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Abstract: This paper investigates the dynamic behavior of a fractional-order reaction-diffusion system
for vegetation pattern formation, incorporating interactions between plant biomass, soil water, and salt
concentration. The model utilizes Grünwald–Letnikov fractional derivatives to capture memory effects
and anomalous diffusion. A novel high-order numerical scheme is developed, featuring a high-accuracy,
short-memory time discretization with a nine-point finite difference method in space to enhance stability.
Bifurcation analysis is performed to determine equilibrium stability and identify Turing instability
thresholds. Numerical simulations illustrate the emergence of diverse vegetation patterns, highlighting
how different fractional orders influence spatiotemporal dynamics. Overall, the proposed framework
provides an effective computational tool for analyzing complex fractional ecological systems.
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1. Introduction

Vegetation patterns in semi-arid regions have long been a subject of intensive research due to
their ecological significance and mathematical complexity. These patterns provide valuable critical
insights into ecosystem resilience and the processes that may lead to desertification [1, 2]. Early
modeling efforts primarily attributed pattern formation to water scarcity and infiltration-feedback
mechanisms [3, 4]. However, recent more studies have shown that vegetation patterns can also emerge
in water-sufficient environments, indicating that additional mechanisms–such as plant-soil feedbacks
(PSFs) play a crucial roles [5, 6].
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The role of autotoxicity—where plants modify soil properties through litter decomposition,
subsequently inhibiting their own growth—has been recognized as a significant driver of vegetation
dynamics [6, 7]. Abbas et al. [5] compared several reaction-diffusion models incorporating autotoxicity,
and highlighted how different growth terms and additional factors influence biomass distribution. Iuorio
and Veerman [7] further demonstrated that autotoxicity can induce movement and deformation of
vegetation spots, a phenomenon not observed in classical biomass-water models.

Fractional-order derivatives have recently been introduced into ecological modeling to capture
memory effects and anomalous diffusion processes that integer-order models may overlook [8–10].
Gao et al. [8] investigated pattern dynamics in a fractional vegetation-water model, while
Zhang et al. [10] and Yang et al. [11] extended this approach to plankton dynamics and chemical
oscillations, respectively. These studies demonstrate the rich dynamical behaviors that fractional
calculus can introduce into ecological systems.

Competition between plant species and their coexistence mechanisms represent another important
aspect of vegetation dynamics. Eigentler and Sherratt [12] showed that metastable states can facilitate
species coexistence through long transients, while Gai and Kolokolnikov [13] analyzed resource-
mediated competition between species with different water intake rates. These studies reveal how subtle
differences in species traits can determine community structure.

From a mathematical perspective, the analysis of reaction-diffusion systems has benefited from
various analytical and numerical approaches. Broadbridge and colleagues [14–16] developed
conditionally integrable models based on non-classical symmetries, with applications to
soil-water-plant dynamics. Numerical methods have also advanced significantly, with Li et al. [17, 18]
and Wang et al. [19] developed reproducing kernel techniques, while other studies employed spectral
methods [20, 21] and high-order discretization schemes [22, 23].

In this work, we investigate a three-component fractional reaction-diffusion system describing the
interactions between plant biomass, soil water, and salt concentration. The model extends previous
approaches by incorporating fractional time derivatives for all components, enabling us to examine how
distinct memory effects influence pattern formation. We conduct a comprehensive bifurcation analysis
to identify stability conditions and Turing instability thresholds, and we develop a high-order numerical
scheme combining Grünwald-Letnikov discretization in time with a nine-point finite difference scheme
in space. Our work builds on the foundations laid by Xue [24–26] in fractional calculus and extends
existing vegetation modeling frameworks to include salinity dynamics, thereby providing new insights
into the complex interplay among multiple resources in arid ecosystems.

We consider the following reaction-diffusion system describing the dynamics of plant biomass (B),
soil water (W), and salt concentration (S ):

D
α1
t B = ΛWB(1 − B) − MB + DB∇

2B,

D
α2
t W = P − N(1 − RB)W − Γ

W2

W2 + 1
B + DW∇

2W,

D
α3
t S = Q − KS + DS∇

2S ,

(1.1)

where the description of variables and parameters is shown in Table 1.
The main contributions of this paper are:

• Developed a three-component fractional-order reaction-diffusion model incorporating plant
biomass, soil water, and salt concentration dynamics using Grünwald–Letnikov derivatives,

Networks and Heterogeneous Media Volume 21, Issue 1, 183–197.



185

extending classical vegetation models to capture memory effects and anomalous
diffusion processes.
• Established a novel high-order numerical scheme combining p-order generating functions for

temporal discretization with a nine-point finite difference method for spatial discretization,
achieving O(τp) accuracy with recursive coefficient computation for enhanced stability.
• Performed a comprehensive bifurcation analysis to identify stability conditions and Turing

instability thresholds across different fractional orders, with numerical simulations demonstrate
how memory effects significantly influence vegetation pattern formation and ecosystem dynamics.

Table 1. Description of variables and parameters.

Symbol Description
B Vegetation biomass
W Soil water content
S Soil salinity concentration
∇2 Laplace operator in two dimensions: ∂

2

∂x2 +
∂2

∂y2

Λ Plant growth rate influenced by water availability
M Natural mortality rate of vegetation
P Precipitation rate
N Evaporation rate coefficient
R Reduction of evaporation due to vegetation cover
Γ Maximum water uptake rate by vegetation
Q Salt input rate
K Natural salt removal (decay) rate
t, x, y Time variable and spatial variables
α1, α2, α3 Orders of fractional derivatives for B, W, and S , respectively
D
αi
t Grünwald–Letnikov fractional derivative operator of order αi

DB,DW ,DS Diffusion coefficients for vegetation, water, and salt

This paper is organized as follows. Section 2, presents the bifurcation and stability analysis of the
fractional-order system. Section 3, we develop a high-order numerical scheme combining Grünwald-
Letnikov discretization in time with a nine-point finite difference method in space. Section 4, reports
numerical simulations of the pattern dynamical behavior. Finally, Section 5, concludes the paper.

2. Bifurcation analysis

The equilibrium states of the system are obtained by setting the time derivatives to zero:


ΛWB(1 − B) − MB = 0,

P − N(1 − RB)W − Γ
W2

W2 + 1
B = 0,

Q − KS = 0,

(2.1)
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which yields two biologically meaningful equilibria:

E0 =

(
0,

P
N
,

Q
K

)
, E1 =

(
B∗,

M
Λ(1 − B∗)

,
Q
K

)
, (2.2)

where B∗ is determined by the implicit equation

P − N(1 − RB∗)
M

Λ(1 − B∗)
− Γ

(
M

Λ(1−B∗)

)2(
M

Λ(1−B∗)

)2
+ 1

B∗ = 0. (2.3)

Here E0 represents the desert state (no vegetation), while E1 corresponds to a vegetated state.
The linearization of the system around any state (B,W, S ) is given by

J(B,W, S ) =


ΛW(1 − 2B) − M − DBk2 ΛB(1 − B) 0

NRW − Γ
W2

W2 + 1
−N(1 − RB) −

2ΓBW
(W2 + 1)2 − DWk2 0

0 0 −K − DS k2

 , (2.4)

where k denotes the spatial wave number.
At the desert equilibrium E0, this reduces to

J(E0) =


Λ

P
N
− M − DBk2 0 0

RP − Γ
(P/N)2

(P/N)2 + 1
−N − DWk2 0

0 0 −K − DS k2

 . (2.5)

To analyze stability in the fractional-order framework, we define Let
n = lcm

(
denom(α1), denom(α2), denom(α3)

)
, where denom(α) denotes the denominator of the rational

number α in its reduced form. The characteristic equation is:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Λ

P
N
− M − DBk2 − λnα1 0 0

RP − Γ
(P/N)2

(P/N)2 + 1
−N − DWk2 − λnα2 0

0 0 −K − DS k2 − λnα3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

The eigenvalues are given by

λnα1 =
ΛP
N
− M − DBk2, λnα2 = −N − DWk2, λnα3 = −K − DS k2.

According to the fractional-order stability criterion [27], if all eigenvalues λi satisfy | arg(λi)| >
π

2n
,

then the system at the equilibrium point is globally asymptotically stable. If there exists at least
one eigenvalue λi satisfying | arg(λi)| <

π

2n
, then the system at the equilibrium point is unstable. If
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max
i
{| arg(λi)|} =

π

2n
, then the system undergoes a bifurcation. The corresponding wave number

satisfying this condition is called the critical wave number.
Turing bifurcation occurs at

max
(
| arg(λ1)|, | arg(λ2)|, | arg(λ3)|

)
=
π

2n
. (2.6)

When
ΛP
N
− M < 0, the system without diffusion (i.e., DB = DW = DS = 0) at E0 is globally

asymptotically stable.
The instability condition requires that there exists at least one eigenvalue λi satisfying

| arg(λi)| <
π

2n
. (2.7)

Specifically, when
ΛP
N
− M − DBk2 > 0, we have

| arg(λ1)| = 0 <
π

2n
, (2.8)

which indicates that the system at E0 is unstable in this case.
At E1, the Jacobian matrix is

J(E1) =


a11 − DBk2 a12 0

a21 a22 − DWk2 0
0 0 a33 − DS k2

 , (2.9)

where

a11 = −
MB∗

1 − B∗
, a12 = ΛB∗(1 − B∗), a21 = NRW∗ − Γ

(W∗)2

(W∗)2 + 1
,

a22 = −N(1 − RB∗) −
2ΓB∗W∗

((W∗)2 + 1)2 , a33 = −K,

with W∗ =
M

Λ(1 − B∗)
.

For the fractional-order system, using the transformation µ = λ1/n, where
n = lcm(denom(α1), denom(α2), denom(α3)), the characteristic equation becomes:

det
(
diag(µnα1 , µnα2 , µnα3) − J(E1)

)
= 0. (2.10)

So,

(µnα3 − a33 + DS k2) ·
[
(µnα1 − a11 + DBk2)(µnα2 − a22 + DWk2) − a12a21

]
= 0. (2.11)

The first factor gives
µnα3 = a33 − DS k2 = −K − DS k2. (2.12)

Networks and Heterogeneous Media Volume 21, Issue 1, 183–197.



188

The second factor corresponds to the plant-water interactions. Letting p = a11−DBk2, q = a22−DWk2,
r = a12, s = a21, we have

(µnα1 − p)(µnα2 − q) − rs = 0. (2.13)

Expanding Eq (2.13), we can get

µn(α1+α2) − qµnα1 − pµnα2 + (pq − rs) = 0. (2.14)

According to the stability criterion for the system, we can get the following conclusion.
The system is asymptotically stable if and only if | arg(µi)| >

π

2n
for all eigenvalues µi. Turing

instability occurs when this condition is violated for some wave number k , 0.
The eigenvalue from the first factor satisfies the following condition | arg(µ3)| = π > π

2n for any n ≥
1, so the dynamics is always stable when K > 0.

For Turing bifurcation analysis, we consider the critical case where the eigenvalues lie on the stability
boundary. At the bifurcation point, let µ = ωeiθ with θ =

π

2n
, we get µnα1 = ωnα1einα1θ = ωnα1ei nα1π

2n =

ωnα1ei α1π
2 , and µnα2 = ωnα2ei α2π

2 , and substituting these into Eq (2.13) and separating real and imaginary
parts, we get

ωn(α1+α2) cos
(

(α1+α2)π
2

)
− qωnα1 cos

(
α1π

2

)
− pωnα2 cos

(
α2π

2

)
+ (pq − rs) = 0, (2.15)

ωn(α1+α2) sin
(

(α1+α2)π
2

)
− qωnα1 sin

(
α1π

2

)
− pωnα2 sin

(
α2π

2

)
= 0. (2.16)

From Eq (2.16), we can express one parameter in terms of others. For instance, solving for p

p =
ωn(α1+α2) sin

(
(α1+α2)π

2

)
− qωnα1 sin

(
α1π

2

)
ωnα2 sin

(
α2π

2

) .

Substituting into Eq (2.15) and simplifying, we obtain the bifurcation condition. After algebraic
manipulation, we get the critical wave number

k2
c =

1
2DBDW

[
a11DWΦ1 + a22DBΦ2 ±

√
(a11DWΦ1 + a22DBΦ2)2 − 4DBDW(a11a22Φ3 − a12a21)

]
,

(2.17)
where

Φ1(α1, α2) =
sin

(
(α1+α2)π

2

)
sin

(
α2π

2

) , Φ2(α1, α2) =
sin

(
(α1+α2)π

2

)
sin

(
α1π

2

) ,
Φ3(α1, α2) =

sin
(

(α1+α2)π
2

)
sin

(
α1π

2

)
sin

(
α2π

2

) cos
(
(α1 − α2)π

2

)
.

We set Λ = 0.8,M = 0.1, P = 1.2,N = 0.3,R = 0.4,Γ = 0.5,Q = 0.2,K = 0.15, and analyze
stability of the system without diffusion at α = [0.9, 0.9, 0.8], and α = [1.2, 1.2, 1.2], as shown in
Figure 1.
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Figure 1 presents the stability behavior of the system without diffusion with fractional derivative
orders α = [0.9, 0.9, 0.8] and α = [1.2, 1.2, 1.2]. Stability analysis results show that, under the selected
parameters, the system exhibits conditional instability at E0 and stability at E1, which provides a
theoretical basis for the Turing instability that may occur after the diffusion term is introduced.

E0(0.0000, 4.0000, 1.3333) at
α = [0.9, 0.9, 0.8]

E1(0.9691, 4.0463, 1.3333) at
α = [0.9, 0.9, 0.8]

E0(0.0000, 4.0000, 1.3333) at
α = [1.2, 1.2, 1.2]

E1(0.9691, 4.0463, 1.3333) at
α = [1.2, 1.2, 1.2]

Figure 1. Stability of the system without diffusion at different fractional derivative orders.

Figure 2 illustrates the time-series evolution of the vegetation–water–salt system for different
fractional derivative orders.

Figure 2. Comparison of time series plots at different fractional derivatives.

Figure 2 compares the dynamic behaviors under different fractional derivative orders. This
comparison not only intuitively verifies the regulatory effect of the fractional order on the system
dynamics, but also demonstrates its significant influence of the fractional order on the system behavior.
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3. Numerical scheme

The numerical scheme is constructed around an accurate and stable discretization of the fractional
time derivative. We commence with the Grünwald–Letnikov definition, which provides a natural
foundation for numerical approximation.

Definition 3.1. For a function f (t), the α-th order Grünwald–Letnikov fractional derivative on the
interval [t0,T ] is defined as

t0D
α
t f (t) = lim

h→0

1
hα

⌊ t−t0
h

⌋∑
j=0

(−1) j

(
α

j

)
f (t − jh), (3.1)

where ⌊·⌋ denotes the floor function. The generalized binomial coefficients are expressed via the
Gamma function (

α

j

)
=

Γ(α + 1)
Γ( j + 1)Γ(α − j + 1)

. (3.2)

A straightforward numerical approximation at t = tk with a uniform time step τ is

t0D
α
tk f ≈

1
τα

k∑
j=0

c j f (tk− j), (3.3)

where c j = (−1) j
(
α
j

)
. Direct evaluation of c j using Gamma functions is numerically unstable for large j.

A stable, recursive computation is therefore employed

c0 = 1, c j =

(
1 −
α + 1

j

)
c j−1, j = 1, 2, . . . , k. (3.4)

The approximation (3.3) with coefficients from Eq (3.4) yields first-order accuracy, i.e., O(τ).
To achieve higher-order temporal accuracy, we replace the underlying first-order backward difference

with a p-th order approximation, characterized by a polynomial generating function.

Definition 3.2. A p-th order polynomial generating function for the first-order derivative is defined as

gp(z) =
p∑

k=1

1
k

(1 − z)k =

p∑
k=0

ωkzk. (3.5)

The coefficients {ωk}
p
k=0 are uniquely determined by requiring that gp(z) approximates − ln(z) to p-th

order accuracy near z = 1.

Theorem 3.3. The coefficients {ωk}
p
k=0 in Eq (3.5) satisfy the following linear system of p + 1 equations:

∑p
k=0 ωk = 0,∑p
k=0 kωk = −1,∑p
k=0 k2ωk = −2,
...∑p

k=0 kpωk = −p.

(3.6)
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Proof. Starting from the identity
∑p

k=0 ωkzk =
∑p

k=1
1
k (1 − z)k, we evaluate at z = 1 to obtain the first

equation:
∑p

k=0 ωk = 0.

For the subsequent equations, we define the operator Lm[ f ] =
(
z d

dz

)m
f (z)

∣∣∣∣
z=1

. Applying Lm to both
sides of the identity yields:

Lm

 p∑
k=0

ωkzk

 = p∑
k=0

kmωk.

Applying Lm to the right-hand side,
∑p

k=1
1
k (1 − z)k, and evaluating at z = 1 results in the constant

−m for m = 1, 2, . . . , p. This is because the operator extracts the coefficient of the (1 − z)m term, and
the contributions from terms with k > m vanish at z = 1. Equating both sides for each m produces the
system Eq (3.6).

This framework is generalized to fractional derivatives.

Definition 3.4. The p-th order generating function for the fractional derivative of order α is defined as

gαp(z) =
(
gp(z)

)α
=

 p∑
k=0

ωkzk

α . (3.7)

Let its formal power series expansion be

gαp(z) =
∞∑

k=0

c(α)
k zk. (3.8)

Theorem 3.5. The coefficients c(α)
k in the expansion (3.8) can be computed via the following stable

recurrence relation:

c(α)
0 = ω

α
0 ,

c(α)
m =

1
mω0

min(m,p)∑
i=1

[i(1 + α) − m]ωi c(α)
m−i, for m ≥ 1,

(3.9)

provided ω0 , 0.

Proof. From the definitions, we have
(∑p

k=0 ωkzk
)α
=

∑∞
k=0 c(α)

k zk. Differentiating the identity p∑
k=0

ωkzk

  ∞∑
k=0

c(α)
k zk

 =  p∑
k=0

ωkzk

1+α

with respect to z, multiplying by z, and equating coefficients of zm yields, for m ≥ 1,
min(m,p)∑

i=0

ωi(m − i)c(α)
m−i = (1 + α)

min(m,p)∑
i=1

iωic
(α)
m−i.

Isolating the term with i = 0 on the left (i.e., ω0mc(α)
m ) and rearranging gives

ω0mc(α)
m =

min(m,p)∑
i=1

[i(1 + α) − (m − i)]ωic
(α)
m−i =

min(m,p)∑
i=1

[i(1 + α) − m]ωic
(α)
m−i.

Solving for c(α)
m yields the recurrence relation (3.9).
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The resulting high-order numerical approximation for the fractional time derivative at time level tk is

t0D
α
tk f ≈

1
τα

k∑
j=0

c(α)
j f (tk− j), (3.10)

which possesses a local truncation error of order O(τp).
For the spatial discretization of the reaction-diffusion system, we employ a nine-point finite difference

stencil to approximate the two-dimensional Laplace operator ∇2. This scheme provides improved
accuracy and isotropy compared to the standard five-point formula.

The discrete Laplace operator at grid point (xi, y j) with uniform spacing h is given by

∆hϕi, j =
1

6h2

[
ϕi+1, j+1 + ϕi−1, j−1 + ϕi+1, j−1 + ϕi−1, j+1 + 4

(
ϕi+1, j + ϕi−1, j + ϕi, j+1 + ϕi, j−1

)
− 20ϕi, j

]
, (3.11)

where ϕi, j denotes the approximate solution at (xi, y j).
Applying the high-order fractional time discretization (3.10) together with the nine-point spatial

discretization (3.11) to the vegetation–water–salinity model yields the following fully discrete system.
Let Bk

i, j, Wk
i, j, and S k

i, j represent the discrete approximations for vegetation biomass, water, and salinity,
respectively, at grid point (i, j) and time tk. The scheme is

Bk+1
i, j −

∑Nk
m=0 c(α1)

m Bk−m
i, j

τα1 = ΛWk
i, jB

k
i, j(1 − Bk

i, j) − MBk
i, j + DB∆hBk

i, j
Wk+1

i, j −
∑Nk

m=0 c(α2)
m Wk−m

i, j

τα2 = P − N(1 − RBk
i, j)W

k
i, j − Γ

(Wk
i, j)

2

(Wk
i, j)

2+1
Bk

i, j + DW∆hWk
i, j

S k+1
i, j −

∑Nk
m=0 c

(α3)
m S k−m

i, j

τα3 = Q − KS k
i, j + DS∆hS k

i, j,

(3.12)

where ∆h is defined in Eq (3.11). Periodic boundary conditions are applied on the computational domain.

4. Numerical simulation of pattern dynamical behavior

Figures 3–7 illustrate the pattern formation and dynamical evolution of the vegetation-water-salinity
system under different parameters and different fractional derivative combinations (α1, α2, α3).

Figure 3. Numerical simulation results at α1 = 0.9, α2 = 0.8, α3 = 1.0,Λ = 0.8,M = 0.1, P =
1.2,N = 0.5,R = 0.8,Γ = 0.5,Q = 0.2,K = 0.15,DB = 1.5,DW = 2.5,DS = 5.0, h =
1.0, τ = 0.1, n = 200, and m = 2000.

Figure 3 presents the pattern evolution of the vegetation–water–salinity system under an asymmetric
fractional–order setting, with α1 = 0.9, α2 = 0.8, α3 = 1.0, where plant biomass and soil water dynamics
are modeled with sub-diffusive orders, while salt transport follows an integer-order description. The
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simulation demonstrates the gradual emergence of irregular and fragmented vegetation patches over
extended time scales, exhibiting weak connectivity and pronounced spatial heterogeneity.

α1 = 0.9, α2 = 0.8, α3 = 1.0

α1 = 1.9, α2 = 1.8, α3 = 1.0

Figure 4. Comparing the dynamic behavior of the patterns of different fractional derivatives
at Λ = 0.8, P = 1.2,N = 0.5,R = 0.8,Γ = 0.25,Q = 0.8,K = 0.5,DB = 1.5,DW = 2.5,DS =

0.1, h = 1.0, τ = 0.1, n = 200, and m = 300.

Figure 5. Numerical simulation results at α1 = 1.2, α2 = 1.2, α3 = 1.2,Λ = 0.2,M =

0.01, P = 0.08,N = 0.03,R = 0.5,Γ = 0.6,Q = 0.05,K = 0.1,DB = 1.0,DW = 2.5,DS =

2.0, h = 1.0, τ = 0.1, n = 200, and m = 30, 000.

In Figure 4, a comparison of the dynamic behavior and pattern formation for different fractional
derivative orders (α1, α2, α3). This figure illustrates how the memory effects and non-local properties
inherent in fractional calculus significantly influences the spatiotemporal evolution of the system.
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displays the temporal evolution from homogeneous initial conditions to stationary patterns,
demonstrating the developmental dynamics.

Figure 5 illustrates the pattern dynamics under fully super–diffusive orders α = [1.2, 1.2, 1.2].
Compared to lower-order cases, vegetation patterns emerge more rapidly, forming a regular, compact,
and uniformly distributed patches. The simulations show that patterns reach steady–state rapidly, with
sharp edges, highlighting the role of super–diffusion in accelerating material transport and propagation.
These results suggest that the fractional-order models with α > 1 are particularly effective for capturing
the dynamics of ecosystems with rapid response mechanisms, such as fast water infiltration or
salt migration.

Figure 6. Numerical simulation results at α1 = 1.0, α2 = 0.9, α3 = 1.0,Λ = 0.8,M = 0.1, P =
1.2,N = 0.3,R = 0.4,Γ = 0.5,Q = 0.2,K = 0.15,DB = 1.0,DW = 2.5,DS = 2.0, h =
1.0, τ = 0.1, n = 200, and m = 30, 000.

Figure 6 illustrates the pattern formation under the mixed-order setting α1 = 1.0, α2 = 0.9, and
α3 = 1.0. The resulting vegetation patterns display transitional characteristics between classical Turing
patterns and fractional-order patterns: patch structures are relatively regular but with slightly blurred
edges, and their evolution exhibits noticeable memory-induced delays.

Figure 7. Numerical simulation results at α1 = 1.9, α2 = 1.8, α3 = 1.0,Λ = 0.8,M = 0.1, P =
1.2,N = 0.5,R = 0.8,Γ = 0.5,Q = 0.2,K = 0.15,DB = 1.0,DW = 2.0,DS = 0.1, h =
1.0, τ = 0.1, n = 200, and m = 300.

Figure 7 depicts the pattern formation and evolution of the vegetation–water–salinity system under a
highly asymmetric fractional-order configuration with α1 = 1.9, α2 = 1.8, and α3 = 1.0. Simulation
results show that the system forms highly regular vegetation patches with sharply defined boundaries in
a very short time. The patches exhibit obvious grid-like or lattice-like arrangements, with significantly
enhanced spatial periodicity.

5. Conclusions

In this paper, we systematically investigated the dynamics of a fractional-order
vegetation–water–salinity model through both theoretical analysis and numerical simulations. The
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bifurcation analysis highlights how fractional orders influence the Turing instability threshold and the
resulting pattern selection mechanisms. The proposed high-order numerical scheme, which combines
Grünwald–Letnikov discretization in time with a nine-point finite difference method in space,
demonstrates superior accuracy and stability for the fractional reaction-diffusion systems. Our
numerical results effectively capture a variety of vegetation patterns and their transitions under different
ecological parameters, offering valuable insights into the complex interplay between memory effects,
resource availability, and vegetation dynamics in arid ecosystems.
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