Homogenization of a thermo-diffusion system with Smoluchowski interactions

  • Primary: 35B27, 35K59; Secondary: 80M40, 80A25.

  • We study the solvability and homogenization of a thermal-diffusion reaction problem posed in a periodically perforated domain. The system describes the motion of populations of hot colloidal particles interacting together via Smoluchowski production terms. The upscaled system, obtained via two-scale convergence techniques, allows the investigation of deposition effects in porous materials in the presence of thermal gradients.

    Citation: Oleh Krehel, Toyohiko Aiki, Adrian Muntean. Homogenization of a thermo-diffusion system with Smoluchowski interactions[J]. Networks and Heterogeneous Media, 2014, 9(4): 739-762. doi: 10.3934/nhm.2014.9.739

    Related Papers:

  • We study the solvability and homogenization of a thermal-diffusion reaction problem posed in a periodically perforated domain. The system describes the motion of populations of hot colloidal particles interacting together via Smoluchowski production terms. The upscaled system, obtained via two-scale convergence techniques, allows the investigation of deposition effects in porous materials in the presence of thermal gradients.


    加载中
    [1] G. Allaire, Homogenization and two-scale convergence, SIAM Journal on Mathematical Analysis, 23 (1992), 1482-1518. doi: 10.1137/0523084
    [2] B. Andreianov, M. Bendahmane and R. Ruiz-Baier, Analysis of a finite volume method for a cross-diffusion model in population dynamics, Mathematical Models and Methods in Applied Sciences, 21 (2011), 307-344. doi: 10.1142/S0218202511005064
    [3] M. Beneš and R. Štefan, Global weak solutions for coupled transport processes in concrete walls at high temperatures, ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 93 (2013), 233-251. doi: 10.1002/zamm.201200018
    [4] M. Beneš, R. Štefan and J. Zeman, Analysis of coupled transport phenomena in concrete at elevated temperatures, Applied Mathematics and Computation, 219 (2013), 7262-7274. doi: 10.1016/j.amc.2011.02.064
    [5] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, vol. 374, American Mathematical Soc., 2011.
    [6] S. de Groot and P. Mazur, Non-equilibrium Thermodynamics, Series in physics, North-Holland Publishing Company - Amsterdam, 1962.
    [7] M. Elimelech, J. Gregory, X. Jia and R. Williams, Particle Deposition and Aggregation: Measurement, Modelling and Simulation, Elsevier, 1998.
    [8] L. Evans, Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics, American Mathematical Society, 1998.
    [9] T. Fatima and A. Muntean, Sulfate attack in sewer pipes: derivation of a concrete corrosion model via two-scale convergence, Nonlinear Analysis: Real World Applications, 15 (2014), 326-344. doi: 10.1016/j.nonrwa.2012.01.019
    [10] T. Funaki, H. Izuhara, M. Mimura and C. Urabe, A link between microscopic and macroscopic models of self-organized aggregation, Networks and Heterogeneous Media, 7 (2012), 705-740. doi: 10.3934/nhm.2012.7.705
    [11] R. Golestanian, Collective behavior of thermally active colloids, Physical Review Letters, 108 (2012), 038303. doi: 10.1103/PhysRevLett.108.038303
    [12] Z.-X. Gong and A. S. Mujumdar, Development of drying schedules for one-side-heating drying of refractory concrete slabs based on a finite element model, Journal of the American Ceramic Society, 79 (1996), 1649-1658. doi: 10.1111/j.1151-2916.1996.tb08777.x
    [13] U. Hornung and W. Jäger, Diffusion, convection, adsorption, and reaction of chemicals in porous media, Journal of Differential Equations, 92 (1991), 199-225. doi: 10.1016/0022-0396(91)90047-D
    [14] O. Krehel, A. Muntean and P. Knabner, On modeling and simulation of flocculation in porous media, In A.J. Valochi (Ed.), Proceedings of XIX International Conference on Water Resources. (pp. 1-8) CMWR, University of Illinois at Urbana-Champaign, 2012.
    [15] O. Krehel, A. Muntean and P. Knabner, Multiscale modeling of colloidal dynamics in porous media including aggregation and deposition, Technical Report No. 14-12, CASA Report, Eindhoven, 2014.
    [16] J. Lions, Quelques méthodes de résolution des problèmes aux limites non linèaires}, Dunod, Paris, 1969.
    [17] A. Marciniak-Czochra and M. Ptashnyk, Derivation of a macroscopic receptor-based model using homogenization techniques, SIAM Journal on Mathematical Analysis, 40 (2008), 215-237. doi: 10.1137/050645269
    [18] N. Masmoudi and M. L. Tayeb, Diffusion limit of a semiconductor boltzmann-poisson system, SIAM Journal on Mathematical Analysis, 38 (2007), 1788-1807. doi: 10.1137/050630763
    [19] C. C. Mei and B. Vernescu, Homogenization Methods for Multiscale Mechanics., World Scientific, 2010. doi: 10.1142/7427
    [20] M. Neuss-Radu, Some extensions of two-scale convergence, Comptes Rendus de l'Académie des Sciences. Série 1, Mathématique, 322 (1996), 899-904.
    [21] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM Journal on Mathematical Analysis, 20 (1989), 608-623. doi: 10.1137/0520043
    [22] W.-M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states, Notices of the AMS, 45 (1998), 9-18.
    [23] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115-162.
    [24] N. Ray, A. Muntean and P. Knabner, Rigorous homogenization of a stokes-nernst-planck-poisson system, Journal of Mathematical Analysis and Applications, 390 (2012), 374-393. doi: 10.1016/j.jmaa.2012.01.052
    [25] S. Rothstein, W. Federspiel and S. Little, A unified mathematical model for the prediction of controlled release from surface and bulk eroding polymer matrices, Biomaterials, 30 (2009), 1657-1664. doi: 10.1016/j.biomaterials.2008.12.002
    [26] N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, Journal of Theoretical Biology, 79 (1979), 83-99. doi: 10.1016/0022-5193(79)90258-3
    [27] M. Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Z. Phys. Chem, 92 (1917), 129-168.
    [28] J. Soares and P. Zunino, A mixture model for water uptake, degradation, erosion and drug release from polydisperse polymeric networks, Biomaterials, 31 (2010), 3032-3042. doi: 10.1016/j.biomaterials.2010.01.008
    [29] V. K. Vanag and I. R. Epstein, Cross-diffusion and pattern formation in reaction-diffusion systems, Physical Chemistry Chemical Physics, 11 (2009), 897-912. doi: 10.1039/b813825g
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4337) PDF downloads(99) Cited by(13)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog