Loading [MathJax]/jax/output/SVG/jax.js
Research article

An assessment framework for evaluating urban flood vulnerabilities using Night-Time Light data

  • Received: 28 March 2025 Revised: 22 May 2025 Accepted: 04 June 2025 Published: 11 June 2025
  • Urban floods pose significant socio-economic and environmental challenges, particularly in rapidly urbanizing regions. We utilized Night-Time Light (NTL) data as a dynamic proxy for human activity and urban density to enhance the assessment of urban flood vulnerability. Unlike traditional methods that rely on static datasets or post-disaster surveys, this approach incorporates real-time NTL data to better capture the evolving patterns of urban exposure. Focusing on the Kelani River watershed, the most flood-prone and densely populated region in Sri Lanka, we integrated nine conditioning factors, including slope, precipitation, and soil type, with NTL intensity to generate comprehensive vulnerability maps. To ensure the accessibility and practical application of the results, a web application was developed using Google Earth Engine (GEE), offering an interactive platform for real-time visualization of urban flood risks. The findings underlined the transformative potential of NTL data in flood vulnerability mapping and demonstrated its applicability as a cost-effective, scalable, and open-access decision-support tool adaptable to various urban contexts.

    Citation: Nuwani Kangana, Nayomi Kankanamge. An assessment framework for evaluating urban flood vulnerabilities using Night-Time Light data[J]. Urban Resilience and Sustainability, 2025, 3(1): 57-85. doi: 10.3934/urs.2025003

    Related Papers:

    [1] Yanjun Liu, Chin-Chen Chang, Peng-Cheng Huang . Security protection using two different image shadows with authentication. Mathematical Biosciences and Engineering, 2019, 16(4): 1914-1932. doi: 10.3934/mbe.2019093
    [2] Xuehu Yan, Xuan Zhou, Yuliang Lu, Jingju Liu, Guozheng Yang . Image inpainting-based behavior image secret sharing. Mathematical Biosciences and Engineering, 2020, 17(4): 2950-2966. doi: 10.3934/mbe.2020166
    [3] Qi Wang, John Blesswin A, T Manoranjitham, P Akilandeswari, Selva Mary G, Shubhangi Suryawanshi, Catherine Esther Karunya A . Securing image-based document transmission in logistics and supply chain management through cheating-resistant visual cryptographic protocols. Mathematical Biosciences and Engineering, 2023, 20(11): 19983-20001. doi: 10.3934/mbe.2023885
    [4] Guozheng Yang, Lintao Liu, Xuehu Yan . A compressed secret image sharing method with shadow image verification capability. Mathematical Biosciences and Engineering, 2020, 17(4): 4295-4316. doi: 10.3934/mbe.2020237
    [5] Bo Wang, Yabin Li, Jianxiang Zhao, Xue Sui, Xiangwei Kong . JPEG compression history detection based on detail deviation. Mathematical Biosciences and Engineering, 2019, 16(5): 5584-5594. doi: 10.3934/mbe.2019277
    [6] Xuehu Yan, Longlong Li, Lintao Liu, Yuliang Lu, Xianhua Song . Ramp secret image sharing. Mathematical Biosciences and Engineering, 2019, 16(5): 4433-4455. doi: 10.3934/mbe.2019221
    [7] Feng Liu, Xuehu Yan, Lintao Liu, Yuliang Lu, Longdan Tan . Weighted visual secret sharing with multiple decryptions and lossless recovery. Mathematical Biosciences and Engineering, 2019, 16(5): 5750-5764. doi: 10.3934/mbe.2019287
    [8] Jingju Liu, Lei Sun, Jinrui Liu, Xuehu Yan . Fake and dishonest participant location scheme in secret image sharing. Mathematical Biosciences and Engineering, 2021, 18(3): 2473-2495. doi: 10.3934/mbe.2021126
    [9] Shudong Wang, Yuliang Lu, Xuehu Yan, Longlong Li, Yongqiang Yu . AMBTC-based visual secret sharing with different meaningful shadows. Mathematical Biosciences and Engineering, 2021, 18(5): 5236-5251. doi: 10.3934/mbe.2021266
    [10] Lina Zhang, Jing Zhang, Jiaqi Sun, Qingpeng Chen . A global progressive image secret sharing scheme under multi-group joint management. Mathematical Biosciences and Engineering, 2024, 21(1): 1286-1304. doi: 10.3934/mbe.2024055
  • Urban floods pose significant socio-economic and environmental challenges, particularly in rapidly urbanizing regions. We utilized Night-Time Light (NTL) data as a dynamic proxy for human activity and urban density to enhance the assessment of urban flood vulnerability. Unlike traditional methods that rely on static datasets or post-disaster surveys, this approach incorporates real-time NTL data to better capture the evolving patterns of urban exposure. Focusing on the Kelani River watershed, the most flood-prone and densely populated region in Sri Lanka, we integrated nine conditioning factors, including slope, precipitation, and soil type, with NTL intensity to generate comprehensive vulnerability maps. To ensure the accessibility and practical application of the results, a web application was developed using Google Earth Engine (GEE), offering an interactive platform for real-time visualization of urban flood risks. The findings underlined the transformative potential of NTL data in flood vulnerability mapping and demonstrated its applicability as a cost-effective, scalable, and open-access decision-support tool adaptable to various urban contexts.



    In mathematical analysis and its applications, the hypergeometric function plays a vital role. Various special functions which are used in different branches of science are special cases of hypergeometric functions. Numerous extensions of special functions have introduced by many authors (see [1,2,3,4]). The generalized Gamma k-function and its properties are broadly discussed in [5,6,7,8]. Later on, the researchers [9] motivated by the above idea and presented the k-fractional integral and its applications. The integral representation of generalized confluent hypergeometric and hypergeometric k-functions is presented by Mubeen and Habibullah [10]. The series solution of k-hypergeometric differential equation is proposed by Mubeen et al. [11,12,13]. Li and Dong [14] established the hypergeometric series solutions for the second-order non-homogeneous k-hypergeometric differential equation. The Generalized Wright k-function and its different indispensable properties are briefly discussed in [15,16]. A class of Whittaker integral transforms involving confluent hypergeometric function and Fox H-function as kernels are discussed in [17,18]. An extension of some variant of Meijer type integrals in the class of Bohemians is elaborated in [19].

    Generalization of Gr¨uss-type and Hermite-Hadamard type inequalities concerning with k-fractional integrals are explored in [20,21]. Many researchers have derived the generalized forms of the Riemann-Liouville k-fractional integrals and established several inequalities by considering various generalized fractional integrals. The readers may confer with [22,23,24,25,26] for details.

    The Hadamard k-fractional integrals and Hadamard-type inequalities for k-fractional Riemann-Liouville integrals are presented by Farid et al. [27,28]. In [29,30], the authors have established inequalities by employing Hadamard-type inequalities for k-fractional integrals. Nisar et al. [31] discussed Gronwall type inequalities by considering Riemann-Liouville k and Hadamard k-fractional derivatives. Hadamard k-fractional derivative and its properties are disscussed in [32]. Rahman et al. [33] described generalized k-fractional derivative operator.

    The Mittag-Leffler function naturally occurs in the solutions of fractional integrodifferential equations having an arbitrary order that is similar to that of the exponential function. The Mittag-Leffler functions have acquired significant recognition due to their wide applications in assorted fields. The Mittag-Leffler stability of fractional-order nonlinear dynamic systems is studied in [34]. Dos Santos discussed the Mittag-Leffler function in the diffusion process in [35]. The noteworthy role of the Mittag-Leffler function and its generalizations in fractional modelling is explored by Rogosin [36]. We suggest the readers to study the literature [37,38,39] for more details.

    Now, we present some basic definitions and results.

    The normalized Wright function is defined as

    Wγ,δ(z)=Γ(δ)n=0znΓ(δ+nγ)n!,γ>1,δC. (1.1)

    Fox [40] and Wright [41] defined the Fox-Wright hypergeometric function uψv as:

    uψv[(γ1,C1),.....,(γu,Cu)(δ1,D1)),.....,(δv,Dv)|z]=n=0ui=1Γ(γi+nCi)znvi=1Γ(δi+nDi)n!, (1.2)

    where Ci0,i=1,...,u;Di0,i=1,...,v. The function uψv is the generalized form of the well-known hypergeometric function uFv with u and v number of parameters in numerator and denominator respectively. It is given in [42] as:

    uFv[γ1,.....,γuδ1,.....,δv|z]=n=0ui=1   (γi)nznvi=1   (δi)nn!, (1.3)

    where (κ)n is called the Pochhammer symbol and is defined by Petojevic [43] as:

    (κ)0=1,and(κ)n=κ(κ+1).....(κ+n1)=Γ(κ+n)Γ(κ),nN.

    From definitions (1.2) and (1.3), we have the following relation

    uψv[(γ1,1),.....,(γu,1)(δ1,1),.....,(δv,1)|z]=Γ(γ1).....Γ(γu)Γ(δ1).....Γ(δv)uFv[γ1,.....,γuδ1,.....,δv|z]. (1.4)

    The Mittag-Leffler function with 2m parameters [44] is defined as follows:

    E(δ,D)m(z)=n=0znmi=1Γ(δi+nDi),zC (1.5)

    and in the form of Fox-Wright function it can be expressed as:

    E(δ,D)m(z)=1ψm[(1,1)(δ1,D1),.....,(δv,Dv)|z],zC. (1.6)

    The function ϕ(δ1,D1)(γ1,δ2):(0,)R is defined in [45] as

    ϕ(δ1,D1)(γ1,δ2)(z)=Γ(δ1)Γ(δ2)Γ(γ1)1ψ2[(γ1,1)(δ1,D1),(δ2,D2)|z],zC, (1.7)

    where γ1,δ1,δ2 and D1>0.

    Diaz and Pariguan [46] proposed the following Pochhammer's k-symbol (z)n,k and the generalized Gamma k-function by

    (u)n,k=u(u+k)(u+2k)....(u+(n1)k);uC,kR,nN+
    Γk(u)=limn=n!kn(nk)uk1u)n,k,k>0,uCkZ,

    respectively. They also introduced the generalized hypergeometric k-function in [46] as follows:

    uFv,k[(γ1,k),.....,(γu,k)(δ1,k),.....,(δv,k)|z]=n=0ui=1    (γi)n,k z nvi=1    (δi)n,k n!. (1.8)

    Now, we define the normalized Wright k-function as follows:

    Wγ,δ,k(z)=Γk(δ)n=0znΓk(δ+knγ)n!,γ>1,δC

    and the Fox -Wright type k-function is as follows:

    uψv[(γ1,kC1),.....,(γu,kCu)(δ1,kD1)),.....,(δv,kDv)|z]=n=0ui=1    Γk    (γi+nkCi)znvi=1    Γk    (δi+nkDi)n!, (1.9)

    So from Eqs (1.9) and (1.8), we have

    uψv,k[(γ1,k),.....,(γu,k)(δ1,k),.....,(δv,k)|z]=Γk(γ1).....Γk(γu)Γk(δ1).....Γk(δv)uFv,k[(γ1,k),.....,(γu,k)(δ1,k),.....,(δv,k)|z] (1.10)

    and (1.5) takes the form

    E(δ,D)m,k(z)=n=0znmi=1Γk(δi+nkDi),zC. (1.11)

    The function E(δ,D)m,k(z) in terms of the function uψv,k is expressed as

    E(δ,D)m,k(z)=1ψm,k[(1,k)(δ1,kD1),.....,(δv,kDv)|z]zC. (1.12)

    So the function (1.7) is given by

    ϕ(δ1,D1)γ1,δ2,k(z)=Γk(δ1)Γk(δ2)Γk(γ1)1ψ2,k[(γ1,k)(δ1,kD1),(δ2,k)|z]zC. (1.13)

    Redheffer [47] presented the following inequality in 1969,

    π2x2π2+x2sinxx. (1.14)

    In the same year, Redheffer and Williams [48] proved the above inequality. Zhu and Sun [49] used the hyperbolic functions sinhx and coshx and proved the following Redheffer-type inequalities

    (r2+x2r2x2)γsinhxx(r2+x2r2x2)δ (1.15)

    and

    (r2+x2r2x2)γcoshx(r2+x2r2x2)δ1, (1.16)

    where 0<x<r,γ0,δr212 and δ1r24. By using the inequalities (1.15) and (1.16), Mehrez proved the following Theorem (see[50]).

    Theorem 1.1. The following inequalities

    (s+zsz)σγ,δWγ,δ(z)(s+zsz)ργ,δ (1.17)

    holds true for all s>0, γ,δ>0, 0<z<s, where σγ,δ=0 and ργ,δ=sΓ(δ)2Γ(δ+γ) are the best possible constants and Wγ,δ is the normalized Wright function defined by (1.1).

    Recently, the same author has proved the following inequality (see[45]).

    Theorem 1.2. Suppose that r,γ1,δ1,δ2,D1>0. Then the subsequent inequalities

    (r+zrz)λ(δ1  ,D1)γ1,δ2ϕ(δ1,D1)γ1,δ2(z)(r+zrz)μ(δ1  ,D1)γ1,δ2 (1.18)

    are true for all z(0,r), where λ(δ1,D1)γ1,δ2=0 and μ(δ1,D1)γ1,δ2=rγ1Γ(δ1)2δ2Γ(δ1+D1) are the best possible constants. Where ϕ(δ1,D1)γ1,δ2(z) is defined in (1.7).

    In this article, we extend the Redheffer-type inequality (1.18) for the normalized Fox-Wright k-functions ϕ(δ1,D1)γ1,δ2,k(z) and establish new Redheffertype inequalities for the hypergeometric k-function 1F2,k and for the four parametric Mittag-Leffler k-function ˜Eδ1,D1;δ2,1,k(z)=Γk(δ1)Γk(δ2)Eδ1,D1;δ2,1,k(z).

    In this section, we first state the two lemmas which are helpful for proving the main results. The first lemma from [51] describes the monotonicity of two power series, and the second lemma is the monotone form of the L'Hospitals' rule [52]. The two lemmas are stated below.

    Lemma 2.1. Suppose that the two sequences {un}n0 and {vn}n0 of real numbers, and let the power series f(x)=n0unxn and g(x)=n0vnxn be convergent for |x|<r. If vn>0 for n0 and if the sequence {unvn}n0 is (strictly) increasing (decreasing), then the function xf(x)g(x) is (strictly) increasing (decreasing) on (0,r).

    Lemma 2.2. Suppose that the two functions f1,g1:[a,b]R be continuous and differentiable on (a,b). Assume that g10 on (a,b). If f1g1 is increasing (decreasing) on (a,b), then the functions

    xf1(x)f1(a)g1(x)g1(a)andxf1(x)f1(b)g1(x)g1(b)

    are also increasing (decreasing) on (a,b).

    Theorem 2.3. Letr>0γ1,δ1,δ2,D1>0. Then the following inequalities holds

    (r+zrz)λ(δ1  ,D1)γ1,δ2ϕ(δ1  ,D1)γ1,δ2,k(z)(r+zrz)μ(δ1  ,D1)γ1,δ2, (2.1)

    where z(0,r), λ(δ1,D1)γ1,δ2=0 and μ(δ1,D1)γ1,δ2=rγ1Γk(δ1)2δ2Γk(δ1+kD1) are the appropriate constants.

    Proof. From definition of the function ϕ(δ1,D1)γ1,δ2,k(z) from Eq (1.13), we have

    ddz(ϕ(δ1  ,D1)γ1,δ2,k(z))=Γk(δ1)Γk(δ2)Γk(γ1)×n=0Γk(γ1+(n+1)k)znΓk(δ1+D1(n+1)k)Γk(δ2+(n+1)k)n!. (2.2)

    Let

    M(z)=logϕ(δ  1,  D  1)γ  1  ,δ  2  ,k  (z)log(r+zrz)=g(z)h(z),

    where g(z)=log(ϕ(δ1,D1)γ1,δ2,k(z)) and h(z)=log(r+zrz). Now we will find g(z)h(z) as given below

    g(z)h(z)=(r2z2)ddz(ϕ(δ  1,  D  1)γ  1  ,δ  2  ,k  (z))2rϕ(δ  1  ,D  1)γ  1  ,δ  2  ,k  (z)=G(z)2rH(z),

    where G(z)=(r2z2)ddz(ϕ(δ1,D1)γ1,δ2,k) and H(z)=ϕ(δ1,D1)γ1,δ2,k(z)

    Using 2.2, we have

    G(z)=Γk(δ1)Γk(δ2)Γk(γ1)(r2z2)×n=0Γk(γ1+(n+1)k)znΓk(δ1+D1(n+1)k)Γk(δ2+(n+1)k)n!=Γk(δ1)Γk(δ2)Γk(γ1)(r2z2)(n=0Γk(γ1+(n+1)k)znΓk(δ1+D1(n+1)k)Γk(δ2+(n+1)k)n!n=2Γk(γ1+(n1)k)znΓk(δ1+D1(n1)k)Γk(δ2+(n1)k)(n2)!)=r2Γk(δ1)Γk(δ2)Γk(γ1+k)Γk(γ1)Γk(δ1+D1k)Γk(δ2+k)+r2Γk(δ1)Γk(δ2)Γk(γ1+2k)Γk(γ1)Γk(δ1+2D1k)Γk(δ2+2k)+Γk(δ1)Γk(δ2)Γk(γ1)n=2(r2Γk(γ1+(n+1)k)znΓk(δ1+D1(n+)k)Γk(δ2+(n+1)k)n!Γk(γ1+(n1)k)znΓk(δ1+D1(n1)k)Γk(δ2+(n1)k)(n2)!)zn=n=0vnzn,

    where b0, b1 and vn are as follows:

    b0=r2Γk(δ1)Γk(δ2)Γk(γ1+k)Γk(γ1)Γk(δ1+D1k)Γk(δ2+k),b1=r2Γk(δ1)Γk(δ2)Γk(γ1+2k)Γk(γ1)Γk(δ1+2D1k)Γk(δ2+2k)

    and for n2, we have

    vn=Γk(δ1)Γk(δ2)Γk(γ1)n=2(r2Γk(γ1+(n+1)k)Γk(δ1+D1(n+)k)Γk(δ2+(n+1)k)n!
    Γk(γ1+(n1)k)znΓk(δ1+D1(n1)k)Γk(δ2+(n1)k)(n2)!).

    Similarly, we can write H(z) as

    H(z)=n=0dnzn,

    where

    dn=Γk(δ1)Γk(δ2)Γk(γ1+nk)Γk(γ1)Γk(δ1+nkD1)Γk(δ2+nk).

    Next, we consider the sequence wn=vndn such that w0=a0 and w1=b1d1 and so on.

    Now, we have

    w1w0=r2Γk(δ2+k)Γk(γ1+2k)Γk(δ1+kD1)Γk(δ2+2k)Γk(δ1+2kD1)Γk(γ1+k)r2Γk(δ1)Γk(δ2)Γk(γ1+k)Γk(γ1)Γk(δ1+D1k)Γk(δ2+k)=r2(γ1+k)Γk(δ1+kD1)(δ2+k)Γk(δ1+2D1k)r2Γk(δ1)δ2)Γk(δ1+D1k)γ1δ2[Γk(δ1+kD1))Γk(δ1+2kD1)Γk(δ1)Γk(δ1+kD1)]0. (2.3)

    Since γ1δ2 and employing the log-convexity property of Γk function, the ratio zΓk(z+c)Γk(z) is increasing on (0,) for c>0. This shows that the inequality stated below

    Γk(z+c)Γk(z)Γk(z+c+d)Γk(z+d) (2.4)

    holds for all z,c,d>0. Using (2.4) in (2.3) by letting z=δ1 and c=d=kD1, we observed that w1w0. Likely, we have

    w2w1=r2Γk(γ1+3k)Γk(δ2+2k)Γk(δ1+2kD1)Γk(δ2+3k)Γk(δ1+3kD1)Γk(γ1+2k)r2Γk(δ2+k)Γk(δ1+kD1)Γk(γ1+2k)Γk(δ2+2k)Γk(δ1+2kD1)Γk(γ1+k)2Γk(δ2+2k)Γk(δ1+2kD1)Γk(γ1+k)Γk(δ2+k)Γk(δ1+kD1)Γk(γ1+2k)=r2(γ1+2k)Γk(γ1+2k)(δ2+k)Γk(δ2+k)Γk(δ1+2kD1)(δ2+2k)Γk(δ2+2k)Γk(δ1+3kD1)(γ1+k)Γk(γ1+k)r2Γk(δ2+k)Γk(δ1+kD1)Γk(γ1+2k)Γk(δ2+2k)Γk(δ1+2kD1)Γk(γ1+k)2Γk(δ2+2k)Γk(δ1+2kD1)Γk(γ1+k)Γk(δ2+k)Γk(δ1+kD1)Γk(γ1+2k)
    =r2Γk(γ1+2k)Γk(δ2+k)Γk(δ2+2k)Γk(γ1+k)[(γ1+2k)(δ2+k)Γk(δ1+2kD1)(γ1+k)(δ2+2k)Γk(δ1+3kD1)Γk(δ1+kD1)Γk(δ1+2kD1)]2Γk(δ2+2k)Γk(δ1+2kD1)Γk(γ1+k)Γk(δ2+k)Γk(δ1+kD1)Γk(γ1+2k)0. (2.5)

    Since by using Eq (2.4), when z=δ1+kD1 and c=d=kD1, we have w2w1.

    Now, for n2, we have

    wn+1wn=r2Γk(γ1+(n+2)k)Γk(δ2+(n+1)k)Γk(δ1+(n+1)kD1)Γk(γ1+(n+1)k)Γk(δ2+(n+1)k)Γk(δ1+(n+2)kD1)(n+1)!Γk(γ1+nk)Γk(δ2+(n+1)k)Γk(δ1+(n+1)kD1)(n1)!Γk(γ1+(n+1)k)Γk(δ2+nk)Γk(δ1+nkD1)r2Γk(γ1+(n+1)k)Γk(δ2+nk)Γk(δ1+nkD1)Γk(γ1+nk)Γk(δ2+(n+1)k)Γk(δ1+(n+1)kD1)+n!Γk(γ1+(n1)k)Γk(δ2+nk)Γk(δ1+nkD1)(n2)!Γk(γ1+nk)Γk(δ2+(n11)k)Γk(δ1+(n1)kD1)=r2[(γ1+(n+1)k)Γk(δ1+(n+1)kD1)(δ2+(n+1)k)Γk(δ1+(n+2)kD1)(γ1+n)k)Γk(δ1+nkD1)(δ2+nk)Γk(δ1+(n+1)kD1)]+n!(n2)![(δ2+(n1)k)Γk(δ1+nkD1)(γ1+(n1)k)Γk(δ1+(n2)kD1)(n+1)(δ2+n)k)Γk(δ1+(n+1)kD1)(n1)(γ1+nk)Γk(δ1+nkD1)]r2(γ1+nk)(δ2+nk)[Γk(δ1+(n+1)kD1)Γk(δ1+(n+2)kD1)Γk(δ1+nkD1)Γk(δ1+(n+1)kD1)]+n!(δ2+(n1)k)(n2)!(γ+(n1)k)[Γk(δ1+nkD1)Γk(δ1+(n1)kD1)Γk(δ1+(n+1)kD1)Γk(δ1+nkD1)] (2.6)

    Using z=δ1+nkD1 and c=d=kD1, we have the inequality (2.4) in the following form

    Γk(δ1+(n+2)kD1)Γk(δ1+nkD1)Γ2k(δ1+(n+1)kD1)0 (2.7)

    and similarly for using z=δ1+(n1)kD1 and c=d=kD1, we have from (2.4)

    Γk(δ1+(n+2)kD1)Γk(δ1+nkD1)Γ2k(δ1+(n+1)kD1)0 (2.8)

    so by using (2.7) and (2.8) in (2.6), we have

    wn+1wn. (2.9)

    Now from Eqs (2.3), (2.10) and (2.9), we conclude that the sequence {wn}n0 is a decreasing sequence.

    From Lemma (2.1), we deduce that gh is decreasing on (0,r) and accordingly the function M(z) is also decreasing on (0,r). Alternatively, using the Bernoulli-L'Hospital's rule we get

    limz0M(z)=rγ1Γk(δ1)2δ2Γk(δ1+kD1)andlimz0M(z)=0.

    It is essential to reveal that there is another proof of this theorem which is described as following.

    For this, we define a function Υ:(0,r)R by

    Υ(z)=rγ1Γk(δ1)2δ2Γk(δ1+D1)log(r+zrz)log(ϕ(δ1,kD1)γ1,δ2,k(z)).

    Consequently,

    ϕ(δ1,kD1)γ1,δ2,k(z)Υ(z)=r2γ1Γk(δ1)δ2Γk(δ1+D1)(r2z2)ϕ(δ1,D1)γ1,δ2,k(z)ddz(ϕ(δ1,D1)γ1,δ2,k(z))=Γk(δ1)Γk(δ2)Γk(γ1)[r2γ1Γk(δ1)δ2Γk(δ1+kD1)(r2z2)n=0Γk(γ1+nk)znΓk(δ1+D1nk)Γk(δ2+nk)n!n=0Γk(γ1+(n+1)k)znΓk(δ1+D1(n+1)k)Γk(δ2+(n+1)k)n!]Γk(δ1)Γk(δ2)Γk(γ1)[γ1Γk(δ1)δ2Γk(δ1+kD1)n=0Γk(γ1+nk)znΓk(δ1+D1nk)Γk(δ2+nk)n!n=0Γk(γ1+(n+1)k)znΓk(δ1+D1(n+1)k)Γk(δ2+(n+1)k)n!]=Γk(δ1)Γk(δ2)Γk(γ1)n=0Γk(γ1+nk)znΓk(δ2+nk)n![γ1Γk(δ1)δ2Γk(δ1+kD1)(γ1+nk)(δ2+nk)Γk(δ1+D1(n+1)k)]. (2.10)

    Since γ1δ2, therefore γ1δ2γ1+nkδ2+nk for every n0 and resultantly

    ϕ(δ1,D1)γ1,δ2,k(z)Υ(z)Γk(δ1)Γk(δ2)Γk(γ1)n=0Γk(γ1+nk)znΓk(δ2+nk)n![Γk(δ1)Γk(δ1+kD1)1Γk(δ1+kD1(n+1))].

    Now, using the values z=δ1,c=kD1 and d=nkD1 in (2.4), function Υ(z) is increasing on (0,r) and consequently Υ(z)Υ(0)=0. This completes the proof of right hand side of the inequality 2.1. For proving the left hand side of (2.1), we conclude from Eq (2.2) that the function ϕ(δ1,D1)γ1,δ2,k(z) is increasing on (0,) and finally

    ϕ(δ1,D1)γ1,δ2,k(z)ϕ(δ1,D1)γ1,δ2,k(0)=1.

    This ends the proof process of theorem 2.3.

    Corollary 2.4. Let r,γ1,δ1,δ2>0. Then inequalities

    (r+zrz)λ(δ1,1)γ1,δ21F2,k(γ1;δ1,δ2;z)(r+zrz)μ(δ1,1)γ1,δ2,

    are true for all z(0,r), where λ(δ1,1)γ1,δ2=0 and μ(δ1,1)γ1,δ2=rγ12δ2δ1 are the suitable values of constants.

    Proof. This inequality can be proved by using D1=1 in (2.1).

    Corollary 2.5. Let r,δ1,D1>0. If 0<δ21, then the following inequalities

    (r+zrz)λ(δ1,D1)1,δ2˜Eδ1,D1;δ2,1,k(z)(r+zrz)μ(δ1,D1)1,δ2,

    hold for all z(0,r), where λ(δ1,D1)1,δ2=0 and μ(δ1,D1)1,δ2=rΓk(δ1)2δ2Γk(δ1+kD1) are the suitable values of constants.

    Proof. This inequality can be proved by using γ1=1 in (2.1).

    Remark 2.6. The particular cases of the inequalities in Corollaries 2.4 and 2.5 for k=1 are reduce to the results in [45,Corollaries 1.2 and 1.3] respectively.

    This article deals with the Redheffer-type inequalities by using the more general Fox-Wright function. Moreover, from the newly established inequalities, the results for generalized hypergeometric functions and the four-parametric generalized Mittag-Leffler functions are also obtained by using the appropriate values of exponents in generalized inequalities. The obtained results are more general, as shown by relating the special cases with the existing literature. The idea we used in this article attracts scientists' attention, and they may stimulate further research in this direction.

    Taif University Researchers Supporting Project number (TURSP-2020/275), Taif University, Taif, Saudi Arabia.

    The authors declares that there is no conflict of interests regarding the publication of this paper.



    [1] Yao L, Chen L, Wei W (2017) Exploring the linkage between urban flood risk and spatial patterns in small urbanized catchments of Beijing, China. Int J Environ Res Public Health 14: 239. https://doi.org/10.3390/ijerph14030239 doi: 10.3390/ijerph14030239
    [2] CRED, UNDRR (2020) Human cost of disasters: An overview of the last 20 years (2000–2019). Available from: https://www.undrr.org/publication/human-cost-disasters-overview-last-20-years-2000-2019.
    [3] Kankanamge N, Yigitcanlar T, Goonetilleke A, et al. (2020) Determining disaster severity through social media analysis: Testing the methodology with South East Queensland Flood tweets. Int J Disaster Risk Reduct 42: 101360. https://doi.org/10.1016/j.ijdrr.2019.101360 doi: 10.1016/j.ijdrr.2019.101360
    [4] Alahacoon N, Matheswaran K, Pani P, et al. (2018) A decadal historical satellite data and rainfall trend analysis (2001–2016) for flood hazard mapping in Sri Lanka. Remote Sens 10: 448. https://doi.org/10.3390/rs10030448 doi: 10.3390/rs10030448
    [5] Kankanamge N, Yigitcanlar T, Goonetilleke A, et al. (2019) Can volunteer crowdsourcing reduce disaster risk? A systematic review of literature. Int J Disaster Risk Reduct 35: 101197. https://doi.org/10.1016/j.ijdrr.2019.101097 doi: 10.1016/j.ijdrr.2019.101097
    [6] Agonafir C, Lakhankar T, Khanbilvardi R, et al. (2023) A review of recent advances in urban flood research. Water Secur 19: 100141. https://doi.org/10.1016/j.wasec.2023.100141 doi: 10.1016/j.wasec.2023.100141
    [7] Tate E, Rahman MA, Emrich C T, et al. (2021) Flood exposure and social vulnerability in the United States. Nat Hazards 106: 435–457. https://doi.org/10.1007/s11069-020-04470-2 doi: 10.1007/s11069-020-04470-2
    [8] Smith A, Bates PD, Wing O, et al. (2019) New estimates of flood exposure in developing countries using high-resolution population data. Nat Commun 10: 1814. https://doi.org/10.1038/s41467-019-09282-y doi: 10.1038/s41467-019-09282-y
    [9] Weerasinghe KM, Gehrels H, Arambepola N, et al. (2018) Qualitative Flood Risk assessment for the Western Province of Sri Lanka. Procedia Eng 212: 503–510. https://doi.org/10.1016/j.proeng.2018.01.065 doi: 10.1016/j.proeng.2018.01.065
    [10] Skoufias E, Strobl E, Tveit T (2021) Can we rely on VIIRS nightlights to estimate the short-term impacts of natural hazards? Evidence from five South East Asian countries. Geomat Nat Haz Risk 12: 381–404. https://doi.org/10.1080/19475705.2021.1879943 doi: 10.1080/19475705.2021.1879943
    [11] Chen Y, Zhou H, Zhang H, et al. (2015) Urban flood risk warning under rapid urbanization. Environ Res 139: 3–10. https://doi.org/10.1016/j.envres.2015.02.028 doi: 10.1016/j.envres.2015.02.028
    [12] Hsu FC, Baugh KE, Ghosh T, et al. (2015) DMSP-OLS radiance calibrated nighttime lights time series with intercalibration. Remote Sens 7: 1855–1876. https://doi.org/10.3390/rs70201855 doi: 10.3390/rs70201855
    [13] Lin CY, Ackerman A, Johnston D, et al. (2022) LiDAR operation and digital modeling visualization to communicate stormwater management at green spaces in developing regions. Eurographics Association. https://doi.org/10.2312/envirvis.20221056 doi: 10.2312/envirvis.20221056
    [14] Rahman MR, Thakur PK (2018) Detecting, mapping and analysing of flood water propagation using synthetic aperture radar (SAR) satellite data and GIS: A case study from the Kendrapara District of Orissa State of India. Egypt J Remote Sens Space Sci 21: S37–S41. https://doi.org/10.1016/j.ejrs.2017.10.002 doi: 10.1016/j.ejrs.2017.10.002
    [15] Cao R, Li F, Feng P (2020) Exploring the hydrologic response to the urban building coverage ratio by model simulation. Theor Appl Climatol 140: 1005–1015. https://doi.org/10.1007/s00704-020-03139-x doi: 10.1007/s00704-020-03139-x
    [16] Kankanamge N, Yigitcanlar T, Goonetilleke A (2021) Public perceptions on artificial intelligence driven disaster management: Evidence from Sydney, Melbourne and Brisbane. Telemat Inform 65: 101729. https://doi.org/10.1016/j.tele.2021.101729 doi: 10.1016/j.tele.2021.101729
    [17] Marolla C (2024) Urban flood resilience: Risk and business continuity management systems strategic approach. J Clin Epidemiol Public Health 2: 1–13. https://doi.org/10.33774/coe-2024-rjg0b doi: 10.33774/coe-2024-rjg0b
    [18] Paudel S, Benavides JC (2023) Flood Ecology, Oxford: Oxford University Press. https://www.sci-hub.ru/10.1093/obo/9780199830060-0244
    [19] Kumar D, Bhattacharjya RK (2020) Review of different methods and techniques used for flood vulnerability analysis. Nat Hazards Earth Syst Sci Discuss 1: 1–15, https://doi.org/10.5194/nhess-2020-297, 2020
    [20] Sy HM, Luu C, Bui QD, et al. (2023) Urban flood risk assessment using Sentinel-1 on the Google Earth Engine: A case study in Thai Nguyen city, Vietnam. Remote Sens Appl: Soc Environ 31: 1100987. https://doi.org/10.1016/j.rsase.2023.100987 doi: 10.1016/j.rsase.2023.100987
    [21] Shinde S, Pande CB, Barai VN, et al. (2023) Flood impact and damage assessment based on the Sentinel-1 SAR data using Google Earth Engine, In: Climate Change Impacts on Natural Resources, Ecosystems and Agricultural Systems, 483–502. https://doi.org/10.1007/978-3-031-19059-9_20
    [22] Gemitzi A, Kopsidas O, Stefani F, et al. (2024) A constantly updated flood hazard assessment tool using satellite-based high-resolution land cover dataset within Google Earth Engine. Land 13: 1919. https://doi.org/10.3390/land13111929 doi: 10.3390/land13111929
    [23] Prasertsoong N, Puttanapong N (2025) An integrated framework for satellite-based flood mapping and socioeconomic risk analysis: A case of Thailand. Prog Disaster Sci 25: 100393. https://doi.org/10.1016/j.pdisas.2024.100393 doi: 10.1016/j.pdisas.2024.100393
    [24] Asian Disaster Reduction Center (2021) Natural Disaster Databook 2021: An Analytical Overview. Available from: https://www.preventionweb.net/publication/natural-disasters-data-book-2021-analytical-overview.
    [25] Bagheri A, Liu GJ (2025) Climate change and urban flooding: assessing remote sensing data and flood modeling techniques: A comprehensive review. Environ Rev 33: 1–14. https://doi.org/10.1139/er-2024-0065 doi: 10.1139/er-2024-0065
    [26] Vojtek M, Vojteková J (2019) Flood susceptibility mapping on a national scale in Slovakia using the analytical hierarchy process. Water 11: 364. https://doi.org/10.3390/w11020364 doi: 10.3390/w11020364
    [27] Samanta S, Pal DK, Palsamanta B (2018) Flood susceptibility analysis through remote sensing, GIS and frequency ratio model. Appl Water Sci 8: 66. https://doi.org/10.1007/s13201-018-0710-1 doi: 10.1007/s13201-018-0710-1
    [28] Pathak S, Panta HK, Bhandari T, et al. (2020) Flood vulnerability and its influencing factors. Natl Hazards 104: 2175–2196. https://doi.org/10.1007/s11069-020-04267-3 doi: 10.1007/s11069-020-04267-3
    [29] Kates RW (1971) Natural hazard in human ecological perspective: Hypotheses and models. Econ Geogr 47: 438–451. https://doi.org/10.2307/142820 doi: 10.2307/142820
    [30] Birkmann J, Schüttrumpf H, Handmer J, et al. (2023) Strengthening resilience in reconstruction after extreme events—Insights from flood affected communities in Germany. Int J Disaster Risk Reduct 96: 103965. https://doi.org/10.1016/j.ijdrr.2023.103965 doi: 10.1016/j.ijdrr.2023.103965
    [31] Balica SF, Wright NG, van der Meulen F (2012) A flood vulnerability index for coastal cities and its use in assessing climate change impacts. Nat Hazard 64: 73–105. https://doi.org/10.1007/s11069-012-0234-1 doi: 10.1007/s11069-012-0234-1
    [32] Blistanova M, Zelenakova M, Blistan P, et al. (2016) Assessment of flood vulnerability in Bodva river basin, Slovakia. Acta Montan Slovaca 21: 19–28. https://doi.org/10.3390/ams21010019 doi: 10.3390/ams21010019
    [33] Skougaard Kaspersen P, Høegh Ravn N, Arnbjerg-Nielsen K, et al. (2017) Comparison of the impacts of urban development and climate change on exposing European cities to pluvial flooding. Hydrol Earth Syst Sci 21: 4131–4147. https://doi.org/10.5194/hess-21-4131-2017 doi: 10.5194/hess-21-4131-2017
    [34] Seybatou DIEYE, Mapathé NDIAYE, Diogoye DIOUF, et al. (2024) Flood risk modelling using the hierarchical process analysis (HPA) method: Example of the city of Thies, Senegal. World J Adv Res Rev 24: 2440–2657. https://doi.org/10.30574/wjarr.2024.24.3.3989 doi: 10.30574/wjarr.2024.24.3.3989
    [35] Kangana N, Kankanamge N, De Silva C, et al. (2025) Harnessing mobile technology for flood disaster readiness and response: A comprehensive review of mobile applications on the Google Play Store. Urban Sci 9: 106. https://doi.org/10.3390/urbansci9040106 doi: 10.3390/urbansci9040106
    [36] Chapi K, Singh VP, Shirzadi A, et al. (2017) A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ Model Softw 95: 229–245. https://doi.org/10.1016/j.envsoft.2017.06.012 doi: 10.1016/j.envsoft.2017.06.012
    [37] Band SS, Janizadeh S, Pal SC, et al. (2020) Flash flood susceptibility modeling using new approaches of hybrid and ensemble tree-based machine learning algorithms. Remote Sens 12: 3568. https://doi.org/10.3390/rs12213568 doi: 10.3390/rs12213568
    [38] Khosravi K, Shahabi H, Pham BT, et al. (2019) A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods. J Hydrol 573: 311–323. https://doi.org/10.1016/j.jhydrol.2019.03.073 doi: 10.1016/j.jhydrol.2019.03.073
    [39] Shafizadeh-Moghadam H, Valavi R, Shahabi H, et al. (2018) Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping. J Environ Manage 217: 1–11. https://doi.org/10.1016/j.jenvman.2018.03.089 doi: 10.1016/j.jenvman.2018.03.089
    [40] Darabi H, Choubin B, Rahmati O, et al. (2019) Urban flood risk mapping using the GARP and QUEST models: A comparative study of machine learning techniques. J Hydrol 569: 142–154. https://doi.org/10.1016/j.jhydrol.2018.12.002 doi: 10.1016/j.jhydrol.2018.12.002
    [41] Kangana N, Kankanamge N, De Silva C, et al. (2024) Bridging community engagement and technological innovation for creating smart and resilient cities: A systematic literature review. Smart Cities 7: 3823–3852. https://doi.org/10.3390/smartcities7060147 doi: 10.3390/smartcities7060147
    [42] Dodangeh E, Choubin B, Eigdir AN, et al. (2020) Integrated machine learning methods with resampling algorithms for flood susceptibility prediction. Sci Total Environ 705: 135983. https://doi.org/10.1016/j.scitotenv.2019.135983 doi: 10.1016/j.scitotenv.2019.135983
    [43] Swain KC, Singha C, Nayak L, (2020) Flood susceptibility mapping through the GIS-AHP technique using the cloud. ISPRS Int J Geoinf 9: 720. https://doi.org/10.3390/ijgi9120720 doi: 10.3390/ijgi9120720
    [44] Mahmoud SH, Gan TY (2018) Multi-criteria approach to develop flood susceptibility maps in arid regions of Middle East. J Clean Prod 196: 216–229. https://doi.org/10.1016/j.jclepro.2018.06.047 doi: 10.1016/j.jclepro.2018.06.047
    [45] Das S (2019) Geospatial mapping of flood susceptibility and hydro-geomorphic response to the floods in Ulhas basin, India. Remote Sens Appl Soc Environ 14: 60–74. https://doi.org/10.1016/j.rsase.2019.02.006 doi: 10.1016/j.rsase.2019.02.006
    [46] Park K, Lee MH (2019) The development and application of the urban flood risk assessment model for reflecting upon urban planning elements. Water 8: 920. https://doi.org/10.3390/w11050920 doi: 10.3390/w11050920
    [47] Piyumi MMM, Abenayake C, Jayasinghe A, et al. (2021) Urban flood modeling application: Assess the effectiveness of building regulation in coping with urban flooding under precipitation uncertainty. Sustain Cities Soc 75: 103294. https://doi.org/10.1016/j.scs.2021.103294 doi: 10.1016/j.scs.2021.103294
    [48] de Silva MMGT, Weerakoon SB, Herath S (2014) Modeling of event and continuous flow hydrographs with HEC–HMS: case study in the Kelani River Basin, Sri Lanka. J Hydrol Eng 19: 800–806. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000846 doi: 10.1061/(ASCE)HE.1943-5584.0000846
    [49] Wickramaarachchi TN, Ishidaira H, Wijayaratna TMN (2012) An application of distributed hydrological model, YHyM/BTOPMC to gin ganga watershed, Sri Lanka. Eng J Inst Eng Sri Lanka 45: 31–40. https://doi.org/10.4038/engineer.v45i2.7018 doi: 10.4038/engineer.v45i2.7018
    [50] Dushyantha C, Ptuhina I (2020) Flood risk assessment of river "Kelani Ganga" exceeding its threshold water level. E3S Web Conf 157: 02006. https://doi.org/10.1051/e3sconf/202015702006 doi: 10.1051/e3sconf/202015702006
    [51] Balica SF, Douben N, Wright NG (2009) Flood vulnerability indices at varying spatial scales. Water Sci Technol 60: 2571–2580. https://doi.org/10.2166/wst.2009.183 doi: 10.2166/wst.2009.183
    [52] Khosravi K, Pham BT, Chapi K, et al. (2018) A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Sci Total Environ 627: 744–755. https://doi.org/10.1016/j.scitotenv.2018.01.266 doi: 10.1016/j.scitotenv.2018.01.266
    [53] Tehrany MS, Pradhan B, Jebur MN (2014) Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J Hydrol 512: 332–343. https://doi.org/10.1016/j.jhydrol.2014.03.008 doi: 10.1016/j.jhydrol.2014.03.008
    [54] Meybeck M, Green P, Vörösmarty C (2001) A new typology for mountains and other relief classes. Mt Res Dev 21: 34–45. https://doi.org/10.1659/0276-4741(2001)021[0034:ANTFMA]2.0.CO;2 doi: 10.1659/0276-4741(2001)021[0034:ANTFMA]2.0.CO;2
    [55] Rahmati O, Pourghasemi HR, Zeinivand H (2016) Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran. Geocarto Int 31: 42–70. https://doi.org/10.1080/10106049.2015.1041559 doi: 10.1080/10106049.2015.1041559
    [56] Mitra R, Das J (2022) A comparative assessment of flood susceptibility modelling of GIS-based TOPSIS, VIKOR, and EDAS techniques in the Sub-Himalayan foothills region of Eastern India. Environ Sci Pollut Res 29: 28999–29013. https://doi.org/10.1007/s11356-022-20839-2 doi: 10.1007/s11356-022-20839-2
    [57] Moreira LL, de Brito MM, Kobiyama M (2021) A systematic review and future prospects of flood vulnerability indices. Nat Hazards Earth Syst Sci 21: 1–23. https://doi.org/10.5194/nhess-21-1513-2021 doi: 10.5194/nhess-21-1513-2021
    [58] Liu X, Hu G, Ai B, et al. (2015) A Normalized Urban Areas Composite Index (NUACI) based on combination of DMSP-OLS and MODIS for mapping impervious surface area. Remote Sens 7: 17168–17189. https://doi.org/10.3390/rs71215863 doi: 10.3390/rs71215863
    [59] Tong L, Hu S, Frazier AE (2018) Mixed accuracy of nighttime lights (NTL)-based urban land identification using thresholds: Evidence from a hierarchical analysis in Wuhan Metropolis, China. Appl Geogr 98: 201–214. https://doi.org/10.1016/j.apgeog.2018.07.017 doi: 10.1016/j.apgeog.2018.07.017
    [60] Ranaweera DKDA, Ratnayake RMK (2016) Urban Landuse Changes in Sri Lanka with Special Reference to Kaduwela Town from 1975 to 2016. Int J Innov Res Dev 6: 1–9. https://doi.org/10.24940/ijird/2017/v6/i6/JUN17014 doi: 10.24940/ijird/2017/v6/i6/JUN17014
  • urs-03-01-003-s001.docx
    urs-03-01-003-s001.pdf
  • This article has been cited by:

    1. Juncai Yao, Jing Shen, Congying Yao, Image quality assessment based on the perceived structural similarity index of an image, 2023, 20, 1551-0018, 9385, 10.3934/mbe.2023412
    2. Yue Jiang, Kejiang Chen, Wei Yan, Xuehu Yan, Guozheng Yang, Kai Zeng, Robust Secret Image Sharing Resistant to JPEG Recompression Based on Stable Block Condition, 2024, 26, 1520-9210, 10446, 10.1109/TMM.2024.3407694
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(186) PDF downloads(19) Cited by(0)

Figures and Tables

Figures(17)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog