Citation: Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads[J]. Networks and Heterogeneous Media, 2015, 10(2): 255-293. doi: 10.3934/nhm.2015.10.255
[1] | Alberto Bressan, Khai T. Nguyen . Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 2015, 10(2): 255-293. doi: 10.3934/nhm.2015.10.255 |
[2] | Simone Göttlich, Camill Harter . A weakly coupled model of differential equations for thief tracking. Networks and Heterogeneous Media, 2016, 11(3): 447-469. doi: 10.3934/nhm.2016004 |
[3] | Jan Friedrich, Oliver Kolb, Simone Göttlich . A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Networks and Heterogeneous Media, 2018, 13(4): 531-547. doi: 10.3934/nhm.2018024 |
[4] | Wen Shen . Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks and Heterogeneous Media, 2019, 14(4): 709-732. doi: 10.3934/nhm.2019028 |
[5] | Maya Briani, Emiliano Cristiani . An easy-to-use algorithm for simulating traffic flow on networks: Theoretical study. Networks and Heterogeneous Media, 2014, 9(3): 519-552. doi: 10.3934/nhm.2014.9.519 |
[6] | Wen Shen . Traveling wave profiles for a Follow-the-Leader model for traffic flow with rough road condition. Networks and Heterogeneous Media, 2018, 13(3): 449-478. doi: 10.3934/nhm.2018020 |
[7] | Gabriella Bretti, Roberto Natalini, Benedetto Piccoli . Numerical approximations of a traffic flow model on networks. Networks and Heterogeneous Media, 2006, 1(1): 57-84. doi: 10.3934/nhm.2006.1.57 |
[8] | Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel . Lyapunov stability analysis of networks of scalar conservation laws. Networks and Heterogeneous Media, 2007, 2(4): 751-759. doi: 10.3934/nhm.2007.2.751 |
[9] | Michael Herty, Niklas Kolbe, Siegfried Müller . Central schemes for networked scalar conservation laws. Networks and Heterogeneous Media, 2023, 18(1): 310-340. doi: 10.3934/nhm.2023012 |
[10] | Anya Désilles, Hélène Frankowska . Explicit construction of solutions to the Burgers equation with discontinuous initial-boundary conditions. Networks and Heterogeneous Media, 2013, 8(3): 727-744. doi: 10.3934/nhm.2013.8.727 |
[1] |
M. Bardi and I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser, 1997. doi: 10.1007/978-0-8176-4755-1
![]() |
[2] |
C. I. Bardos, A. Y. Leroux and J. C. Nedelec, First order quasilinear equations with boundary conditions, Comm. P.D.E., 4 (1979), 1017-1034. doi: 10.1080/03605307908820117
![]() |
[3] |
A. Bressan, S. Canic, M. Garavello, M. Herty and B. Piccoli, Flow on networks: Recent results and perspectives, EMS Surv. Math. Sci., 1 (2014), 47-111. doi: 10.4171/EMSS/2
![]() |
[4] |
A. Bressan and K. Han, Optima and equilibria for a model of traffic flow, SIAM J. Math. Anal., 43 (2011), 2384-2417. doi: 10.1137/110825145
![]() |
[5] |
A. Bressan and K. Han, Existence of optima and equilibria for traffic flow on networks, Networks & Heter. Media, 8 (2013), 627-648. doi: 10.3934/nhm.2013.8.627
![]() |
[6] | to appear in Networks Heter. Media. |
[7] | to appear in Discr. Cont. Dyn. Syst. |
[8] |
G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886. doi: 10.1137/S0036141004402683
![]() |
[9] |
C. D'Apice, S. Göttlich, M. Herty and B. Piccoli, Modeling, Simulation, and Optimization of Supply Chains. A Continuous Approach, SIAM, Philadelphia, PA, 2010. doi: 10.1137/1.9780898717600
![]() |
[10] | L. C. Evans, Partial Differential Equations, Second edition, American Mathematical Society, Providence, RI, 2010. |
[11] |
T. Friesz, Dynamic Optimization and Differential Games, Springer, New York, 2010. doi: 10.1007/978-0-387-72778-3
![]() |
[12] | Springer-Verlag, to appear. |
[13] |
M. Garavello and P. Goatin, The Cauchy problem at a node with buffer, Discrete Contin. Dyn. Syst., 32 (2012), 1915-1938. doi: 10.3934/dcds.2012.32.1915
![]() |
[14] |
M. Garavello and B. Piccoli, Source-destination flow on a road network, Commun. Math. Sci., 3 (2005), 261-283. doi: 10.4310/CMS.2005.v3.n3.a1
![]() |
[15] | M. Garavello and B. Piccoli, Traffic Flow on Networks. Conservation Laws Models, AIMS Series on Applied Mathematics, Springfield, Mo., 2006. |
[16] |
M. Garavello and B. Piccoli, Conservation laws on complex networks, Ann. Inst. H. Poincaré, 26 (2009), 1925-1951. doi: 10.1016/j.anihpc.2009.04.001
![]() |
[17] |
M. Garavello and B. Piccoli, A multibuffer model for LWR road networks, in Advances in Dynamic Network Modeling in Complex Transportation Systems (eds. S V. Ukkusuri and K. Ozbay), Complex Networks and Dynamic Systems, 2, Springer, New York, 2013, 143-161. doi: 10.1007/978-1-4614-6243-9_6
![]() |
[18] |
M. Herty, C. Kirchner, S. Moutari and M. Rascle, Multicommodity flows on road networks, Commun. Math. Sci., 6 (2008), 171-187. doi: 10.4310/CMS.2008.v6.n1.a8
![]() |
[19] |
M. Herty, A. Klar and B. Piccoli, Existence of solutions for supply chain models based on partial differential equations, SIAM J. Math. Anal., 39 (2007), 160-173. doi: 10.1137/060659478
![]() |
[20] |
M. Herty, J. P. Lebacque and S. Moutari, A novel model for intersections of vehicular traffic flow, Netw. Heterog. Media, 4 (2009), 813-826. doi: 10.3934/nhm.2009.4.813
![]() |
[21] |
C. Imbert, R. Monneau and H. Zidani, A Hamilton-Jacobi approach to junction problems and application to traffic flows, ESAIM Control Optim. Calc. Var., 19 (2013), 129-166. doi: 10.1051/cocv/2012002
![]() |
[22] |
P. D. Lax, Hyperbolic systems of conservation laws, Comm. Pure Appl. Math., 10 (1957), 537-556. doi: 10.1002/cpa.3160100406
![]() |
[23] |
P. Le Floch, Explicit formula for scalar non-linear conservation laws with boundary condition, Math. Methods Appl. Sciences, 10 (1988), 265-287. doi: 10.1002/mma.1670100305
![]() |
[24] |
M. Lighthill and G. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proceedings of the Royal Society of London: Series A, 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089
![]() |
[25] |
P. I. Richards, Shock waves on the highway, Oper. Res., 4 (1956), 42-51. doi: 10.1287/opre.4.1.42
![]() |
[26] |
J. Smoller, Shock Waves and Reaction-Diffusion Equations, Second edition, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0873-0
![]() |
1. | Fabio Ancona, Annalisa Cesaroni, Giuseppe M. Coclite, Mauro Garavello, On the Optimization of Conservation Law Models at a Junction with Inflow and Flow Distribution Controls, 2018, 56, 0363-0129, 3370, 10.1137/18M1176233 | |
2. | Alexander Keimer, Lukas Pflug, Michele Spinola, Nonlocal Scalar Conservation Laws on Bounded Domains and Applications in Traffic Flow, 2018, 50, 0036-1410, 6271, 10.1137/18M119817X | |
3. | Alexandre Bayen, Alexander Keimer, Emily Porter, Michele Spinola, Time-Continuous Instantaneous and Past Memory Routing on Traffic Networks: A Mathematical Analysis on the Basis of the Link-Delay Model, 2019, 18, 1536-0040, 2143, 10.1137/19M1258980 | |
4. | Alberto De Marchi, Matthias Gerdts, Traffic Flow on Single-Lane Road Networks: Multiscale Modelling and Simulation, 2018, 51, 24058963, 162, 10.1016/j.ifacol.2018.03.028 | |
5. | Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485 | |
6. | Wei Ma, Sean Qian, High-Resolution Traffic Sensing with Probe Autonomous Vehicles: A Data-Driven Approach, 2021, 21, 1424-8220, 464, 10.3390/s21020464 | |
7. | Qinglong Zhang, Wancheng Sheng, Interaction of elementary waves for the Aw–Rascle traffic flow model with variable lane width, 2021, 72, 0044-2275, 10.1007/s00033-021-01606-7 | |
8. | Simone Dovetta, Elio Marconi, Laura V. Spinolo, New Regularity Results for Scalar Conservation Laws, and Applications to a Source-Destination Model for Traffic Flows on Networks, 2022, 54, 0036-1410, 3019, 10.1137/21M1434283 | |
9. | Emiliano Cristiani, Fabio S. Priuli, A destination-preserving model for simulating Wardrop equilibria in traffic flow on networks, 2015, 10, 1556-181X, 857, 10.3934/nhm.2015.10.857 | |
10. | Alberto Bressan, Yucong Huang, Globally optimal departure rates for several groups of drivers, 2019, 1, 2640-3501, 583, 10.3934/mine.2019.3.583 | |
11. | Jessica Guerand, Marwa Koumaiha, Error estimates for a finite difference scheme associated with Hamilton–Jacobi equations on a junction, 2019, 142, 0029-599X, 525, 10.1007/s00211-019-01043-9 | |
12. | Maya Briani, Emiliano Cristiani, Paolo Ranut, Macroscopic and Multi-Scale Models for Multi-Class Vehicular Dynamics with Uneven Space Occupancy: A Case Study, 2021, 10, 2075-1680, 102, 10.3390/axioms10020102 | |
13. | Alberto Bressan, Khai T. Nguyen, Optima and equilibria for traffic flow on networks with backward propagating queues, 2015, 10, 1556-181X, 717, 10.3934/nhm.2015.10.717 | |
14. | Najmeh Salehi, Julia Somers, Benjamin Seibold, Off-Ramp Coupling Conditions Devoid of Spurious Blocking and Re-Routing, 2018, 2672, 0361-1981, 12, 10.1177/0361198118792997 | |
15. | Alberto Bressan, 2018, Chapter 19, 978-3-319-91544-9, 237, 10.1007/978-3-319-91545-6_19 | |
16. | Alberto Bressan, Anders Nordli, The Riemann solver for traffic flow at an intersection with buffer of vanishing size, 2017, 12, 1556-181X, 173, 10.3934/nhm.2017007 | |
17. | Shinsiong Pang, Mu-Chen Chen, Optimize railway crew scheduling by using modified bacterial foraging algorithm, 2023, 03608352, 109218, 10.1016/j.cie.2023.109218 | |
18. | M. Zagour, Modeling and numerical simulations of multilane vehicular traffic by active particles methods, 2023, 33, 0218-2025, 1119, 10.1142/S0218202523500252 | |
19. | Diana Devia Narváez, Rogelio Ospina Ospina, Fernando Mesa, Solution of the traffic flow equation using the finite element method, 2023, 22, 16574583, 10.18273/revuin.v22n2-2023006 | |
20. | Taras Mel’nyk, Christian Rohde, Asymptotic expansion for convection-dominated transport in a thin graph-like junction, 2024, 22, 0219-5305, 833, 10.1142/S0219530524500040 | |
21. | Pierre Cardaliaguet, Nicolas Forcadel, Théo Girard, Régis Monneau, Conservation laws and Hamilton-Jacobi equations on a junction: The convex case, 2024, 0, 1078-0947, 0, 10.3934/dcds.2024082 | |
22. | Nicola De Nitti, Denis Serre, Enrique Zuazua, Pointwise constraints for scalar conservation laws with positive wave velocity, 2025, 76, 0044-2275, 10.1007/s00033-025-02459-0 | |
23. | Wei Jiang, Tong Chen, Guanhua Ye, Wentao Zhang, Lizhen Cui, Zi Huang, Hongzhi Yin, 2024, Physics-guided Active Sample Reweighting for Urban Flow Prediction, 9798400704369, 1004, 10.1145/3627673.3679738 |