Loading [MathJax]/jax/output/SVG/jax.js

Rumor spreading dynamics with an online reservoir and its asymptotic stability

  • Received: 01 November 2020 Revised: 01 May 2021 Published: 01 July 2021
  • Primary: 34A34, 34D23; Secondary: 92D30

  • The spread of rumors is a phenomenon that has heavily impacted society for a long time. Recently, there has been a huge change in rumor dynamics, through the advent of the Internet. Today, online communication has become as common as using a phone. At present, getting information from the Internet does not require much effort or time. In this paper, the impact of the Internet on rumor spreading will be considered through a simple SIR type ordinary differential equation. Rumors spreading through the Internet are similar to the spread of infectious diseases through water and air. From these observations, we study a model with the additional principle that spreaders lose interest and stop spreading, based on the SIWR model. We derive the basic reproduction number for this model and demonstrate the existence and global stability of rumor-free and endemic equilibriums.

    Citation: Sun-Ho Choi, Hyowon Seo. Rumor spreading dynamics with an online reservoir and its asymptotic stability[J]. Networks and Heterogeneous Media, 2021, 16(4): 535-552. doi: 10.3934/nhm.2021016

    Related Papers:

    [1] Xiaodie Luo, Kaimin Cheng . Counting solutions to a system of quadratic form equations over finite fields. AIMS Mathematics, 2025, 10(6): 13741-13754. doi: 10.3934/math.2025619
    [2] Yan Ma, Di Han . On the high-th mean of one special character sums modulo a prime. AIMS Mathematics, 2023, 8(11): 25804-25814. doi: 10.3934/math.20231316
    [3] Robert Reynolds, Allan Stauffer . Extended Prudnikov sum. AIMS Mathematics, 2022, 7(10): 18576-18586. doi: 10.3934/math.20221021
    [4] Junyong Zhao, Yang Zhao, Yujun Niu . On the number of solutions of two-variable diagonal quartic equations over finite fields. AIMS Mathematics, 2020, 5(4): 2979-2991. doi: 10.3934/math.2020192
    [5] Shuangnian Hu, Rongquan Feng . On the number of solutions of two-variable diagonal sextic equations over finite fields. AIMS Mathematics, 2022, 7(6): 10554-10563. doi: 10.3934/math.2022588
    [6] Mohra Zayed, Maged G. Bin-Saad, Waleed K. Mohammed . On Mittag-Leffler-Gegenbauer polynomials arising by the convolution of Mittag-Leffler function and Hermite polynomials. AIMS Mathematics, 2025, 10(7): 16642-16663. doi: 10.3934/math.2025746
    [7] Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937
    [8] Zhuoyu Chen, Wenpeng Zhang . A new reciprocity formula of Dedekind sums and its applications. AIMS Mathematics, 2024, 9(5): 12814-12824. doi: 10.3934/math.2024626
    [9] Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo $ p $. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638
    [10] Shuangnian Hu, Rongquan Feng . The number of solutions of cubic diagonal equations over finite fields. AIMS Mathematics, 2023, 8(3): 6375-6388. doi: 10.3934/math.2023322
  • The spread of rumors is a phenomenon that has heavily impacted society for a long time. Recently, there has been a huge change in rumor dynamics, through the advent of the Internet. Today, online communication has become as common as using a phone. At present, getting information from the Internet does not require much effort or time. In this paper, the impact of the Internet on rumor spreading will be considered through a simple SIR type ordinary differential equation. Rumors spreading through the Internet are similar to the spread of infectious diseases through water and air. From these observations, we study a model with the additional principle that spreaders lose interest and stop spreading, based on the SIWR model. We derive the basic reproduction number for this model and demonstrate the existence and global stability of rumor-free and endemic equilibriums.



    Let p be a prime, f be a polynomial with k variable and Fp=Z/(p) be the finite field, where Z is the integer ring, and let

    N(f;p)=#{(x1,x2,,xk)Fkp|f(x1,x2,,xk)=0}.

    Many scholars studied the exact formula (including upper bound and lower bound) for N(f;p) for many years, it is one of the main topics in the finite field theory, the most elementary upper bounds was given as follows (see [14])

    N(f;p)pk1degf.

    Let ordp denote the p-adic additive valuation normalized such that ordpp=1. The famous Chevalley-Warning theorem shows that ordpN(f;p)>0 if n>degf. Let [x] denote the least integer x and e denote the extension degree of Fq/Fp. Ax (see [2]) showed that

    ordpN(f;q)e[ndegfdegf].

    In 1977, S. Chowla et al. (see [7]) investigated a problem about the number of solutions of a equation in finite field Fp as follow,

    x31+x32++x3k0,

    where p is a prime with p1mod 3 and xiFp, 1ik.

    Let Mk denotes the number of solutions of the above equation. They proved that

    M3=p2+d(p1),M4=p2+6(p2p),s=1Msxs=x1px+x2(p1)(2+dx)13px2pdx3,

    where d is uniquely determined by 4p=d2+27y2 and d1 mod 3.

    Myerson [12] extended the result in [2] to the field Fq and first studied the following equation over Fq,

    x31+x32++x3k0.

    Recently J. Zhao et al. (see [17]) investigated the following equations over field Fp,

       f1=x41+x42+x43,f2=x41+x42+x43+x44.

    And they give exact value of N(f1;p) and N(f2;p). For more general problem about this issue interested reader can see [6,9,10,11].

    In this paper, let A(k,p) denotes the number of solutions of the following equation in Fp,

    x61+x62++x6k0,

    where p is a prime with p1mod 3 and xiFp, 1ik, and for simplicity, in the rest of this paper, we assume there exists an integer z such that z32mod p, we use analytic methods to give a recurrence formula for the number of solutions of the above equation. And our method is based on the properties of Gauss sum. It is worth noting that we used a novel method to simplify the steps and avoid a lot of complicated calculations. We proved the following:

    Theorem 1. For any positive integer k1, we have the recurrence formula

    A(k+6,p)=5pA(k+4,p)+10dpA(k+3,p)+(46p2+5d2p+dp)A(k+2,p)+(2p2+120dp2+3d3p+d2p+dp)A(k+1,p)+(4p5+2d2p4+64p7/2+381p3+2d2p5/2+(129d2+11d+6)p2+d4p)A(k,p)+pk+5pk+4(10dp+2d2)pk+364pk+5/2(429+121d+5d2)pk+22d2pk+3/2(3d3+130d2+12d+6)pk+1d4pk,

    with the initial condition

    A(1,p)=1,A(2,p)=4(p1)+p,A(3,p)=10d(p1)+p2,A(4,p)=56p(p1)+10d2(p1)+p3,A(5,p)=188dp(p1)+5d3(p1)+16dC(p)(p1)+p4,A(6,p)=p5+1400p2(p1)+(388d2+8d576)p(p1)+d2pd2,

    where d is uniquely determined by 4p=d2+27y2 and d1 mod 3, and C(p)=pa=1ep(a3).

    Remark. Our method is suitable to calculus the number of solutions of the following equation in Fp,

    xt1+xt2++xtk0,

    where p satisfied a certain congruence conditions, and t is any nature number.

    Our Theorem 2 can be deduced from Theorem 1 and the theory of the Difference equations.

    Theorem 2. Let ti (1ik) be the real root of the below equation with multiplicity si (1ik) respectively, and ρje±iwj (1jh) be the complex root of the below equation with multiplicity rj (1jh) respectively,

    x6=5px4+10dpx3+(46p2+5d2p+dp)x2+(2p2+120dp2+3d3p+d2p+dp)x+(4p5+2d2p4+64p7/2+381p3+2d2p5/2+(129d2+11d+6)p2+d4p).

    We have

    A(n,p)=ki=1sia=1Ciansiatni+hj=1rjb=1Djbnrjbρnjcosnwj+hj=1rjb=1Ejbnrjbρnjsinnwj,

    where Cia,Djb,Ejb, are determined by

    A(6,p)=ki=1sia=1Cia6siat6i+hj=1rjb=1Djb6rjbρ6jcos6wj+hj=1rjb=1Ejb6rjbρ6jsin6wj,A(5,p)=ki=1sia=1Cia5siat5i+hj=1rjb=1Djb5rjbρ5jcos5wj+hj=1rjb=1Ejb5rjbρ5jsin5wj,A(4,p)=ki=1sia=1Cia4siat4i+hj=1rjb=1Djb4rjbρ4jcos4wj+hj=1rjb=1Ejb4rjbρ4jsin4wj,A(3,p)=ki=1sia=1Cia3siat3i+hj=1rjb=1Djb3rjbρ3jcos3wj+hj=1rjb=1Ejb3rjbρ3jsin3wj,A(2,p)=ki=1sia=1Cia2siat2i+hj=1rjb=1Djb2rjbρ2jcos2wj+hj=1rjb=1Ejb2rjbρ2jsin2wj,A(1,p)=ki=1sia=1Ciati+hj=1rjb=1Djbρjcoswj+hj=1rjb=1Ejbρjsinwj. (1.1)

    Before we prove these lemmas, we give some notations, χ2 denotes the second-order character of Fp, χ denotes the third-order character of Fp, ψ denotes the sixth order character of Fp.

    ep(x)=e2πixp,τ(χ)=pm=1χ(m)ep(m),G(χ,m)=pa=1χ(a)ep(am).

    We call G(χ,m) the Gauss sum, and we have the following:

    G(χ,m)=τ(χ)¯χ(m),(m,p)=1. (2.1)

    And also we have

    |τ(χ)|=p, (2.2)

    where χ is a primitive character of Fp. And let G(m,6;p)=p1a=0ep(ma6). For the property of the exponential sum and the general Gauss sum, interested readers can see [1,4,5,8,13,15].

    Lemma 1. Let p be a prime with p1mod 3. Then for any third-order character χ of Fp, we have the identity

    τ3(χ)+τ3(¯χ)=dp,

    where d is uniquely determined by 4p=d2+27y2 and d1mod 3.

    Proof. For the proof of this lemma see [3].

    Lemma 2. Let χ be a third-order character of Fp with p1mod 3, and C(p)=τ(χ)+τ(¯χ), then C(p)=pa=1ep(a3).

    Proof.

    A=τ(χ)+τ(¯χ)=pa=1(1+χ(a)+¯χ(a))e(ap)=pa=1e(a3p).

    Lemma 3. Let p1mod 6, 2z3mod p for some z, and let χ be a third-order character of Fp, ψ be a sixth-order character of Fp, then we have the identity

    τ(ψ)=τ2(χ)p.

    Proof. This is Lemma 3 in [16].

    Lemma 4. As the definition above, we have the identity

    G(m,6;p)=pχ2(m)+¯x2pψ(m)+x2p¯ψ(m)+¯xχ(m)+x¯χ(m),

    where (m,p)=1 and x=τ(χ).

    Proof. Firstly we have the identity

    1+χ2(m)+χ(m)+¯χ(m)+ψ(m)+¯ψ(m)={6, if  ma6 mod p;0,otherwise.

    So we have

    G(m,6;p)=p1a=0(1+χ2(a)+χ(a)+¯χ(a)+ψ(a)+¯ψ(a))ep(ma)=G(χ2,m)+G(ψ,m)+G(¯ψ,m)+G(χ,m)+G(¯χ,m)

    By (2.1) and Lemma 3, we have

    G(m,6;p)=τ(χ2)χ2(m)+τ(¯ψ)ψ(m)+τ(ψ)¯ψ(m)+τ(¯χ)χ(m)+τ(χ)¯χ(m)=pχ2(m)+¯x2pψ(m)+x2p¯ψ(m)+¯xχ(m)+x¯χ(m). (2.3)

    By (2.3), we complete the proof of our lemma.

    Next we let,

    Gn(m,6;p)=an+bnχ2(m)+cnψ(m)+dn¯ψ(m)+enχ(m)+fn¯χ(m). (2.4)

    Then we have following Lemma 5.

    Lemma 5. Let an,bn,cn,dn,en,fn are defined as above, then we have that an,bn,cn,dn,en,fn are uniquely determined by n, where n1.

    Proof. By the orthogonality of characters of Fp, we have

    p1a=1χ(a)={p1, if χ=χ0;0,otherwise. (2.5)

    By (2.4) and (2.5) we have

    p1m=1Gn(m,6;p)=(p1)an+bnp1m=1χ2(m)+cnp1m=1ψ(m)+dnp1m=1¯ψ(m)+enp1m=1χ(m)+fnp1m=1¯χ(m)=(p1)an.

    So we have

    an=1p1p1m=1Gn(m,6;p). (2.6)

    By the same method, we have

    bn=1p1p1m=1χ2(m)Gn(m,6;p),cn=1p1p1m=1¯ψ(m)Gn(m,6;p),dn=1p1p1m=1ψ(m)Gn(m,6;p),en=1p1p1m=1¯χ(m)Gn(m,6;p),fn=1p1p1m=1χ(m)Gn(m,6;p).

    So now it is easy to see the conclusion of the lemma.

    Lemma 6. The sequences {an}, {bn}, {cn}, {dn}, {en}, {fn} are defined above, then they satisfied the following recurrence formulae (n0):

    an+1=pbn+¯x2pdn+x2pcn+xen+¯xfn, (2.7)
    bn+1=pan+¯x2pen+x2pfn+xdn+¯xcn, (2.8)
    cn+1=pfn+¯x2pan+x2pen+xbn+¯xdn, (2.9)
    dn+1=pen+¯x2pfn+x2pan+xcn+¯xbn, (2.10)
    en+1=pdn+¯x2pcn+x2pbn+xfn+¯xan, (2.11)
    fn+1=pcn+¯x2pbn+x2pdn+xan+¯xen, (2.12)

    with the initial condition

    a0=1,b0=c0=d0=e0=f0=0.

    Proof. We only prove (2.7), the rest can be proved in the same way. By Lemma 5, we know an is unique determined by n. We can compare the coefficient of the equation

    Gn+1(m,6;p)=Gn(m,6;p)G(m,6;p).

    We have

    an+1=pbn+¯x2pdn+x2pcn+xen+¯xfn.

    So we complete the proof of the lemma.

    Lemma 7. Let an is defined as above, then we have

    a0=1,a1=0,a2=5p,a3=10dp,a4=56p2+10d2p,a5=188dp2+5d3p+16dpC(p).

    Proof. By Lemma 4 and after some elementary calculations we have

    G2(m,6;p)=5p+2dp1/2χ2(m)+4p1/2xψ(m)+4p1/2¯x¯ψ(m)+(p1¯x4+3x2)χ(m)+(p1x4+3¯x2)¯χ(m),G3(m,6;p)=10dp+(16p3/2+dp1/2)χ2(m)+(15p¯x+2dx2+p1x5)χ(m)+(15px+2d¯x2+p1¯x5)¯χ(m)+(4p1/2x4+12p1/2¯x2+2dp1/2x)ψ(m)+(4p1/2¯x4+12p1/2x2+2dp1/2¯x)¯ψ(m),G4(m,6;p)=60p2+9d2p+dp+48dp3/2χ2(m)+(p2x8+17¯x4+46px2+16dp)χ(m)+(p2¯x8+17x4+46p¯x2+16dp)¯χ(m)+(56p3/2x+4dp1/2x4+12dp1/2¯x2+8p1/2¯x5)ψ(m)+(56p3/2¯x+4dp1/2¯x4+12dp1/2x2+8p1/2x5)¯ψ(m),G5(m,6;p)=188dp2+5d3p+16dpC(p)+(52d2p3/2+208p5/2+16dp1/2(x2+¯x2))χ2(m)+(p2/5x10+p3/2¯x8+4dp1/2¯x5+71p1/2x4+(46p3/2+16p1/2)x2+(129p3/2+10d2p1/2)¯x2+60dp3/2x+16dp3/2)ψ(m)+(p2/5¯x10+p3/2x8+4dp1/2x5+71p1/2¯x4+(46p3/2+16p1/2)¯x2+(129p3/2+10d2p1/2)x2+60dp3/2¯x+16dp3/2)¯ψ(m)+(8p1¯x7+p1x7+25x5+52dpx2+(28dp+46p2)x+16d¯x4+112p2¯x)χ(m)+(8p1x7+p1¯x7+25¯x5+52dp¯x2+(28dp+46p2)¯x+16dx4+112p2x)¯χ(m),

    and comparing the above formulae with (2.6), we have

    a0=1,a1=0,a2=5p,a3=10dp,a4=60p2+9d2p+dp,a5=188dp2+5d3p+16dpC(p).

    Lemma 8. Let an, bn, cn, dn, en, fn are defined as above, then we have

    a6=5pa4+10dpa3+(46p2+5d2p+dp)a2+(2p2+120dp2+3d3p+d2p+dp)a1+(4p5+2d2p4+64p7/2+381p3+2d2p5/2+(129d2+11d+6)p2+d4p)a0b6=5pb4+10dpb3+(46p2+5d2p+dp)b2+(2p2+120dp2+3d3p+d2p+dp)b1+(4p5+2d2p4+64p7/2+381p3+2d2p5/2+(129d2+11d+6)p2+d4p)b0c6=5pc4+10dpc3+(46p2+5d2p+dp)c2+(2p2+120dp2+3d3p+d2p+dp)c1+(4p5+2d2p4+64p7/2+381p3+2d2p5/2+(129d2+11d+6)p2+d4p)c0d6=5pd4+10dpd3+(46p2+5d2p+dp)d2+(2p2+120dp2+3d3p+d2p+dp)d1+(4p5+2d2p4+64p7/2+381p3+2d2p5/2+(129d2+11d+6)p2+d4p)d0e6=5pe4+10dpe3+(46p2+5d2p+dp)e2+(2p2+120dp2+3d3p+d2p+dp)e1+(4p5+2d2p4+64p7/2+381p3+2d2p5/2+(129d2+11d+6)p2+d4p)e0f6=5pf4+10dpf3+(46p2+5d2p+dp)f2+(2p2+120dp2+3d3p+d2p+dp)f1+(4p5+2d2p4+64p7/2+381p3+2d2p5/2+(129d2+11d+6)p2+d4p)f0

    Proof. We only proof the first formula, the rest can be proof in the same way. By Lemma 6, we have

    a6=pb5+¯x2pd5+x2pc5+xe5+¯xf5=5pa4+2dp1/2b4+4p1/2¯xc4+4p1/2xd4+(3¯x2+p1x4)e4+(3x2+p1¯x4)f4=5pa4+10dpa3+(d2p1/2+12p3/2)b3+(2dp1/2¯x+8p1/2x2+p1/2¯x4)c3+(2dp1/2x+8p1/2¯x2+p1/2x4)d3+(11px+¯x2+p1¯x5)e3+(11p¯x+x2+p1x5)f3=5pa4+10dpa3+(46p2+5d2p+dp)a2+(25dp3/2+2p3/2)b2+(p3/2¯x7+2p1/2x5+p1/2¯x4+42p3/2¯x+2dp1/2x2+(d2+1)p1/2¯x)c2+(p3/2x7+2p1/2¯x5+p1/2x4+42p3/2x+2dp1/2¯x2+(d2+1)p1/2x)d2+(10x4+(32p+d2)¯x2+(4dp+p)x)e2+(10¯x4+(32p+d2)x2+(4dp+p)¯x)f2=5pa4+10dpa3+(46p2+5d2p+dp)a2+(2p2+120dp2+3d3p+d2p+dp)a1+(4p5+2d2p4+64p7/2+381p3+2d2p5/2+(129d2+11d+6)p2+d4p)a0.

    So we complete the proof of this lemma.

    Lemma 9. Let an is defined as above, then for any integer n0, we have

    an+6=5pan+4+10dpan+3+(46p2+5d2p+dp)an+2+(2p2+120dp2+3d3p+d2p+dp)an+1+(4p5+2d2p4+64p7/2+381p3+2d2p5/2+(129d2+11d+6)p2+d4p)an.

    Proof. By (2.4) and Lemma 8, we have

    G6(m,6;p)=5pG4(m,6;p)+10dpG3(m,6;p)+(46p2+5d2p+dp)G2(m,6;p)+(2p2+120dp2+3d3p+d2p+dp)G(m,6;p)+(4p5+2d2p4+64p7/2+381p3+2d2p5/2+(129d2+11d+6)p2+d4p).

    We multiple Gn(m,6;p) to the both side of the above formula, we have

    Gn+6(m,6;p)=5pGn+4(m,6;p)+10dpGn+3(m,6;p)+(46p2+5d2p+dp)Gn+2(m,6;p)+(2p2+120dp2+3d3p+d2p+dp)Gn+1(m,6;p)+(4p5+2d2p4+64p7/2+381p3+2d2p5/2+(129d2+11d+6)p2+d4p)Gn(m,6;p).

    By Lemma 5, we can compare the coefficient of the above equation, we have

    an+6=5pan+4+10dpan+3+(46p2+5d2p+dp)an+2+(2p2+120dp2+3d3p+d2p+dp)an+1+(4p5+2d2p4+64p7/2+381p3+2d2p5/2+(129d2+11d+6)p2+d4p)an.

    In the formula below, we always let k1. By the following formula,

    p1a=0ep(ma)={p, if  pm;0, otherwise, 

    we have

    A(k,p)=1pp1m=0p1x1=0,x2=0,,xk=0ep(m(x61+x62++x6k))=1pp1m=0Gk(m,6;p). (3.1)

    By (8), we have

    A(k,p)=1pp1m=0Gk(m,6;p)=1p(p1m=1Gk(m,6;p)+pk)=1p((p1)ak+pk)=p1pak+pk1. (3.2)

    So by Lemma 9, we have

    A(k+6,p)pk+5=5p(A(k+4,p)pk+3)+10dp(A(k+3,p)pk+2)+(46p2+5d2p+dp)(A(k+2,p)pk+1)+(2p2+120dp2+3d3p+d2p+dp)(A(k+1,p)pk)+(4p5+2d2p4+64p7/2+381p3+2d2p5/2+(129d2+11d+6)p2+d4p)(A(k,p)pk1).

    So we have

    A(k+6,p)=5pA(k+4,p)+10dpA(k+3,p)+(46p2+5d2p+dp)A(k+2,p)+(2p2+120dp2+3d3p+d2p+dp)A(k+1,p)+(4p5+2d2p4+64p7/2+381p3+2d2p5/2+(129d2+11d+6)p2+d4p)A(k,p)+pk+5pk+4(10dp+2d2)pk+364pk+5/2(429+121d+5d2)pk+22d2pk+3/2(3d3+130d2+12d+6)pk+1d4pk.

    And by Lemma 7 and (3.2), we have the initial conditions

    A(1,p)=1,A(2,p)=4(p1)+p,A(3,p)=10d(p1)+p2,A(4,p)=56p(p1)+10d2(p1)+p3,A(5,p)=188dp(p1)+5d3(p1)+16dC(p)(p1)+p4.A(6,p)=p5+1400p2(p1)+(388d2+8d576)p(p1)+d2pd2.

    So we complete the proof of the theorem.

    The main purpose of this paper is using analytic methods to give a recurrence formula of the number of solutions of an equation over finite field. And we give an expression of the number of solutions of the above equation by the root of sixth degree polynomial. We use analytic methods to give a recurrence formula for the number of solutions of the above equation. And our method is based on the properties of the Gauss sum. It is worth noting that we used a novel method to simplify the steps and avoid complicated calculations.

    The author thanks to referees for very important recommendations and warnings which improved the paper.

    The author declares that there is no competing interest.



    [1] Rumor rest stops on the information highway transmission patterns in a computer-mediated rumor chain. Human Communication Research (1998) 25: 163-179.
    [2] Emergence of influential spreaders in modified rumor models. Journal of Statistical Physics (2013) 151: 383-393.
    [3] D. J. Daley and D. G. Kendall, Epidemics and rumours, Nature, 204 (1964), 1118. doi: 10.1038/2041118a0
    [4] J. Dhar, A. Jain and V. K. Gupta, A mathematical model of news propagation on online social network and a control strategy for rumor spreading, Social Network Analysis and Mining, 6 (2016), 57. doi: 10.1007/s13278-016-0366-5
    [5] On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. Journal of Mathematical Biology (1990) 28: 365-382.
    [6] Studies on the population dynamics of a rumor-spreading model in online social networks. Physica A: Statistical Mechanics and its Applications (2018) 492: 10-20.
    [7] K. Kenney, A. Gorelik and S. Mwangi, Interactive features of online newspapers, First Monday, 5 (2000). doi: 10.5210/fm.v5i1.720
    [8] Lyapunov functions and global properties for SEIR and SEIS epidemic models. Mathematical Medicine and Biology: A Journal of the IMA (2004) 21: 75-83.
    [9] S. Kwon, M. Cha, K. Jung, W. Chen and Y. Wang, Prominent features of rumor propagation in online social media, 2013 IEEE 13th International Conference on Data Mining, (2013) 1103–1108. doi: 10.1109/ICDM.2013.61
    [10] J. Ma and D. Li, Rumor Spreading in Online-Offline Social Networks, PACIS 2016 Proceedings, 173 (2016).
    [11] Rumor spreading in online social networks by considering the bipolar social reinforcement. Physica A: Statistical Mechanics and its Applications (2016) 447: 108-115.
    [12] Y. Moreno, M. Nekovee and A. F. Pacheco, Dynamics of rumor spreading in complex networks, Physical Review E, 69 (2004), 066130. doi: 10.1103/PhysRevE.69.066130
    [13] An Exploration of Social Media in Extreme Events: Rumor Theory and Twitter during the Haiti Earthquake 2010. Icis (2010) 231: 7332-7336.
    [14] R. Pastor-Satorras, C. Castellano, P. Van Mieghem and A. Vespignani, Epidemic processes in complex networks, Reviews of Modern Physics, 87 (2015), 925. doi: 10.1103/RevModPhys.87.925
    [15] Multiple transmission pathways and disease dynamics in a waterborne pathogen model. Bulletin of Mathematical Biology (2010) 72: 1506-1533.
    [16] Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences (2002) 180: 29-48.
    [17] Rumor spreading model with consideration of forgetting mechanism: A case of online blogging LiveJournal. Physica A: Statistical Mechanics and its Applications (2011) 390: 2619-2625.
    [18] The dynamics analysis of a rumor propagation model in online social networks. Physica A: Statistical Mechanics and its Applications (2019) 520: 118-137.
    [19] L. Zhu, X. Zhou and Y. Li, Global dynamics analysis and control of a rumor spreading model in online social networks, Physica A: Statistical Mechanics and its Applications, 526 (2019), 120903, 15 pp. doi: 10.1016/j.physa.2019.04.139
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2475) PDF downloads(298) Cited by(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog