In this paper, we focused on studying the number of limit cycles of a class of near-Hamiltonian systems, whose unperturbed system possesses a degenerate center. Using the first order Melnikov function, we obtained the lower bound of the maximum number of limit cycles in Poincaré bifurcation under certain conditions. In addition, we obtained the number of small-amplitude limit cycles that bifurcate from the degenerate center. We also provided two examples as applications.
Citation: Meilan Cai. On the number of limit cycles of a class of near-Hamiltonian systems near a degenerate center[J]. Networks and Heterogeneous Media, 2025, 20(4): 1175-1189. doi: 10.3934/nhm.2025050
In this paper, we focused on studying the number of limit cycles of a class of near-Hamiltonian systems, whose unperturbed system possesses a degenerate center. Using the first order Melnikov function, we obtained the lower bound of the maximum number of limit cycles in Poincaré bifurcation under certain conditions. In addition, we obtained the number of small-amplitude limit cycles that bifurcate from the degenerate center. We also provided two examples as applications.
| [1] |
Y. Chang, L. Zhao, Q. Wang, The Poincaré bifurcation by perturbing a class of cubic Hamiltonian systems, Nonlinear Anal. RWA, 82 (2025), 104246. https://doi.org/10.1016/j.nonrwa.2024.104246 doi: 10.1016/j.nonrwa.2024.104246
|
| [2] |
F. Li, H. Li, Y. Liu, New double bifurcation of nilpotent focus, Int. J. Bifurcation Chaos, 31 (2021), 2150053. https://doi.org/10.1142/S021812742150053X doi: 10.1142/S021812742150053X
|
| [3] |
Y. Xiong, On the number of limit cycles near a homoclinic loop with a nilpotent cusp of order $m$, J. Differ. Equations, 380 (2024), 146–180. https://doi.org/10.1016/j.jde.2023.10.037 doi: 10.1016/j.jde.2023.10.037
|
| [4] |
Y. Xiong, X. Chen, Limit cycle bifurcations for a homoclinic loop with a nilpotent equilibrium, J. Differ. Equations, 426 (2025), 72–103. https://doi.org/10.1016/j.jde.2025.01.056 doi: 10.1016/j.jde.2025.01.056
|
| [5] | C. Christopher, C. Li, Limit Cycles of Differential Equations, Birkhäuser Verlag, Basel, 2007. https://doi.org/10.1007/978-3-7643-8410-4_12 |
| [6] |
J. L. Figueras, W. Tucker, J. Villadelprat, Computer-assisted techniques for the verification of the Chebyshev property of Abelian integrals, J. Differ. Equations, 254 (2013), 3647–3663. https://doi.org/10.1016/j.jde.2013.01.036 doi: 10.1016/j.jde.2013.01.036
|
| [7] | M. Han, Bifurcation Theory of Limit Cycles, Science Press Beijing, Beijing; Alpha Science International Ltd., Oxford, 2017. |
| [8] |
J. Li, Hilbert 16th problem and bifurcation of planar polynomial vector fields, Int. J. Bifurcation Chaos, 13 (2003), 47–106. https://doi.org/10.1142/S0218127403006352 doi: 10.1142/S0218127403006352
|
| [9] |
C. Li, Abelian integrals and limit cycle, Qual. Theory Dyn. Syst., 11 (2012), 111–128. https://doi.org/10.1007/s12346-011-0051-z doi: 10.1007/s12346-011-0051-z
|
| [10] |
L. Sheng, M. Han, V. Romanovsky, On the number of limit cycles by perturbing a piecewise smooth Liénard Model, Int. J. Bifurcation Chaos, 26 (2016), 1650168. https://doi.org/10.1142/S0218127416501686 doi: 10.1142/S0218127416501686
|
| [11] |
T. Chen, F. Li, P. Yu, Nilpotent center conditions in cubic switching polynomial Liénard systems by higher-order analysis, J. Differ. Equations, 379 (2024), 258–289. https://doi.org/10.1016/j.jde.2023.10.004 doi: 10.1016/j.jde.2023.10.004
|
| [12] |
J. Giné, On the degenerate center problem, Int. J. Bifurcation Chaos, 21 (2011), 1383–1392. https://doi.org/10.1142/S0218127411029082 doi: 10.1142/S0218127411029082
|
| [13] |
M. Han, J. Jiang, H. Zhu, Limit cycle bifurcations in near-Hamiltonian systems by perturbing a nilpotent center, Int. J. Bifurcation Chaos, 18 (2008), 3013–3027. https://doi.org/10.1142/S0218127408022226 doi: 10.1142/S0218127408022226
|
| [14] | F. Li, T. Chen, Y. Liu, P. Yu, A complete classification on the center-focus problem of a generalized cubic Kukles system with a nilpotent singular point, Qual. Theory Dyn. Syst., 23 (2024). https://doi.org/10.1007/s12346-023-00863-3 |
| [15] |
H. Liu, M. Cai, F. Li, Coexistence of algebraic limit cycles and small limit cycles of two classes of near-Hamiltonian systems with a nilpotent singular point, Axioms, 13 (2024), 593. https://doi.org/10.3390/axioms13090593 doi: 10.3390/axioms13090593
|
| [16] |
J. Llibre, C. Pantazi, Limit cycles bifurcating from a degenerate center, Math. Comput. Simul., 120 (2016), 1–11. http://dx.doi.org/10.1016/j.matcom.2015.05.005 doi: 10.1016/j.matcom.2015.05.005
|
| [17] |
M. Corbera, C. Valls, Global nilpotent reversible centers with cubic nonlinearities symmetric with respect to the $y$-axis, Rend. Circ. Mat. Palermo II. Ser., 73 (2024), 2383–2398. https://doi.org/10.1007/s12215-024-01046-y doi: 10.1007/s12215-024-01046-y
|
| [18] |
M. Corbera, C. Valls, Global nilpotent reversible centers with cubic nonlinearities symmetric with respect to the $x$-Axis, Results Math., 79 (2024), 129. https://doi.org/10.1007/s00025-024-02163-x doi: 10.1007/s00025-024-02163-x
|
| [19] |
J. Llibre, C. Valls, Characterization of the kukles polynomial differential systems having an invariant algebraic curve, Bull. Sci. Math., 182 (2023), 103224. https://doi.org/10.1016/j.bulsci.2022.103224 doi: 10.1016/j.bulsci.2022.103224
|
| [20] | J. Mujica, Small- and large-amplitude limit cycles in Kukles systems with algebraic invariant curves, preprint, arXiv: 2201.03264, 2022. https://doi.org/10.48550/arXiv.2201.03264 |
| [21] |
M. Han, J. Yang, The maximum number of zeros of functions with parameters and application to differential equations, J. Nonlinear Model. Anal., 3 (2021), 13–34. https://doi.org/10.12150/jnma.2021.13 doi: 10.12150/jnma.2021.13
|
| [22] | B. Anderson, J. Jackson, M. Sitharam, Descartes' rule of signs revisited, Amer. Math. Month., 105 (1998), 447–451. http://www.jstor.org/stable/3109807 |