Research article Special Issues

Bifurcation and pattern dynamic behavior in a fractional-order ecosystem model

  • Published: 27 January 2026
  • This paper investigates the dynamic behavior of a fractional-order reaction-diffusion system for vegetation pattern formation, incorporating interactions between plant biomass, soil water, and salt concentration. The model utilizes Grünwald–Letnikov fractional derivatives to capture memory effects and anomalous diffusion. A novel high-order numerical scheme is developed, featuring a high-accuracy, short-memory time discretization with a nine-point finite difference method in space to enhance stability. Bifurcation analysis is performed to determine equilibrium stability and identify Turing instability thresholds. Numerical simulations illustrate the emergence of diverse vegetation patterns, highlighting how different fractional orders influence spatiotemporal dynamics. Overall, the proposed framework provides an effective computational tool for analyzing complex fractional ecological systems.

    Citation: Hai Yan Zhang, Wei Zhang, Hao Lu Zhang. Bifurcation and pattern dynamic behavior in a fractional-order ecosystem model[J]. Networks and Heterogeneous Media, 2026, 21(1): 183-197. doi: 10.3934/nhm.2026008

    Related Papers:

  • This paper investigates the dynamic behavior of a fractional-order reaction-diffusion system for vegetation pattern formation, incorporating interactions between plant biomass, soil water, and salt concentration. The model utilizes Grünwald–Letnikov fractional derivatives to capture memory effects and anomalous diffusion. A novel high-order numerical scheme is developed, featuring a high-accuracy, short-memory time discretization with a nine-point finite difference method in space to enhance stability. Bifurcation analysis is performed to determine equilibrium stability and identify Turing instability thresholds. Numerical simulations illustrate the emergence of diverse vegetation patterns, highlighting how different fractional orders influence spatiotemporal dynamics. Overall, the proposed framework provides an effective computational tool for analyzing complex fractional ecological systems.



    加载中


    [1] J. A. Sherratt, A. D. Synodinos, Vegetation patterns and desertification waves in semi-arid environments: Mathematical models based on local facilitation in plants, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2815–2827. https://doi.org/10.3934/dcdsb.2012.17.2815 doi: 10.3934/dcdsb.2012.17.2815
    [2] L. Eigentler, J. A. Sherratt, Effects of precipitation intermittency on vegetation patterns in semi-arid landscapes, Phys. D, 405 (2020), 132396. https://doi.org/10.1016/j.physd.2020.132396 doi: 10.1016/j.physd.2020.132396
    [3] M. H. Kabir, M. O. Gani, Numerical bifurcation analysis and pattern formation in a minimal reaction-diffusion model for vegetation, J. Theor. Biol., 536 (2022), 110997. https://doi.org/10.1016/j.jtbi.2021.110997 doi: 10.1016/j.jtbi.2021.110997
    [4] I. Moreno-Villamil, D. A. Rueda-Gómez, É. J. Villamizar-Roa, On a cross-diffusion model in ecohydrology: Theory and numerics, Acta Appl. Math., 196 (2025), 1. https://doi.org/10.1007/s10440-025-00708-y doi: 10.1007/s10440-025-00708-y
    [5] M. Abbas, F. Giannino, A. Iuorio, Z. Ahmad, F. Calabrò, PDE models for vegetation biomass and autotoxicity, Math. Comput. Simul., 228 (2025), 386–401. https://doi.org/10.1016/j.matcom.2024.07.004 doi: 10.1016/j.matcom.2024.07.004
    [6] A. Iuorio, N. Salvatori, G. Toraldo, F. Giannino, Analysis and numerical simulations of travelling waves due to plant-soil negative feedback, Eur. J. Appl. Math., 35 (2024), 554–565. https://doi.org/10.1017/S0956792523000323 doi: 10.1017/S0956792523000323
    [7] A. Iuorio, F. Veerman, The influence of autotoxicity on the dynamics of vegetation spots, Phys. D, 427 (2021), 133015. https://doi.org/10.1016/j.physd.2021.133015 doi: 10.1016/j.physd.2021.133015
    [8] X. L. Gao, H. L. Zhang, X. Y. Li, Research on pattern dynamics of a class of predator-prey model with interval biological coefficients for capture, AIMS Math., 9 (2024), 18506–18527. https://doi.org/10.3934/math.2024901 doi: 10.3934/math.2024901
    [9] H. L. Zhang, Y. L. Wang, J. X. Bi, S. H. Bao, Novel pattern dynamics in a vegetation-water reaction-diffusion model, Math. Comput. Simul., 241 (2026), 97–116. https://doi.org/10.1016/j.matcom.2025.09.020 doi: 10.1016/j.matcom.2025.09.020
    [10] S. Zhang, H. L. Zhang, Y. L. Wang, Z. Y. Li, Dynamic properties and numerical simulations of a fractional phytoplankton-zooplankton ecological model, Networks Heterog. Media, 20 (2025), 648–669. https://doi.org/10.3934/nhm.2025028 doi: 10.3934/nhm.2025028
    [11] J. Y. Yang, Y. L. Wang, Z. Y. Li, Exploring dynamics and pattern formation of a fractional-order three-variable Oregonator model, Networks Heterog. Media, 20 (2025), 1201–1229. https://doi.org/10.3934/nhm.2025052 doi: 10.3934/nhm.2025052
    [12] L. Eigentler, J. A. Sherratt, Metastability as a coexistence mechanism in a model for dryland vegetation patterns, Bull. Math. Biol., 81 (2019), 2290–2322. https://doi.org/10.1007/s11538-019-00606-z doi: 10.1007/s11538-019-00606-z
    [13] C. Y. Gai, T. Kolokolnikov, Resource-mediated competition between two plant species with different rates of water intake, SIAM J. Appl. Math., 83 (2023), 576–602. https://doi.org/10.1137/21M144623X doi: 10.1137/21M144623X
    [14] P. Broadbridge, B. H. Bradshaw-Hajek, D. Triadis, Exact non-classical symmetry solutions of Arrhenius reaction-diffusion, Proc. R. Soc. A, 471 (2015), 20150580. https://doi.org/10.1098/rspa.2015.0580 doi: 10.1098/rspa.2015.0580
    [15] P. Broadbridge, B. H. Bradshaw-Hajek, A. J. Hutchinson, Conditionally integrable PDEs, non-classical symmetries and applications, Proc. R. Soc. A, 479 (2023), 20230209. https://doi.org/10.1098/rspa.2023.0209 doi: 10.1098/rspa.2023.0209
    [16] P. Broadbridge, C. Rogers, On a nonlinear reaction-diffusion boundary-value problem: Application of a Lie-Backlund symmetry, J. Aust. Math. Soc. Ser. B Appl. Math., 34 (1993), 318–332. https://doi.org/10.1017/S0334270000008924 doi: 10.1017/S0334270000008924
    [17] Z. Y. Li, M. C. Wang, Y. L. Wang, Solving a class of variable order nonlinear fractional integral differential equations by using reproducing kernel function, AIMS Math., 7 (2022), 12935–12951. https://doi.org/10.3934/math.2022716 doi: 10.3934/math.2022716
    [18] Z. Y. Li, Y. L. Wang, F. G. Tan, X. H. Wan, H. Yu, J. S. Duan, Solving a class of linear nonlocal boundary value problems using the reproducing kernel, Appl. Math. Comput., 265 (2015), 1098–1105. https://doi.org/10.1016/j.amc.2015.05.117 doi: 10.1016/j.amc.2015.05.117
    [19] Y. L. Wang, L. N. Jia, H. L. Zhang, Numerical solution for a class of space-time fractional equation by the piecewise reproducing kernel method, Int. J. Comput. Math., 96 (2019), 2100–2111. https://doi.org/10.1080/00207160.2018.1544367 doi: 10.1080/00207160.2018.1544367
    [20] X. Y. Li, Y. L. Wang, Z. Y. Li, Numerical simulation for the fractional-in-space Ginzburg–Landau equation using Fourier spectral method, AIMS Math., 8 (2023), 2407–2418. https://doi.org/10.3934/math.2023124 doi: 10.3934/math.2023124
    [21] C. Han, Y. L. Wang, Z. Y. Li, Numerical solutions of space fractional variable-coefficient KdV-modified KdV equation by Fourier spectral method, Fractals, 29 (2021), 2150246. https://doi.org/10.1142/S0218348X21502467 doi: 10.1142/S0218348X21502467
    [22] C. Han, Y. L. Wang, Z. Y. Li, Novel patterns in a class of fractional reaction-diffusion models with the Riesz fractional derivative, Math. Comput. Simul., 202 (2022), 149–163. https://doi.org/10.1016/j.matcom.2022.05.037 doi: 10.1016/j.matcom.2022.05.037
    [23] H. L. Zhang, Z. Y. Li, X. Y. Li. Numerical simulation of pattern and chaos dynamic behaviour in the fractional-order-in-time Lengyel-Epstein reaction-diffusion system, Int. J. Comput. Math., 1–21. https://doi.org/10.1080/00207160.2025.2612196
    [24] D. Y. Xue, Fractional Calculus and Fractional-Order Control, Beijing, Science Press, 2018.
    [25] D. Y. Xue, L. Bai, Numerical algorithms for Caputo fractional-order differential equations, Int. J. Control, 90 (2016), 1201–1211. https://doi.org/10.1080/00207179.2016.1158419 doi: 10.1080/00207179.2016.1158419
    [26] D. Y. Xue, C. N. Zhao, Y. Q. Chen, A modified approximation method of fractional order system, in Proceedings of IEEE Conference on Mechatronics and Automation, (2006), 1043–1048. Luoyang, China. https://doi.org/10.1109/ICMA.2006.257769
    [27] I. Petráš, Fractional-order Nonlinear Systems: Modeling, Analysis and Simulation, Springer Science & Business Media, 2011.
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(84) PDF downloads(16) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog