Loading [Contrib]/a11y/accessibility-menu.js

Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads

  • Received: 01 September 2018 Revised: 01 March 2019
  • Primary: 65M20, 35L02, 35L65; Secondary: 34B99, 35Q99

  • We consider two scalar conservation laws with non-local flux functions, describing traffic flow on roads with rough conditions. In the first model, the velocity of the car depends on an averaged downstream density, while in the second model one considers an averaged downstream velocity. The road condition is piecewise constant with a jump at $ x = 0 $. We study stationary traveling wave profiles cross $ x = 0 $, for all possible cases. We show that, depending on the case, there could exit infinitely many profiles, a unique profile, or no profiles at all. Furthermore, some of the profiles are time asymptotic solutions for the Cauchy problem of the conservation laws under mild assumption on the initial data, while other profiles are unstable.

    Citation: Wen Shen. Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads[J]. Networks and Heterogeneous Media, 2019, 14(4): 709-732. doi: 10.3934/nhm.2019028

    Related Papers:

    [1] Russell Betteridge, Markus R. Owen, H.M. Byrne, Tomás Alarcón, Philip K. Maini . The impact of cell crowding and active cell movement on vascular tumour growth. Networks and Heterogeneous Media, 2006, 1(4): 515-535. doi: 10.3934/nhm.2006.1.515
    [2] M.A.J Chaplain, G. Lolas . Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Networks and Heterogeneous Media, 2006, 1(3): 399-439. doi: 10.3934/nhm.2006.1.399
    [3] A. Chauviere, T. Hillen, L. Preziosi . Modeling cell movement in anisotropic and heterogeneous network tissues. Networks and Heterogeneous Media, 2007, 2(2): 333-357. doi: 10.3934/nhm.2007.2.333
    [4] Marco Scianna, Luca Munaron . Multiscale model of tumor-derived capillary-like network formation. Networks and Heterogeneous Media, 2011, 6(4): 597-624. doi: 10.3934/nhm.2011.6.597
    [5] Nicola Bellomo, Raluca Eftimie, Guido Forni . What is the in-host dynamics of the SARS-CoV-2 virus? A challenge within a multiscale vision of living systems. Networks and Heterogeneous Media, 2024, 19(2): 655-681. doi: 10.3934/nhm.2024029
    [6] Kenneth H. Karlsen, Süleyman Ulusoy . On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks and Heterogeneous Media, 2016, 11(1): 181-201. doi: 10.3934/nhm.2016.11.181
    [7] Peter W. Bates, Yu Liang, Alexander W. Shingleton . Growth regulation and the insulin signaling pathway. Networks and Heterogeneous Media, 2013, 8(1): 65-78. doi: 10.3934/nhm.2013.8.65
    [8] Urszula Ledzewicz, Heinz Schättler, Shuo Wang . On the role of tumor heterogeneity for optimal cancer chemotherapy. Networks and Heterogeneous Media, 2019, 14(1): 131-147. doi: 10.3934/nhm.2019007
    [9] Andrea Tosin . Multiphase modeling and qualitative analysis of the growth of tumor cords. Networks and Heterogeneous Media, 2008, 3(1): 43-83. doi: 10.3934/nhm.2008.3.43
    [10] Pierre Degond, Sophie Hecht, Nicolas Vauchelet . Incompressible limit of a continuum model of tissue growth for two cell populations. Networks and Heterogeneous Media, 2020, 15(1): 57-85. doi: 10.3934/nhm.2020003
  • We consider two scalar conservation laws with non-local flux functions, describing traffic flow on roads with rough conditions. In the first model, the velocity of the car depends on an averaged downstream density, while in the second model one considers an averaged downstream velocity. The road condition is piecewise constant with a jump at $ x = 0 $. We study stationary traveling wave profiles cross $ x = 0 $, for all possible cases. We show that, depending on the case, there could exit infinitely many profiles, a unique profile, or no profiles at all. Furthermore, some of the profiles are time asymptotic solutions for the Cauchy problem of the conservation laws under mild assumption on the initial data, while other profiles are unstable.





    [1] Nonlocal systems of conservation laws in several space dimensions. SIAM J. Numer. Anal. (2015) 53: 963-983.
    [2] On the global well-posedness of BV weak solutions to the Kuramoto-Sakaguchi equation. J. Differential Equations (2017) 262: 978-1022.
    [3] Front tracking approximations for slow erosion. Dicrete Contin. Dyn. Syst. (2012) 32: 1481-1502.
    [4] On the numerical integration of scalar nonlocal conservation laws. ESAIM Math. Model. Numer. Anal. (2015) 49: 19-37.
    [5] On nonlocal conservation laws modelling sedimentation. Nonlinearity (2011) 27: 855-885.
    [6] Well-posedness of a conservation law with non-local flux arising in traffic flow modeling. Numer. Math. (2016) 132: 217-241.
    [7] Solutions for a nonlocal conservation law with fading memory. Proc. Amer. Math. Soc. (2007) 135: 3905-3915.
    [8]

    J. Chien and W. Shen, Traveling Waves for nonlocal particle models of traffic flow on rough roads, Discrete Contin. Dyn. Syst., 39 (2019), 4001—4040, arXiv: 1902.08537.

    [9]

    M. Colombo, G. Crippa and L. V. Spinolo, On the singular local limit for conservation laws with nonlocal fluxes, Arch. Ration. Mech. Anal., 233 (2019), 1131–1167, arXiv: 1710.04547.

    [10]

    M. Colombo, G. Crippa and L. V. Spinolo, Blow-up of the total variation in the local limit of a nonlocal traffic model, Preprint, arXiv: 1808.03529.

    [11] Nonlocal crowd dynamics models for several populations. Acta Math. Sci. (2012) 32: 177-196.
    [12] Existence and stability of solutions of a delay-differential system. Arch. Rational Mech. Anal. (1962) 10: 401-426.
    [13]

    R. D. Driver, Ordinary and Delay Differential Equations, Applied Mathematical Sciences, Vol. 20. Springer-Verlag, New York-Heidelberg, 1977.

    [14] A new approach for a nonlocal, nonlinear conservation law. SIAM J. Appl. Math. (2012) 72: 464-487.
    [15]

    J. Friedrich, O. Kolb and S. Göttlich, A Godunov type scheme for a class of LWR traffic flow models with non-local flux, Netw. Heterog. Media, 13 (2018), 531–547, arXiv: 1802.07484.

    [16] Existence and stability of traveling waves for an integro-differential equation for slow erosion. J. Differential Equations (2014) 256: 253-282.
    [17] On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads. Proc. Roy. Soc. London. Ser. A (1955) 229: 317-345.
    [18]

    J. Ridder and W. Shen, Traveling waves for nonlocal models of traffic flow, Discrete Contin. Dyn. Syst., 39 (2019), 4001–4040, arXiv: 1808.03734.

    [19] Traveling wave profiles for a follow-the-leader model for traffic flow with rough road condition. Netw. Heterog. Media (2018) 13: 449-478.
    [20] Traveling waves for a microscopic model of traffic flow. Discrete Contin. Dyn. Syst. (2018) 38: 2571-2589.
    [21] Erosion profile by a global model for granular flow. Arch. Rational Mech. Anal. (2012) 204: 837-879.
    [22] On a nonlocal dispersive equation modeling particle suspensions. Q. Appl. Math. (1999) 57: 573-600.
  • This article has been cited by:

    1. Jonathan F. Li, John Lowengrub, The effects of cell compressibility, motility and contact inhibition on the growth of tumor cell clusters using the Cellular Potts Model, 2014, 343, 00225193, 79, 10.1016/j.jtbi.2013.10.008
    2. Michael Welter, Heiko Rieger, 2016, Chapter 3, 978-3-319-42021-9, 31, 10.1007/978-3-319-42023-3_3
    3. N. BELLOMO, N. K. LI, P. K. MAINI, ON THE FOUNDATIONS OF CANCER MODELLING: SELECTED TOPICS, SPECULATIONS, AND PERSPECTIVES, 2008, 18, 0218-2025, 593, 10.1142/S0218202508002796
    4. J S Lowengrub, H B Frieboes, F Jin, Y-L Chuang, X Li, P Macklin, S M Wise, V Cristini, Nonlinear modelling of cancer: bridging the gap between cells and tumours, 2010, 23, 0951-7715, R1, 10.1088/0951-7715/23/1/R01
    5. Luca Meacci, Mario Primicerio, Gustavo Carlos Buscaglia, Growth of tumours with stem cells: The effect of crowding and ageing of cells, 2021, 570, 03784371, 125841, 10.1016/j.physa.2021.125841
    6. Jie Wu, Quan Long, Shixiong Xu, Anwar R. Padhani, Study of tumor blood perfusion and its variation due to vascular normalization by anti-angiogenic therapy based on 3D angiogenic microvasculature, 2009, 42, 00219290, 712, 10.1016/j.jbiomech.2009.01.009
    7. Luca Meacci, Mario Primicerio, Mathematical models for tumours with cancer stem cells, 2018, 37, 0101-8205, 6544, 10.1007/s40314-018-0707-2
    8. H. Perfahl, H. V. Jain, T. Joshi, M. Horger, N. Malek, M. Bitzer, M. Reuss, Hybrid Modelling of Transarterial Chemoembolisation Therapies (TACE) for Hepatocellular Carcinoma (HCC), 2020, 10, 2045-2322, 10.1038/s41598-020-65012-1
    9. M. Welter, K. Bartha, H. Rieger, Emergent vascular network inhomogeneities and resulting blood flow patterns in a growing tumor, 2008, 250, 00225193, 257, 10.1016/j.jtbi.2007.09.031
    10. Heiko Rieger, Thierry Fredrich, Michael Welter, Physics of the tumor vasculature: Theory and experiment, 2016, 131, 2190-5444, 10.1140/epjp/i2016-16031-9
    11. H Enderling, L Hlatky, P Hahnfeldt, Migration rules: tumours are conglomerates of self-metastases, 2009, 100, 0007-0920, 1917, 10.1038/sj.bjc.6605071
    12. Heiko Enderling, Alexander R.A. Anderson, Mark A.J. Chaplain, Afshin Beheshti, Lynn Hlatky, Philip Hahnfeldt, Paradoxical Dependencies of Tumor Dormancy and Progression on Basic Cell Kinetics, 2009, 69, 0008-5472, 8814, 10.1158/0008-5472.CAN-09-2115
    13. Behnaz Abdollahi, Neal Dunlap, Hermann B. Frieboes, 2014, Chapter 18, 978-1-4614-8497-4, 463, 10.1007/978-1-4614-8498-1_18
    14. Jian-Guo Liu, Min Tang, Li Wang, Zhennan Zhou, Toward Understanding the Boundary Propagation Speeds in Tumor Growth Models, 2021, 81, 0036-1399, 1052, 10.1137/19M1296665
    15. Michael Welter, Heiko Rieger, 2012, Chapter 13, 978-1-4614-0051-6, 335, 10.1007/978-1-4614-0052-3_13
    16. Markus R. Owen, Tomás Alarcón, Philip K. Maini, Helen M. Byrne, Angiogenesis and vascular remodelling in normal and cancerous tissues, 2009, 58, 0303-6812, 689, 10.1007/s00285-008-0213-z
    17. Francisco Guillén-González, Juan Vicente Gutiérrez-Santacreu, From a cell model with active motion to a Hele–Shaw-like system: a numerical approach, 2019, 143, 0029-599X, 107, 10.1007/s00211-019-01053-7
    18. M. Welter, H. Rieger, Physical determinants of vascular network remodeling during tumor growth, 2010, 33, 1292-8941, 149, 10.1140/epje/i2010-10611-6
    19. M. Scianna, C.G. Bell, L. Preziosi, A review of mathematical models for the formation of vascular networks, 2013, 333, 00225193, 174, 10.1016/j.jtbi.2013.04.037
    20. Heiko Rieger, Michael Welter, Integrative models of vascular remodeling during tumor growth, 2015, 7, 1939-5094, 113, 10.1002/wsbm.1295
    21. Tanvi V. Joshi, Daniele Avitabile, Markus R. Owen, Capturing the Dynamics of a Hybrid Multiscale Cancer Model with a Continuum Model, 2018, 80, 0092-8240, 1435, 10.1007/s11538-018-0406-6
    22. M. Welter, K. Bartha, H. Rieger, Vascular remodelling of an arterio-venous blood vessel network during solid tumour growth, 2009, 259, 00225193, 405, 10.1016/j.jtbi.2009.04.005
    23. Luca Meacci, Mario Primicerio, Interaction between crowding and growth in tumours with stem cells: Conceptual mathematical modelling, 2023, 18, 0973-5348, 15, 10.1051/mmnp/2023011
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2699) PDF downloads(267) Cited by(12)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog