We study systems of elliptic equations $ -\Delta u(x)+F_{u}(x, u) = 0 $ with potentials $ F\in C^{2}({\mathbb{R}}^{n}, {\mathbb{R}}^{m}) $ which are periodic and even in all their variables. We show that if $ F(x, u) $ has flip symmetry with respect to two of the components of $ x $ and if the minimal periodic solutions are not degenerate then the system has saddle type solutions on $ {\mathbb{R}}^{n} $.
Citation: Francesca Alessio, Piero Montecchiari, Andrea Sfecci. Saddle solutions for a class of systems of periodic and reversible semilinear elliptic equations[J]. Networks and Heterogeneous Media, 2019, 14(3): 567-587. doi: 10.3934/nhm.2019022
[1] | Khaled Kefi, Nasser S. Albalawi . Three weak solutions for degenerate weighted quasilinear elliptic equations with indefinite weights and variable exponents. AIMS Mathematics, 2025, 10(2): 4492-4503. doi: 10.3934/math.2025207 |
[2] | Haohao Jia, Feiyao Ma, Weifeng Wo . Large positive solutions to an elliptic system of competitive type with nonhomogeneous terms. AIMS Mathematics, 2021, 6(8): 8191-8204. doi: 10.3934/math.2021474 |
[3] | Mengyu Wang, Xinmin Qu, Huiqin Lu . Ground state sign-changing solutions for fractional Laplacian equations with critical nonlinearity. AIMS Mathematics, 2021, 6(5): 5028-5039. doi: 10.3934/math.2021297 |
[4] | Labudan Suonan, Yonglin Xu . Existence of solutions to mixed local and nonlocal anisotropic quasilinear singular elliptic equations. AIMS Mathematics, 2023, 8(10): 24862-24887. doi: 10.3934/math.20231268 |
[5] | Diane Denny . Existence of a solution to a semilinear elliptic equation. AIMS Mathematics, 2016, 1(3): 208-211. doi: 10.3934/Math.2016.3.208 |
[6] | Dan Wang, Yongxiang Li . Existence and uniqueness of radial solution for the elliptic equation system in an annulus. AIMS Mathematics, 2023, 8(9): 21929-21942. doi: 10.3934/math.20231118 |
[7] | Zhiying Deng, Yisheng Huang . Existence and multiplicity results for a singular fourth-order elliptic system involving critical homogeneous nonlinearities. AIMS Mathematics, 2023, 8(4): 9054-9073. doi: 10.3934/math.2023453 |
[8] | Khaled Kefi . Existence and multiplicity of triple weak solutions for a nonlinear elliptic problem with fourth-order operator and Hardy potential. AIMS Mathematics, 2024, 9(7): 17758-17773. doi: 10.3934/math.2024863 |
[9] | Nafissa Toureche Trouba, Mohamed E. M. Alngar, Reham M. A. Shohib, Haitham A. Mahmoud, Yakup Yildirim, Huiying Xu, Xinzhong Zhu . Novel solitary wave solutions of the (3+1)–dimensional nonlinear Schrödinger equation with generalized Kudryashov self–phase modulation. AIMS Mathematics, 2025, 10(2): 4374-4411. doi: 10.3934/math.2025202 |
[10] | Ninghe Yang . Exact wave patterns and chaotic dynamical behaviors of the extended (3+1)-dimensional NLSE. AIMS Mathematics, 2024, 9(11): 31274-31294. doi: 10.3934/math.20241508 |
We study systems of elliptic equations $ -\Delta u(x)+F_{u}(x, u) = 0 $ with potentials $ F\in C^{2}({\mathbb{R}}^{n}, {\mathbb{R}}^{m}) $ which are periodic and even in all their variables. We show that if $ F(x, u) $ has flip symmetry with respect to two of the components of $ x $ and if the minimal periodic solutions are not degenerate then the system has saddle type solutions on $ {\mathbb{R}}^{n} $.
Let $ \Omega $ be a bounded domain of $ \mathbb{R}^N(N\geq3) $ with smooth boundary $ \partial\Omega $. In this paper, we consider the existence of $ W_0^{1, 1}(\Omega) $solutions to the following elliptic problem
$ {−div(M(x,u)∇u)+|∇u|2uθ=f,x∈Ω,u=0,x∈∂Ω, $ | (1.1) |
where $ \frac{N}{N-1}\leq\theta < 2 $, $ M:\Omega\times\mathbb{R}\to \mathbb{R}^{N^2} $ is a symmetric Carathéodory matrix function, which satisfies the following assumptions: for some real constants $ \gamma > 0 $, $ \alpha > 0, \beta > 0 $,
$ |M(x,s)|≤β,M(x,s)ξ⋅ξ≥α(a(x)+|s|)γ|ξ|2, $ | (1.2) |
for almost every $ x\in \Omega $, $ (s, \xi)\in \mathbb{R}\times\mathbb{R}^N $, where $ a(x) $ is a measurable function, such that
$ 0<ζ≤a(x)≤ρ, $ | (1.3) |
for some positive constants $ \zeta, \rho $.
We note that there are two difficulties in dealing with (1.1), the first one is the fact that, due to hypothesis (1.2), the differential operator $ A(u) = -\text{div}\left(M(x, u)\nabla u\right) $ is well defined in $ H_0^1(\Omega) $, but it not coercive on $ H_0^1(\Omega) $ when $ u $ is large enough. Therefore, the classical Leray-Lions theorem cannot be applied even if $ f $ is sufficiently regular. The second difficulty is dealing with lower order term which singular natural growth with respect to the gradient. In order to overcome these difficulties, we approximate problem (1.1) by means of truncations in $ M(x, s) $ to get a coercive differential operator on $ H_0^1(\Omega) $.
The existence of $ W_0^{1, 1}(\Omega) $ solution to elliptic problem has been studied by many authors. Boccardo and Croce [4] proved the existence of $ W_0^{1, 1}(\Omega) $ solutions to problem
$ {−div(a(x)∇u(1+|u|)γ)=f,x∈Ω,u=0,x∈∂Ω, $ |
where $ a:\Omega\to \mathbb{R} $ is a measurable function which satisfies (1.3), $ f\in L^m(\Omega) $ with
$ m=NN+1−γ(N−1),1N−1<γ<1. $ |
In the literature [6], the authors considered the existence and regularity of solutions to the following elliptic equation with noncoercivity
$ {−div(a(x,u)∇u)=f,x∈Ω,u=0,x∈∂Ω, $ | (1.4) |
where $ \Omega $ is an open bounded subset of $ \mathbb{R}^N(N\geq3) $, $ f\in L^m(\Omega) $ and $ a(x, s):\Omega\times \mathbb{R}\rightarrow \mathbb{R} $ is a Carathéodory function which satisfies
$ α(1+|s|)γ≤a(x,s)≤β, $ |
where $ 0\leq\gamma < 1 $.The existence results of solutions to problem (1.4)are as following:
● There exists a weak solution $ u\in H_0^1(\Omega)\cap L^\infty(\Omega) $ to (1.4) if $ m > \frac{N}{2} $.
● There exists a weak solution $ u\in H_0^1(\Omega)\cap L^r(\Omega) $ to (1.4) with $ r = \frac{Nm(1-\gamma)}{N-2m} $ if
$ 2NN+2−γ(N−2)≤m<N2. $ |
● There exists a distributional solution $ u\in W_0^{1, q}(\Omega) $ to (1.4) with $ q = \frac{Nm(1-\gamma)}{N-m(1+\gamma)} < 2 $ if
$ NN+1−γ(N−1)<m<2NN+2−γ(N−2). $ |
In [15], the under the assumption (1.2)-(1.3), Souilah proved the existence results of solutions to problem
$ {−div(M(x,u)∇u)+|∇u|2uθ=f+λur,x∈Ω,u=0,x∈∂Ω, $ | (1.5) |
where $ 0 < \theta < 1, 0 < r < 2-\theta, \lambda > 0, f\in L^m(\Omega)(m\geq1) $. There exists at least a solution to problem (1.5):
● If $ \frac{2N}{2N-\theta(N-2)}\leq m < \frac{N}{2} $, then $ u\in H_0^1(\Omega)\cap L^\infty(\Omega) $.
● If $ 1 < m < \frac{2N}{2N-\theta(N-2)} $, then $ u\in W_0^{1, q}(\Omega) $ with $ q = \frac{Nm(2-\theta)}{N-m\theta} $.
● If $ m\geq\frac{N}{2} $, then $ u\in H_0^1(\Omega)\cap L^\infty(\Omega) $.
Moreover, the existence of solutions $ u\in H_0^1(\Omega) $ to problem (1.5) with $ \lambda = 0 $ have been obtained in [9]. Some other related results see [1,3,5,7,10,11,12,14,16].
Based on the above research results, the aim of this article is to study the existence of $ W_0^{1, 1}(\Omega) $ solution to problem (1.1).
In order to state the main results of this paper, the following definition need to be introduced. We use the following notion of distributional solution to problem (1.1).
Definition 1.1. We say that $ u\in {W}^{1, 1}_0 (\Omega) $ is a distributional solution to problem (1.1) if $ u > 0 $ in $ \Omega $, $ \frac{|\nabla u|^2}{u^{\theta}}\in L^1(\Omega) $ and
$ ∫ΩM(x,u)∇u⋅∇φ+∫Ω|∇u|2uθφ=∫Ωfφ, $ |
for every $ \varphi\in C^\infty _0(\Omega) $.
Our main results are following:
Theorem 1.2. Assume that (1.2)-(1.3) hold, $ f\in L^m(\Omega) $ is a nonnegative function with
$ m=N2N−θ(N−1),NN−1<θ<2. $ | (1.6) |
Then there exists a distributional solution $ u\in W_0^{1, 1}(\Omega) $ to problem (1.1).
Remark 1.3. Notice that the result of previous theorem do not depend on $ \gamma $.
Remark 1.4. Observe that, $ m > 1 $ if and only if $ \theta > \frac{N}{N-1} $.
For $ f\in L^1(\Omega) $, we have the following theorem.
Theorem 1.5. Assume (1.2)-(1.3) hold, $ f\in L^1(\Omega) $ is a nonnegative function and $ \theta = \frac{N}{N-1} $. Then there exists a distributional solution $ u\in W_0^{1, 1}(\Omega) $ to problem (1.1).
The paper is organized as follows. In section 2, we collect some definitions and useful tools. The proof of Theorem 1.2 and 1.5 be given in section 3.
In order to prove our main results, we need to introduce a basic definition and some lemmas.
Definition 2.1. For all $ k\geq0 $, the truncation function defined by
$ Tk(s)=max{−k,min{k,s}},Gk(s)=s−Tk(s). $ |
Let $ 0 < \varepsilon < 1 $, we approximate problem (1.1) by the following non-singular problem
$ {−div(M(x,T1ε(uε))∇uε)+uε|∇uε|2(|uε|+ε)θ+1=fε,x∈Ω,uε=0,x∈∂Ω, $ | (2.1) |
where $ f_\varepsilon = T_{\frac{1}{\varepsilon}}(f) $. Problem (2.1) admits at least a solution $ u_\varepsilon\in H_0^1(\Omega)\cap L^\infty(\Omega) $ by Theorem 2 of [8]. Due to the fact that $ f_\varepsilon\geq0 $ and quadratic lower order term has the same sign of the solution, it is easy to prove that $ u_\varepsilon\geq0 $ by taking $ u_\varepsilon^- $ as a test function in (2.1).
Lemma 2.2. Let $ u_\varepsilon $ be the solutions to problem (2.1). Then
$ ∫Ωuε|∇uε|2(uε+ε)θ+1≤∫Ωf. $ | (2.2) |
Proof. For fixed $ h > 0 $, taking $ \frac{T_h(u_\varepsilon)}{h} $ as a test function in (2.1). Dropping the first term, we obtain
$ ∫Ωuε|∇uε|2(uε+ε)θ+1Th(uε)h≤∫ΩfεTh(uε)h. $ |
Using the fact that $ f_\varepsilon\leq f $ and $ \frac{T_h(u_\varepsilon)}{h}\leq1 $, then
$ ∫Ωuε|∇uε|2(uε+ε)θ+1Th(uε)h≤∫Ωf. $ |
Letting $ h\rightarrow0 $, we deduce (2.2) by the Fatou Lemma.
Lemma 2.3. Let $ \delta > 0 $ and $ 0 < \varepsilon < 1 $. Then there exists $ C > 0 $, such that
$ αδ(t+ε)θ−2(ρ+t)γ+tt+ε≥C. $ |
for every $ t\geq0 $.
Proof. Clearly, if $ t\geq\varepsilon $, we have $ \frac{t}{t+\varepsilon}\geq\frac{1}{2} $, while if $ t < \varepsilon $, we have
$ αδ(t+ε)θ−2(ρ+t)γ≥αδ(ρ+t)γ(2ε)2−θ≥αδ22−θ(ρ+1)γ, $ |
since $ \varepsilon < 1 $. Therefore, Lemma 2.3 is proved.
In this section, $ C $ denotes a generic constant whose value might change from line to line. We prove the existence results of Theorems 1.2 and 1.5 by considering the following approximate problem
$ {−div(M(x,T1ε(uε))∇uε)+uε|∇uε|2(uε+ε)θ+1=fε,x∈Ω,uε=0,x∈∂Ω. $ | (3.1) |
Proof of Theorem 1.2. Step 1: Let $ \delta = \theta-\frac{N}{N-1} $, then $ \delta > 0 $ by (1.6). Choosing $ (u_\varepsilon+\varepsilon)^\delta-(u_\varepsilon+\varepsilon)^{\delta-1} $ as a test function in the approximate problem (3.1), we find
$ ∫ΩM(x,T1ε(uε))∇uε⋅∇uε[δ(uε+ε)δ−1+(1−δ)(uε+ε)δ−2]+∫Ωuε(uε+ε)δ|∇uε|2(uε+ε)θ+1=∫Ωuε|∇uε|2(uε+ε)θ+1(uε+ε)δ−1+∫Ωfε[(uε+ε)δ−(uε+ε)δ−1]. $ |
Combining (1.2)-(1.3) and dropping the positive term, we obtain
$ ∫Ω|∇uε|2(uε+ε)δ−θ[α(1−δ)(uε+ε)θ−2(ρ+uε)γ+uεuε+ε]≤∫Ωuε|∇uε|2(uε+ε)θ+1(uε+ε)δ−1+∫Ωfε(uε+ε)δ. $ |
Since $ 1-\delta > 0 $, according to Lemma 2.3, we have
$ C∫Ω|∇uε|2(uε+ε)δ−θ≤∫Ωuε|∇uε|2(uε+ε)θ+1(uε+ε)δ−1+∫Ωfε(uε+ε)δ. $ |
Using the fact that $ u_\varepsilon\geq0, f_\varepsilon\leq f $ and (2.2), we obtain
$ C∫Ω|∇uε|2(uε+ε)δ−θ≤εδ−1∫Ωuε|∇uε|2(uε+ε)θ+1+∫Ωf(uε+ε)δ≤εδ−1∫Ωf+∫Ωf(uε+ε)δ. $ | (3.2) |
Observe that the left hand side of (3.2) can be rewritten as
$ C∫Ω|∇[(uε+ε)δ−θ+22−εδ−θ+22]|2. $ | (3.3) |
Then, (3.2) and (3.3) imply
$ C∫Ω|∇[(uε+ε)δ−θ+22−εδ−θ+22]|2≤εδ−1∫Ωf+∫Ωf(uε+ε)δ. $ | (3.4) |
By the Sobolev inequality, satisfy
$ [∫Ω|(uε+ε)δ−θ+22−εδ−θ+22|2∗]22∗≤C∫Ω|∇[(uε+ε)δ−θ+22−εδ−θ+22]|2. $ | (3.5) |
Using the Hölder inequality and (3.4)-(3.5), we get
$ [∫Ω|(uε+ε)δ−θ+22−εδ−θ+22|2∗]22∗≤C‖f‖Lm(Ω)+C‖f‖Lm(Ω)[∫Ω(uε+ε)δm′]1m′. $ |
Since $ |(t+\varepsilon)^s-\varepsilon^s|^{2^*}\geq C[(t+\varepsilon)^{2^*s}-1] $ for every $ t\geq0 $ and for suitable constant $ C $ independent on $ \varepsilon $, then we find
$ (∫Ω[(uε+ε)2∗(δ−θ+2)2−1])22∗≤C‖f‖Lm(Ω)+C‖f‖Lm(Ω)[∫Ω(uε+ε)δm′]1m′. $ | (3.6) |
Thanks to the choice of $ \delta $, we have
$ 2∗(δ−θ+2)2=δm′=NN−1. $ |
Moreover $ \frac{2}{2^*} > \frac{1}{m'} $ since $ m < \frac{N}{2} $. Then (3.6) implies that
$ ∫ΩuNN−1ε≤C. $ | (3.7) |
Observe that $ \delta-\theta = -\frac{N}{N-1} $, then, (3.2), (3.7) follow
$ ∫Ω|∇uε|2(ε+uε)NN−1≤C. $ | (3.8) |
Combining (3.7)-(3.8) with the Hölder inequality, we obtain
$ ∫Ω|∇uε|=∫Ω∇uε(ε+uε)N2N−2(ε+uε)N2N−2≤[∫Ω|∇uε|2(ε+uε)NN−1]12[∫Ω(ε+uε)NN−1]12≤C. $ |
Then we get that $ \{u_\varepsilon\} $ is bounded in $ W_0^{1, 1}(\Omega) $. Hence, there exists a subsequence $ \{u_\varepsilon\} $, which converges to a measurable function $ u $ a.e. in $ L^r(\Omega) $ with $ 1\leq r < \frac{N}{N-1} $.
Step 2: First, we are going to estimate $ \int_{\{u_\varepsilon\geq k\}}|\nabla u_\varepsilon| $. Choosing $ [(u_\varepsilon+\varepsilon)^\delta-(k+\varepsilon)^\delta]^+ $ as a test function in (3.1). By (1.2)-(1.3) and Lemma 2.3, we have
$ ∫{uε≥k}|∇uε|2(ε+uε)NN−1≤(∫{uε≥k}|f|m)1m(∫{uε≥k}(ε+uε)NN−1)1m′≤C(∫{uε≥k}|f|m)1m. $ |
Using the Hölder inequality and (3.7), we find
$ ∫{uε≥k}|∇uε|=∫{uε≥k}∇uε(ε+uε)N2N−2(ε+uε)N2N−2≤C(∫{uε≥k}|f|m)12m. $ | (3.9) |
Choosing $ T_k(u_\varepsilon) $ as a test function in (3.1). Dropping the nonnegative lower order term, by (1.2)-(1.3) and the boundedness of $ u_\varepsilon $ in $ L^{\frac{N}{N-1}}(\Omega) $, we get
$ ∫Ω|∇Tk(uε)|2≤k(ρ+k)γα‖f‖L1(Ω). $ | (3.10) |
This implies that $ T_k(u_\varepsilon)\rightharpoonup T_k(u) $ weakly in $ W_0^{1, 2}(\Omega) $.
Let $ E $ be a measurable subset of $ \Omega $, and $ i = 1, \cdots, N $. By the Hölder inequality and (3.9)-(3.10), we obtain
$ ∫E|∂uε∂xi|≤∫E|∇uε|≤∫E|∇Tk(uε)|+∫{uε≥k}|∇uε|≤meas(E)12(∫E|∇Tk(uε)|2)12+C(∫{uε≥k}|f|m)12m. $ | (3.11) |
The estimates (3.7) and (3.11) shows that the sequence $ \{\frac{\partial u_\varepsilon}{\partial x_i}\} $ is equi-integrable. Thus, by the Dunford–Pettis theorem, there exists a subsequence $ \{u_\varepsilon\} $ and $ V_i $ in $ L^1(\Omega) $, such that $ \frac{\partial u_n}{\partial x_i}\rightharpoonup V_i $ in $ L^1(\Omega) $. Since $ \frac{\partial u_\varepsilon}{\partial x_i} $ is the distributional partial derivative of $ u_\varepsilon $, then we have
$ ∫Ω∂uε∂xiφ=−∫Ωuε∂φ∂xi,∀φ∈C∞0(Ω), $ |
for every $ \varepsilon > 0 $.
Since $ \frac{\partial u_\varepsilon}{\partial x_i}\rightharpoonup V_i $ in $ L^1(\Omega) $ and $ u_\varepsilon\rightarrow u $ in $ L^1(\Omega) $, we find
$ ∫ΩViφ=−∫Ωu∂φ∂xi,∀φ∈C∞0(Ω). $ |
This implies that $ V_i = \frac{\partial u}{\partial x_i} $ for every $ i $.
Step 3: We prove that $ \frac{u_\varepsilon|\nabla u_\varepsilon|^2}{(u_\varepsilon+\varepsilon)^{\theta+1}} $ is equi-integrable. Let $ E\subset\subset\Omega $, then
$ ∫Euε|∇uε|2(uε+ε)θ+1≤∫E∩{uε≤k}uε|∇uε|2(uε+ε)θ+1+∫E∩{uε≥k}uε|∇uε|2(uε+ε)θ+1. $ |
For every subset $ E\subset\subset\Omega $,
$ ∫E∩{uε≤k}uε|∇uε|2(uε+ε)θ+1≤∫E∩{uε≤k}1uθε|∇Tk(uε)|2≤C∫E∩{uε≤k}|∇Tk(uε)|2, $ |
since $ u_\varepsilon\geq C > 0 $ in $ E $ by Proposition 2 of [9]. Moreover, since $ T_k(u_\varepsilon)\rightharpoonup T_k(u) $ weakly in $ W_0^{1, 2}(\Omega) $, then there exists $ \varepsilon_n, \delta > 0 $, such that
$ ∫E∩{uε≤k}|∇Tk(uε)|dx≤ϵ2,∀ε≥εn, $ | (3.12) |
for every $ \epsilon > 0 $ if $ \mu(E) < \delta $.
Choosing $ T_1(u_\varepsilon-T_{k-1}(u_\varepsilon)) $ as a test function in the approximate problem (3.1), dropping the nonnegative term, we have
$ ∫{uε≥k}uε|∇uε|2(uε+ε)θ+1≤∫{uε≥k−1}f. $ | (3.13) |
Observe there exists a constant $ C > 0 $, such that $ \mu({u_\varepsilon\geq k-1})\leq\frac{C}{k-1} $. As $ u_\varepsilon $ are uniformly bounded in $ L^\frac{N}{N-1}(\Omega) $. This implies the right hand side of (3.13) converges to $ 0 $ as $ k\rightarrow\infty $. Thus, we deduce there exists $ k_0 > 1 $, such that
$ ∫{uε≥k}uε|∇uε|2(uε+ε)θ+1≤ϵ2,∀k>k0, $ | (3.14) |
for every $ \epsilon > 0 $. The (3.12), (3.14) imply that $ \frac{u_\varepsilon|\nabla u_\varepsilon|^2}{(u_\varepsilon+\varepsilon)^{\theta+1}} $ is equi-integrable and converges a.e. to $ \frac{|\nabla u|^2}{u^{\theta}} $.
Let $ u $ the weak limit of the sequence of approximated solutions $ u_\varepsilon $. Thanks to (2.2), we have
$ ∫Ωuε|∇uε|2(uε+ε)θ+1≤∫Ωf. $ |
Using the Fatou lemma, that $ u_\varepsilon $ convergence to $ u $ a.e, $ \nabla u_\varepsilon $ convergence to $ \nabla u $ a.e and the strict positivity of $ u_\varepsilon $ imply
$ ∫Ω|∇u|2uθ≤∫Ωf≤C. $ |
This show that $ \frac{|\nabla u|^2}{u^{\theta}}\in L^1(\Omega) $.
Since $ u_\varepsilon $ is bounded and $ \nabla u_\varepsilon\rightarrow\nabla u $ a.e, it follow $ M(x, T_\frac{1}{\varepsilon}(u_\varepsilon)\nabla u_\varepsilon\rightarrow M(x, u)\nabla u $ a.e. Hence, we can pass to the limit in (3.1). Thus prove that $ u\in W_0^{1, 1}(\Omega) $ is a distributional solution of (1.1) and yields the conclusion of the proof of Theorem 1.1.
Proof of Theorem 1.5. Step 1: For $ 0 < \varepsilon < 1 $, according to Lemma 2.2, we have
$ 12θ+1∫{uε≥1}|∇uε|2uθε≤∫{uε≥1}uε|∇uε|2(uε+ε)θ+1≤‖f‖L1(Ω). $ | (3.15) |
By the Sobolev inequality, (3.15) lead to
$ [∫Ω|u2−θ2ε−1|2∗]22∗≤C‖f‖L1(Ω), $ | (3.16) |
which implies that
$ [∫Ωu(2−θ)2∗2ε]22∗≤C+C‖f‖L1(Ω). $ | (3.17) |
Observe that $ \theta = \frac{(2-\theta)2^*}{2} = \frac{N}{N-1} $. Then (3.17) shows that
$ ∫ΩuNN−1ε≤C. $ | (3.18) |
Using the Hölder inequality and (3.15), (3.18), we obtain
$ ∫Ω|∇G1(uε)|=∫{uε≥1}|∇G1(uε)|uθ2εuθ2ε≤[∫{uε≥1}|∇uε|2uθε]12[∫{uε≥1}uθε]12≤C‖f‖L1(Ω). $ |
This fact show that $ G_1(u_\varepsilon) $ is bounded in $ W_0^{1, 1}(\Omega) $.
Choosing $ T_1(u_\varepsilon) $ as a test function in (3.1), it is easy to prove that $ T_1(u_\varepsilon) $ is bounded in $ H_0^1(\Omega) $), hence in $ W_0^{1, 1}(\Omega) $. Since $ u_\varepsilon = G_1(u_\varepsilon)+T_1(u_\varepsilon) $, we deduce that $ u_\varepsilon $ is bounded in $ W_0^{1, 1}(\Omega) $.
Moreover, due to (3.15) and the Hölder inequality, we have
$ ∫{uε≥k}|∇uε|=∫{uε≥k}|∇uε|uθ2εuθ2ε≤C‖f‖12L1(Ω). $ | (3.19) |
That (3.10), (3.19) implies, for every measurable subset $ E $, we have
$ ∫E|∂uε∂xi|≤∫E|∇uε|≤∫E|∇Tk(uε)|+∫{uε≥k}|∇uε|≤meas(E)12[k(ρ+k)γα‖f‖L1(Ω)]12+C‖f‖12L1(Ω). $ |
Thus, we prove that $ u_\varepsilon\rightharpoonup u $ in $ W_0^{1, 1}(\Omega) $. Then pass to the limit in problem (3.1), as in the proof of Theorem 1.2, it is sufficient to observe that $ u\in W_0^{1, 1}(\Omega) $ is a distributional solution of (1.1). This concludes the proof the Theorem 1.5.
In this paper, we main consider the existence of $ W_0^{1, 1}(\Omega) $ solutions to a elliptic equation with principal part having noncoercivity. The main results show that the singular quadratic term has an important impact on this existence.
This research was partially supported by the National Natural Science Foundation of China (No. 11761059), Program for Yong Talent of State Ethnic Affairs Commission of China (No. XBMU-2019-AB-34), Fundamental Research Funds for the Central Universities (No.31920200036) and First-rate Discipline of Northwest Minzu University.
The authors declare that there is no conflict of interests regarding the publication of this article.
1. | Mounim El Ouardy, Youssef El Hadfi, Some Nonlinear Parabolic Problems with Singular Natural Growth Term, 2022, 77, 1422-6383, 10.1007/s00025-022-01631-6 | |
2. | Abdelkrim Moussaoui, Kamel Saoudi, Existence and Location of Nodal Solutions for Quasilinear Convection–Absorption Neumann Problems, 2024, 47, 0126-6705, 10.1007/s40840-024-01669-5 | |
3. | Hocine Ayadi, Rezak Souilah, The impact of a singular first-order term in some degenerate elliptic equations involving Hardy potential, 2024, 9, 2662-2009, 10.1007/s43036-024-00324-x |
The decomposition of the triangular set