Research article

The mathematics teacher's specialized and interdisciplinary knowledge when implementing a STEAM-based activity on the logistic function


  • Received: 21 February 2025 Revised: 16 May 2025 Accepted: 09 June 2025 Published: 16 July 2025
  • This paper identifies and characterizes the specialized and interdisciplinary knowledge of two mathematics teachers, with different academic profiles, when solving an activity with a STEAM approach on different topics in the area of calculus, such as the study of functions and applications of the derivative. For this purpose, the Mathematics Teacher's Specialized Knowledge model was used, which allowed us to analyze the knowledge of mathematics teachers when faced with activities based on real problems. We opted for a purely qualitative study of an interpretative and instrumental nature, using classroom observations, field notes, and semi-structured interviews as instruments for the collection of information. The research results show the potential of the model when it comes to deepening the understanding and specificity of mathematical content and its didactics. However, it would be convenient to reinforce some of its categories when the objective is to use mathematics to explain the behavior of an event in which other disciplines are involved, especially aspects of contextualization and the structure and teaching of mathematics. From the integrated and interdisciplinary point of view, the didactic knowledge of mathematical content is quite complex to detect in teaching practice, and that is why it is so necessary to operationalize it. Finally, the reflections obtained through this research show the importance of identifying both specialized and interdisciplinary knowledge of the mathematics teacher when dealing with class activities considered within the STEAM framework.

    Citation: Daniel Martín-Cudero, Rocío Guede-Cid, Ana Isabel Cid-Cid. The mathematics teacher's specialized and interdisciplinary knowledge when implementing a STEAM-based activity on the logistic function[J]. STEM Education, 2025, 5(5): 802-835. doi: 10.3934/steme.2025036

    Related Papers:

  • This paper identifies and characterizes the specialized and interdisciplinary knowledge of two mathematics teachers, with different academic profiles, when solving an activity with a STEAM approach on different topics in the area of calculus, such as the study of functions and applications of the derivative. For this purpose, the Mathematics Teacher's Specialized Knowledge model was used, which allowed us to analyze the knowledge of mathematics teachers when faced with activities based on real problems. We opted for a purely qualitative study of an interpretative and instrumental nature, using classroom observations, field notes, and semi-structured interviews as instruments for the collection of information. The research results show the potential of the model when it comes to deepening the understanding and specificity of mathematical content and its didactics. However, it would be convenient to reinforce some of its categories when the objective is to use mathematics to explain the behavior of an event in which other disciplines are involved, especially aspects of contextualization and the structure and teaching of mathematics. From the integrated and interdisciplinary point of view, the didactic knowledge of mathematical content is quite complex to detect in teaching practice, and that is why it is so necessary to operationalize it. Finally, the reflections obtained through this research show the importance of identifying both specialized and interdisciplinary knowledge of the mathematics teacher when dealing with class activities considered within the STEAM framework.



    加载中


    [1] Shulman, L. S., Those who understand. Knowledge growth in teaching. Educational Researcher, 1986, 15(2): 4‒14.https://doi.org/10.3102/0013189X015002004 doi: 10.3102/0013189X015002004
    [2] Shulman, L. S., Knowledge and teaching: Foundations of a new reform. Harvard Educational Review, 1987, 57(1): 1‒22.https://doi.org/10.17763/haer.57.1.j463w79r56455411 doi: 10.17763/haer.57.1.j463w79r56455411
    [3] Ponte, J. P., Mathematics teachers' professional knowledge. In: Proceedings of the 18th conference of the International Group for the Psychology of Mathematics, J. P. Ponte, J. F. Matos, Ed., 1994,194‒210. PME.
    [4] Ball, D. L., Thames, M. H. and Phelps, G., Content knowledge for teaching: What makes it special? Journal of Teacher Education, 2008, 59(5): 389‒407.https://doi.org/10.1177/0022487108324554 doi: 10.1177/0022487108324554
    [5] Tato, M. T., Schwille, J., Senk, S. L., Ingvarson, L., Peck, R. and Rowley, G., Teacher Edu­cation and Development Study in Mathematics (TEDS-M): Conceptual Framework, 2008. East Lansing, MI: Teacher Education and Development International Study Center, College of Education, Michigan State University.
    [6] Godino, J. D., Categorías de análisis de los conocimientos del profesor de matemáticas. UNION, Revista Iberoamericana de Educación Matemática, 2009, 20: 13‒31.
    [7] Baumbert, J. and Kunter, M., The COACTIV Model of Teachers' Professional Competence. In Cognitive activation in the mathematics classroom and professional competence of teachers. Results from the COACTIV project, M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, M. Neubrand, Ed., 2013, 25‒48. Springer.https://doi.org/10.1007/978-1-4614-5149-5
    [8] Carrillo-Yáñez Yañez, J., Climent, N., Montes, M., Contreras, L., Flores-Medrano, E., Escudero-Ávila, D., et al., The mathematics teacher's specialised knowledge (MTSK) model. Research in Mathematics Education, 2018, 20(3): 236‒253. http://doi.org/10.1080/14794802.2018.1479981 doi: 10.1080/14794802.2018.1479981
    [9] Meléndez-Cruz, J. A., Flores-Medrano, E., Hernández-Rebollar, L. A. Specialized knowledge of the mathematics teacher when analyzing a sequence of addition of fractions. (2023). Uniciencia, 2023, 37(1): 1‒19.https://doi.org/10.15359/ru.37-1.11
    [10] Sosa, L., Flores-Medrano, E. and Carrillo, J., Conocimiento de la enseñanza de las matemáticas del profesor cuando ejemplifica y ayuda en clase de álgebra lineal. Educación Matemática, 2016, 28(2): 151‒174.
    [11] Carrillo, J., Climent, N., Contreras, L. C. and Muñoz-Catalán, M. C., Determining Specialised Knowledge for Mathematics Teaching. In Proceedings of the Congress of European Research in Mathematics Education (CERME 8), B. Ubuz, C. Haser, M. A. Mariotti, Ed., 2013, 2985‒2994. ERME.
    [12] Escudero-Ávila, D. I., Carrillo, J., Flores-Medrano, E., Climent, N., Contreras, L. C. and Montes, M., El conocimiento especializado del profesor de matemáticas detectado en la resolución del problema de las cuerdas. PNA, 2015, 10(1): 53‒77. http://hdl.handle.net/10481/37190
    [13] Flores, E., Escudero, D. I. and Aguilar, A., Oportunidades que brindan algunos escenarios para mostrar evidencias del MTSK. In Investigación en Educación Matemática XVⅡ, A. Berciano, G. Gutiérrez, A. Estepa, N. Climent, N., Ed., 2013,275‒282. SEIEM.
    [14] Tytler, R., Mulligan, J., Prain, V., White, P., Xu, L., Kirk, M., et al., An interdisciplinary approach to primary school mathematics and science learning. International Journal of Science Education, 2021, 43(12): 1926‒1949.https://doi.org/10.1080/09500693.2021.1946727 doi: 10.1080/09500693.2021.1946727
    [15] Ortiz-Revilla, J., Sanz-Camarero, R. and Greca, I. M., Una mirada crítica a los modelos teóricos sobre educación STEAM integrada. Revista Iberoamericana de Educación, 2021, 87(2): 13‒33.https://doi.org/10.35362/rie8724634 doi: 10.35362/rie8724634
    [16] Perignat, E. and Katz-Buonincontro, J., STEAM in practice and research: An integrative literatura review. Thinking Skills and Creativity, 2019, 31: 31‒43.https://doi.org/10.1016/j.tsc.2018.10.002 doi: 10.1016/j.tsc.2018.10.002
    [17] Kyurchiev, N. and Svetoslav, M., Sigmoid Functions: Some approximation, and modelling aspects, 2015, LAP Lambert Academic Publishing.
    [18] Muñoz-Catalán, M. C., Contreras, L. C., Carrillo, J., Rojas, N., Montes, M. A. and Climent, N., Conocimiento especializado del profesor de matemáticas (MTSK): un modelo analítico para el estudio del conocimiento del profesor de matemáticas. La Gaceta de la RSME, 2015, 18(3): 589‒605.
    [19] Soto-Cerros, S., García-González, M. S. and Pascual-Martín, M. I., La relación entre el dominio afectivo y el modelo MTSK: una oportunidad de investigación. Educación Matemática, 2023, 5(2): 226‒246.https://doi.org/10.24844/EM3502.09 doi: 10.24844/EM3502.09
    [20] Carrillo, J., Contreras, L. C. and Flores, P., Un modelo de conocimiento especializado del profesor de matemáticas. In Investigación en Didáctica de la Matemática. Homenaje a Encarnación Castro, L. Rico, M. C. Cañadas, J. Gutiérrez, M. Molina, I. Segovia, Ed., 2013,193‒200. Editorial Comares.
    [21] Vasco, D. and Moriel, J., Conocimiento de los temas. In Investigación sobre conocimiento especializado del profesor de matemáticas (MTSK): 10 años de camino, J. Carrillo, M. A. Montes, N. Climent, Ed., 2022, 35‒46. Dykinson, S. L.https://doi.org/10.14679/1452
    [22] Flores-Medrano, E., Conocimiento de la estructura de las matemáticas. In Investigación sobre conocimiento especializado del profesor de matemáticas (MTSK): 10 años de camino, J. Carrillo, M. A. Montes, N. Climent, Ed., 2022, 47‒56.https://doi.org/10.14679/1453
    [23] Delgado-Rebolledo, R., Zakaryan, D. and Alfaro, C., El conocimiento de la práctica matemática. In Investigación sobre conocimiento especializado del profesor de matemáticas (MTSK): 10 años de camino, J. Carrillo, M. A. Montes, N. Climent, Ed., 2022, 57‒70.https://doi.org/10.14679/1454
    [24] Sosa, L. and Reyes, A. M., Conocimiento de la enseñanza de las matemáticas, in Investigación sobre conocimiento especializado del profesor de matemáticas (MTSK): 10 años de camino, J. Carrillo, M. A. Montes, N. Climent, Ed., 2022, 71‒82.https://doi.org/10.14679/1455
    [25] Escudero-Ávila, D., Conocimiento de las características del aprendizaje matemático. In Investigación sobre conocimiento especializado del profesor de matemáticas (MTSK): 10 años de camino, J. Carrillo, M. A. Montes, N. Climent, Ed., 2022, 83‒94.https://doi.org/10.14679/1456
    [26] Codes, M. and Contreras, C., El conocimiento de los estándares de aprendizaje de las matemáticas. In Investigación sobre conocimiento especializado del profesor de matemáticas (MTSK): 10 años de camino, J. Carrillo, M. A. Montes, N. Climent, Ed., 2022, 95‒108.https://doi.org/10.14679/1457
    [27] Handal, B., Teachers Mathematical Beliefs: A review. The Mathematics Educator, 2003, 13(2): 47‒57.
    [28] Aguilar-González, Á., Rodríguez-Muñiz, L. J. and Muñiz-Rodríguez, L., Las creencias y su papel en la determinación de relaciones entre elementos del conocimiento especializado del profesor de matemáticas. In Investigación sobre conocimiento especializado del profesor de matemáticas (MTSK): 10 años de camino, J. Carrillo, M. A. Montes, N. Climent, Ed., 2022,109‒120.
    [29] González-Monteagudo, J., El paradigma interpretativo en la investigación social y educativa: Nuevas respuestas para viejos interrogantes. Cuestiones pedagógicas, 2001, 15: 227‒246.
    [30] Bassey, M., Case study research in educational settings, 2003, Open University Press.
    [31] Lincoln, Y. S. and Guba, E. G., Naturalistic Inquiry, 1985, Beverly Hills, Ca: Sage Publications.
    [32] Stake, R., Investigación con estudio de casos, 2007, Madrid, España: Ediciones Morata.
    [33] Satrústegui, A. and Mateo, E., Mejora del pensamiento crítico en alumnos de ESO a través del aprendizaje basado en problemas en un entorno STEAM. Revista de estilos de aprendizaje, 2023, 16(32): 19‒32.https://doi.org/10.55777/rea.v16i32.5990 doi: 10.55777/rea.v16i32.5990
    [34] Kagan, D. M., Ways of Evaluating Teacher Cognition: Inferences Concerning the Goldilocks Principle. Review of Educational Research, 1990, 60(3): 419‒469.https://doi.org/10.3102/00346543060003419 doi: 10.3102/00346543060003419
    [35] Cohen, L. and Manion, L., Métodos de investigación educativa, 2002, Madrid: La Muralla.
    [36] Lofland, J. and Lofland, L. H., Analyzing Social Settings, 1984, Belmont, CA: Wadsworth Publishing Company, Inc.
    [37] Adams, W. C., Conducting semi-structured interviews. In Handbook of practical program evaluation, K. E. Newcomer, H. P. Hatry, J. S. Wholey, Ed., 2015,492‒505. Jossey-Bass.https://doi.org/10.1002/9781119171386.ch19
    [38] Bardin, L., Análisis de contenido, 1996, Madrid: Ediciones Akal.
    [39] Krippendorff, K., Content Analysis: An Introduction to its Methodology, 2004, Beverly Hills: Sage Publications.
    [40] Stillman, G. A., Ikeda, T., Schukajlow, S., De Loiola, J. and Ärlebäck, J. B., Interdisciplinary aspects of the teaching and learning of mathematical modelling in mathematics education including relations to the real world and STEM. In Proceedings of the 14th International Congress on Mathematical Education: Volume I, 2024,239‒307.https://doi.org/10.1142/9789811287152_0024
    [41] Capone, R. and Faggiano, E., Semiotic and pragmatic aspects of interdisciplinarity in mathematics education. For the Learning of Mathematics, 2024, 44(3): 22–28.https://hdl.handle.net/11586/527920
    [42] Huincahue, J. and Gaete-Peralta, C., Mathematical Modeling in Interdisciplinary Academic Scenarios: Components for Task Construction. In Researching Mathematical Modelling Education in Disruptive Times. International Perspectives on the Teaching and Learning of Mathematical Modelling, H. S. Siller, V. Geiger, G. Kaiser, Ed., 2024,583‒593. Springer, Cham.https://doi.org/10.1007/978-3-031-53322-8_48
    [43] Godino, J. D., Perspectiva de la didáctica de las matemáticas como disciplina científica, 2002, Departamento de Didáctica de la Matemática. Universidad de Granada.
    [44] De Guzmán, M., Enseñanza de las ciencias y la matemática. Revista Iberoamericana de Educación, 2007, 43: 19‒58.
    [45] Franco, G., González, V., González, S., Lepratte, F. and Viera, C., Los números irracionales y los segmentos incomensurables. Una secuencia de actividades para introducir los números irracionales a partir de la historia de la matemática. Reloj de agua, 2007, 15: 17‒26.
    [46] Martínez, M., Giné, C., Fernández, S., Figueiras, L. and Deulofeu, J., El conocimiento del horizonte matemático: más allá de conectar el presente con el pasado y el futuro. In Investigación en Educación Matemática XV, M. Marín, G. Fernández, L. J. Blanco, M. Palarea, Ed., 2011,429‒438. SEIEM.
    [47] Montes, M., Aguilar, A., Carrillo, J. and Muñoz-Catalán, M., MTSK: From common and horizon knowledge to knowledge of topics and structures. In Proceedings of the Congress of European Research in Mathematics Education (CERME 8), B. Ubuz, C. Haser, M. Mariotti, Ed., 2013, 3185‒3194. ERME.
    [48] Montes, M. A., Contreras, L. C. and Carrillo, J., Conocimiento del profesor de matemáticas: enfoques del MKT y del MTSK. In Investigación en Educación Matemática XVⅡ, A. Berciano, G. Gutiérrez, A. Estepa, N. Climent, Ed., 2013,403‒410. SEIEM.
    [49] Aguilera, D., Lupiáñez, J. L., Perales-Palacios, F. J. and Vílchez-González, J. M., IDEARR Model for STEM Education – A Framework Proposal. Educ. Sci, 2024, 14: 638.https://doi.org/10.3390/educsci14060638 doi: 10.3390/educsci14060638
    [50] Da Ponte, J. P. and Chapman, O., Mathematics Teachers' Knowledge and Practices. In Handbook of Research on the Psychology of Mathematics Education, A. Gutiérrez, P. Boero, Ed., 2006,461‒494. Brill.https://doi.org/10.1163/9789087901127_017
    [51] Yakman, G. and Lee, H., Exploring the Exemplary STEAM Education in the U. S. as a Practical Educational Framework for Korea. Journal of The Korean Association for Science Education, 2012, 32(6): 1072–1086.https://doi.org/10.14697/jkase.2012.32.6.1072 doi: 10.14697/jkase.2012.32.6.1072
    [52] Tytler, R. and Self, J., Designing a Contemporary STEM curriculum. In-Progress reflection no. 39 on current and critical issues in curriculum, learning and assessment, 2020, 39(4).
    [53] Escalona, T. Z., Cartagena, Y. G. and González, D. R., Educación para el sujeto del siglo XXI: principales características del enfoque STEAM desde la mirada educacional. Contextos: Estudios de Humanidades y Ciencias Sociales, 2018, 41.
    [54] Wu, C. H., Liu, C. H. and Huang, Y. M., The exploration of continuous learning intention in STEAM education through attitude, motivation, and cognitive load. International Journal of STEM Education, 2022, 9(1): 35.https://doi.org/10.1186/s40594-022-00346-y doi: 10.1186/s40594-022-00346-y
    [55] Ivars, P., Fernandéz, C. and Llinares, S., How students looking for teachers look at the teaching of mathematics in a structured way write narratives. Mathematics and Its Teaching, 2017, 24(1): 79–96.
    [56] Matitaputty, C., Nusantara, T. and Hidayanto, E., Sukoriyanto. Examining the pedagogical content knowledge of in-service mathematics teachers on the permutations and combinations in the context of student mistakes. Journal on Mathematics Education, 2022, 13(3): 393–414.https://doi.org/10.22342/jme.v13i3.pp393-414 doi: 10.22342/jme.v13i3.pp393-414
    [57] Segui, J. F. and Alsina, A., Evaluating specialized knowledge for teaching statistics and probability: construction and validation of an MTSK-Stochastic Questionnaire. Uniciencia, 2023, 37(1): 84‒105.https://doi.org/10.15359/ru.37-1.5 doi: 10.15359/ru.37-1.5
    [58] Martignone, F., Ferretti, F. and Rodríguez-Múñiz, L. J., What aspects can characterize the specialized knowledge of a mathematics teacher educator? Educación Matemática, 2022, 34(3): 301‒328.https://doi.org/10.24844/EM3403.11 doi: 10.24844/EM3403.11
    [59] Organization for Economic Cooperation and Development, PISA 2022 Assessment and Analytical Framework, 2023. Paris: OECD Publishing.https://doi.org/10.1787/dfe0bf9c-en
    [60] Scheiner, T., Montes, M. A., Godino, J. D., Carrillo, J. and Pino-Fan, L. R., What Makes Mathematics Teacher Knowledge Specialized? Offering Alternative Views. International Journal of Science and Mathematics Education, 2019, 17(1): 153–172.https://doi.org/10.1007/s10763-017-9859-6 doi: 10.1007/s10763-017-9859-6
  • Author's biography Daniel Martín-Cudero is a lecturer on Mathematics and Statistics at the Rey Juan Carlos University (URJC). He is currently working on his doctoral thesis whose main research topic is STEAM education and the mathematics teacher's knowledge from an interdisciplinary perspective. He is a member of the consolidated research group in STEM education at URJC; Rocío Guede-Cid holds a PhD from the Rey Juan Carlos University (URJC). She is a full professor in Mathematics and Statistics and a member of the Consolidated Research Group in STEM education at URJC. Her research interests focus on the field of innovation and assessment in higher education, as well as on the analysis of the technology transfer process; Ana Isabel Cid-Cid holds a PhD from the Complutense University of Madrid and a Bachelor of Maths from the Basque Country University. She is a full professor at Rey Juan Carlos University (URJC) where she teaches Mathematics and its didactics applied to pre-primary, primary and secondary education. Her research work focuses on the assessment of the students' academic performance, the data analysis of questionnaires and innovation in education. She is a member of the consolidated research group in STEM education at URJC
    Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(937) PDF downloads(42) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog