‖u‖Lp(R)‖Gr
xx‖L1(R) ≤ 2‖u‖Lp(R),
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by application of Young’s inequality and (88). Thus, (132) is replaced by
d

dt

∫

R
|uµ|p dx ≤ 2pε‖uµ‖p

Lp(R), (133)

and Gronwall’s lemma then gives

‖uµ‖p
Lp(R) ≤ e2pεt‖u0‖p

Lp(R),

which gives us (131).

5.2. Existence of weak solutions. We shall only make use of the estimates in-
volved in Lemma 5.1 and 5.2. Along the same line as in [3] we rely on Schonbek’s
Lp version [29] of the compensated compactness method [32] to obtain strong con-
vergence of a subsequence of viscosity approximations. We shall also make use of
the following lemma [22] which avoids assumption of strict convexity of the flux
function.

Lemma 5.3. Let Ω be a bounded open subset of R+ × R. Let f ∈ C2(R) satisfy

|f(u)| ≤ C|u|s+1, u ∈ R, |f ′(u)| ≤ C|u|2 u ∈ R,

for some s ≥ 0, and f ′′(u) 6= 0 a.e. in R. Then define functions Il, fl, Fl : R → R
as follows:

Il ∈ C2(R), |Il(u)| ≤ |u|, |I ′l(u)| ≤ 2 for u ∈ R
|Il(u)| ≤ |u| for |u| ≤ l,

Il(u) = 0 for |u| ≥ 2l,

and
fl(u) =

∫ u

0

I ′l(s)f
′(s) ds, Fl(u) =

∫ u

0

f ′l (s)f
′(s) ds.

Suppose {un}∞n=1 ⊂ L2(s+1)(Ω) is such that the two sequences

{∂tIl(un) + ∂xfl(un)}∞n=1, {∂tfl(un) + ∂xFl(un)}∞n=1

of distributions belong to a compact subset of H−1
loc (Ω), for each l > 0.

Then there exists a subsequence of {un}∞n=1 that converges to a limit function
u ∈ L2(s+1)(Ω) strongly in Lr(Ω) for any 1 ≤ r < 2(s + 1).

The following lemma of Murat [23] will also be used.

Lemma 5.4. Let Ω be a bounded open subset of RN , N ≥ 2. Suppose the sequence
{Ln}∞n=1 of distributions is bounded in W−1,∞(Ω). Suppose also that

Ln = L1
n + L2

n,

where {L1
n}∞n=1 lies in a compact subset of H−1

loc (Ω) and {L1
n}∞n=1 lies in a bounded

subset of Mloc(Ω). Then {Ln}∞n=1 lies in a compact subset of H−1
loc (Ω).

The proof of Theorem 5.1 follows basically from the next two lemmas. First, we
have the following result.

Lemma 5.5. Assume (8) holds. Then there exists a subsequence {uµk}∞k=1 of
{uµ}µ>0 and a limit function u such that

u ∈ L∞
(
(0, T ); L2(R)

) ∩ L∞
(
(0, T ); L4(R)

)
, ∀T > 0 (134)

such that
uµk → u in Lp((0, T )× R), ∀T > 0, ∀p ∈ [1, 4). (135)
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Proof. Let η : R → R be a any convex C2 entropy function that is compactly
supported, and let q : R→ R be the corresponding entropy flux defined by q′(u) =
η′(u)2u. We then claim that

∂tη(uµ) + ∂xq(uµ) = L1
µ + L2

µ, (136)

for some distributions L1
µ and L2

µ that satisfy

L1
µ → 0 in H−1((0, T )× R) ,

L2
µ is uniformly bounded in M((0, T )× R).

(137)

Indeed, by (113) we have

η(uµ)t + q(uµ)x = [µη(uµ)xx] + [η′(uµ)εGr
xx ∗ uµ − µ(uµ

x)2η′′(uµ)] = L1
µ + L2

µ.

In light of (128) we have

‖µη(uµ)x‖L2((0,T )×R) ≤
√

µ‖η′‖∞C(T, ‖u0‖2) → 0 as µ → 0,

‖µη′′(uµ)(uµ
x)2‖L1((0,T )×R) ≤ ‖η′′‖∞C(T, ‖u0‖2)2,

‖η′(uµ)εGr
xx ∗ uµ‖L1((0,T )×R) ≤ ‖η′‖∞2εTe2εT ‖u0‖L1 ,

(138)

where we have used the calculations in (114) for the last estimate. Thus, (136) and
(137) follow. In view of Lemma 5.4 we conclude that ∂tη(uµ) + ∂xq(uµ) is compact
in H−1

loc ((0, T )× R).
Now we want to apply this approach in combination with Lemma 5.3. First, we

observe that {uµ}µ>0 ⊂ L2((0, T )×R)∩L4((0, T )×R) (in view of Lemma 5.2) and
that

{∂tIl(uµ) + ∂xfl(uµ)}µ>0, {∂tfl(uµ) + ∂xFl(uµ)}µ>0,

satisfy estimates similar to (138), thus, are compact in H−1
loc ((0, T ) × R) for each

fixed l > 0, by application of Lemma 5.4. Hence, the assumptions of Lemma 5.3 are
satisfied with s = 1 and we can conclude that there exists a subsequence {uµk}∞k=1

that converges to a limit function u ∈ L2((0, T ) × R) ∩ L4((0, T ) × R) strongly in
Lr((0, T )× R) for any 1 ≤ r < 4.

Lemma 5.6 (Weak solution). Assume that (8) holds. Then the limit function u
from Lemma 5.5 is a weak solution of (6) in the sense of (85).

Proof. We only have to note multiply (110) with a test function φ, integrate in
space and time, apply integration by parts, and then take the limit k →∞. In view
of Lemma 5.5 and the convergence result (135), it follows that

∫ T

0

∫

R
uµkφt dx dt →

∫ T

0

∫

R
uφt dx dt,

∫ T

0

∫

R
(uµk)2φx dx dt →

∫ T

0

∫

R
u2φx dx dt.
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For the ∂xpµ = −Gr
xx ∗ uµk term we have that

‖Gr
xx ∗ (uµk − u)‖p

Lp((0,T )×R)

=
∫ T

0

∫

R

(∫

R
|Gr

xx(uµk(x′, t)− u(x′, t))| dx′
)p

dx dt

≤
∫ T

0

∫

R

(∫

R
|Gr

xx|(p−1)/p
∣∣∣(Gr

xx)1/p(uµk(x′, t)− u(x′, t))
∣∣∣ dx′

)p

dx dt

≤
∫ T

0

∫

R

(∫

R
|Gr

xx|1 dx′
)p−1(∫

R
|Gr

xx|1 |uµk(x′, t)− u(x′, t)|p dx′
)

dx dt

≤ ‖Gr
xx‖p−1

L1(R)‖Gr
xx‖L1(R)

∫ T

0

∫

R
|uµ(x′, t)− u(x′, t))|p dx′ dt

≤ ‖Gr
xx‖p

L1(R)‖uµk − u‖p
Lp((0,T )×R) ≤ 2p‖uµk − u‖p

Lp((0,T )×R) → 0,

(139)

as µ → 0 where we use that Gr
xx(x, x′)1/p(uµk(x′, t)− u(x′, t)) ∈ Lp(R) and

Gr
xx(x, x′)(p−1)/p ∈ Lp/(p−1)(R) since Gr

xx ∈ L1(R). Consequently,
∫ T

0

∫

R
Gr

xx ∗ uµkφ dx dt →
∫ T

0

∫

R
Gr

xx ∗ uφ dx dt.

Corollary 5.1. Assume that (8) holds. Let uµ
r denote the viscous approximation

(110) used in Lemma 5.6. Then there is a limit function ū such that

uµ
r → ū in L∞

(
(0, T ); L2(R)

)
, as µ, r → 0, (140)

and ū is a weak solution of the equation

∂tū + ∂x(ū2) = 0, ū(x, 0) = u0(x). (141)

Proof. All the estimates used in Lemma 5.5 are independent of the r parameter.
Thus (140) follows. In order to conclude that the limit ū is a weak solution of (141),
we only have to check the convergence of the term
∫ T

0

∫

R
(Gr

xx ∗ uµ)φdx dt =
∫ T

0

∫

R
(Gr

x ∗ uµ)xφ dx dt = −
∫ T

0

∫

R
(Gr

x ∗ uµ)φx dx dt.

Since, for 1/p + 1/q = 1,

∣∣∣
∫ T

0

∫

R
(Gr

x ∗ uµ)φx dx dt
∣∣∣ ≤ ‖Gr

x ∗ uµ‖Lp((0,T )×R)‖φx‖Lq((0,T )×R)

≤ ‖Gr
x‖L1(R)‖uµ‖Lp((0,T )×R)‖φx‖Lq((0,T )×R)

≤ 2r‖uµ‖Lp((0,T )×R)‖φx‖Lq((0,T )×R) → 0, as r → 0,

by using (139) and (88).

Lemma 5.7 (Entropy weak solution). Assume that (8) holds. Then the limit
function u from Lemma 5.5 is an entropy weak solution of (6) in the sense that
it satisfies the entropy inequality (86) for any convex entropy η : R → R with η′′

bounded and corresponding entropy flux q : R→ R defined by q′(u) = 2η′(u)u.
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Proof. Let (η, q) be as in the lemma. In view of (113) we have

η(uµk)t + q(uµk)x ≤ η′(uµk)εGr
xx ∗ uµk + µη(uµk)xx, in D′([0, T )× R). (142)

The assumptions on (η, q) imply that

|η(u)| = O(1 + u2), |η′(u)| = O(1 + u), |q(u)| = O(1 + u3).

Consequently, in light of the convergence (135) of Lemma 5.5 we conclude that
∫ T

0

∫

R
η(uµk)φt dx dt →

∫ T

0

∫

R
η(u)φt dx dt,

∫ T

0

∫

R
q(uµk)φx dx dt →

∫ T

0

∫

R
q(u)φx dx dt.

By using the calculation (139), we also see that
∫ T

0

∫

R
η′(uµk)Gr

xx ∗ uµkφdx dt →
∫ T

0

∫

R
η′(u)Gr

xx ∗ uφ dx dt.

Corollary 5.2. Assume that (8) holds. Let uµ
r denote the viscous approximation

(110) used in Lemma 5.6 with µ = O(rd) for d < 2. Then there is a limit function
ū such that

uµ
r → ū in L∞

(
(0, T ); L2(R)

)
, as r → 0, (143)

and ū is an entropy weak solution of the equation (141) in the sense of

∂tη(ū) + ∂xq(ū) ≤ 0 in D′([0, T )× R),

for (η, q) defined as in Lemma 5.7.

Proof. This follows by the same arguments as in Corollary 5.1. We only have to
check the convergence of the term

∫ T

0

∫

R
η′(uµk)(Gr

xx ∗ uµk)φdx dt =
∫ T

0

∫

R
η′(uµk)(Gr

x ∗ uµk
x )φdx dt,

where we no longer can move one derivative over to the test function φ and instead
must rely on the L2 estimate of uµ

x in (128). That is,
∣∣∣
∫ T

0

∫

R
η′(uµk)(Gr

x ∗ uµk
x )φdx dt

∣∣∣
≤ ‖η′‖L∞(R‖Gr

x ∗ uµk
x ‖L2((0,T )×R)‖φ‖L2((0,T )×R)

≤ ‖η′‖L∞(R‖Gr
x‖L1(R)‖uµ

x‖L2((0,T )×R)‖φ‖L2((0,T )×R)

≤ 2C(T, ‖u0‖2) r√
µk
‖η′‖L∞(R‖uµ‖Lp((0,T )×R)‖φ‖L2((0,T )×R) → 0,

as µ = O(rd) with d < 2 and by using (139) with p = 2, (128), and (88).

6. Numerical examples. In this section we illustrate characteristic behavior of
solutions to the well-reservoir model (3)–(5) by performing some numerical experi-
ments. To solve the model we use the second order relaxed scheme [13] for the dis-
cretization of the convective flux. The pressure flux (non-local term) is discretized
in a straightforward manner as explained below.
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Discretization approach. We consider a straightforward discretization of the
model (6). That is, we consider a discrete scheme on the form

uk+1
j − uk

j

∆t
+

1
∆x

(
F k

j+1/2 − F k
j−1/2

)
= ε

N∑

i=1

∫ xi+1/2

xi−1/2

Gr
x(xj , x

′)
(uk+1

i+1/2 − uk+1
i−1/2

∆x

)
dx′,

u1/2 = uin, ui+1/2 =
1
2

(
ui + ui+1

)
, (i = 2, . . . , N − 1), uN+1/2 = uout,

where Gr
x(x, x′) is given by (87). We note that Gr

x(x, x′) = −Gr
x′(x, x′) and define

∆i(xj) :=
∫ xi+1/2

xi−1/2

Gr
x(xj , x

′) dx′ = −
∫ xi+1/2

xi−1/2

Gr
x′(xj , x

′) dx′,

where Gr is given by (87). In other words

∆i(xj) = −
(
Gr(xj , xi+1/2)−Gr(xj , xi−1/2)

)
,

and we see that we may rewrite as follows

uk+1
j − ελ

N∑

i=1

∆i(xj)[uk+1
i+1/2 − uk+1

i−1/2] = uk
j − λ

(
F k

j+1/2 − F k
j−1/2

)
, λ =

∆t

∆x
,

where F k
j+1/2 represents the second order flux of the relaxed scheme as described in

[13]. Further algebraic manipulation gives

uk+1
j +

ελ

2
uk+1

1 D3/2(xj) +
ελ

2

N−1∑

i=2

uk+1
i Di(xj) +

ελ

2
uk+1

N DN−1/2(xj)

= uk
j − λ

(
F k

j+1/2 − F k
j−1/2

)
+ ελuout∆N (xj)− ελuin∆1(xj), for j = 1, . . . , N,

where

Di+1/2(xj) = ∆i+1(xj)−∆i(xj), Di(xj) = ∆i+1(xj)−∆i−1(xj).

The resulting discrete system we solve is on the form Ax = b. Here the A matrix
is given by

A = A1 + A2,

with
A1 = I,

and

A2 =
ελ

2




D3/2(x1) D2(x1) . . . DN−1(x1) DN−1/2(x1)
D3/2(x2) D2(x2) . . . DN−1(x2) DN−1/2(x2)

...
...

...
...

...
D3/2(xN−1) D2(xN−1) . . . DN−1(xN−1) DN−1/2(xN−1)
D3/2(xN ) D2(xN ) . . . DN−1(xN ) DN−1/2(xN )




.

Moreover,
x = u, b = (. . . , bj , . . .)T ,

with
bj = uk

j − λ
(
F k

j+1/2 − F k
j−1/2

)
− ελuout∆N (xj) + ελuin∆1(xj).

In the following we consider as initial data a Gaussian pulse on the form

u0(x) = 5 exp(−100(x− 0.5)2),

together with the boundary data uin = uout = 0.
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Figure 3. Plot of solutions at time T = 0.02 with r = 10−4

for different choices of ε corresponding to ε1 = 107, ε2 = 106,
ε3 = 5 · 105, ε4 = 105, and ε5 = 0. Loss of regularity is seen for
ε > 0.

Example 1. First, we consider an example with well radius r = 10−4 and time
T = 0.02 and a grid with N = 1600 cells. We explore the behavior for a varying
diffusion parameter ε which has a clear physical meaning since the parameter ε given
by (5) is composed of different well and reservoir parameters, thus, representing a
balance of different forces. In Fig. 3 plots are shown for ε1 = 107, ε2 = 106,
ε3 = 5 · 105, ε4 = 105, and ε5 = 0. We demonstrate the steepening of the gradient,
i.e., wave breaking in finite time, for ε > 0. In particular, this justifies the need for
working with weak and entropy weak solutions in the sense of Definitions 3.1 and
3.2.
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Figure 4. Plot of solutions at time T = 0.02 with ε = 105 for
various choices of well radius corresponding to r1 = 10−3, r2 = 0.5 ·
10−3, and r3 = 10−4. The solution of the hyperbolic conservation
law (ε = 0) is also included. The plots reflect convergence toward
hyperbolic conservation law as r tends to zero.

Example 2. In this example we keep the parameter ε fixed, ε = 105. Again we
compute solutions after T = 0.02 on a grid of N = 1600 cells. In Fig. 4 we compare
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solutions for different choices of the well radius r corresponding to r1 = 10−3,
r2 = 0.5 · 10−3, and r3 = 10−4. The pure hyperbolic case ε = 0 is also included
for comparison, and we observe how the solution is approaching to the hyperbolic
solution as r tends to zero.

As a final remark we note that the numerical simulations do not indicate that
‖u‖∞ and ‖u‖BV increase with time with a factor ect. In other words, we may
expect that sharper estimates should be possible (under some appropriate assump-
tions/modifications) similar to those that have been shown for the radiating gas
model (80).
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