Loading [MathJax]/jax/output/SVG/jax.js

Computing the asymptotic spectrum for networks representing energy landscapes using the minimum spanning tree

  • Received: 01 February 2014 Revised: 01 June 2014
  • Primary: 65C50, 60J27; Secondary: 60J28.

  • The concept of metastability has caused a lot of interest in recent years. The spectral decomposition of the generator matrix of a stochastic network exposes all of the transition processes in the system. The assumption of the existence of a low lying group of eigenvalues separated by a spectral gap has become a popular theme. We consider stochastic networks representing potential energy landscapes whose states and edges correspond to local minima and transition states respectively, and the pairwise transition rates are given by the Arrhenuis formula. Using the minimal spanning tree, we construct the asymptotics for eigenvalues and eigenvectors of the generator matrix starting from the low lying group. This construction gives rise to an efficient algorithm suitable for large and complex networks. We apply it to Wales's Lennard-Jones-38 network with 71887 states and 119853 edges where the underlying energy landscape has a double-funnel structure. Our results demonstrate that the concept of metastability should be applied with care to this system. For the full network, there is no significant spectral gap separating the eigenvalue corresponding to the exit from the wider and shallower icosahedral funnel at any reasonable temperature range. However, if the observation time is limited, the expected spectral gap appears.

    Citation: Maria Cameron. Computing the asymptotic spectrum for networks representing energy landscapesusing the minimum spanning tree[J]. Networks and Heterogeneous Media, 2014, 9(3): 383-416. doi: 10.3934/nhm.2014.9.383

    Related Papers:

    [1] Xian Hua, Jing Li, Ting Wang, Junhong Wang, Shaojun Pi, Hangcheng Li, Xugang Xi . Evaluation of movement functional rehabilitation after stroke: A study via graph theory and corticomuscular coupling as potential biomarker. Mathematical Biosciences and Engineering, 2023, 20(6): 10530-10551. doi: 10.3934/mbe.2023465
    [2] Hongming Liu, Yunyuan Gao, Wei Huang, Rihui Li, Michael Houston, Julia S. Benoit, Jinsook Roh, Yingchun Zhang . Inter-muscular coherence and functional coordination in the human upper extremity after stroke. Mathematical Biosciences and Engineering, 2022, 19(5): 4506-4525. doi: 10.3934/mbe.2022208
    [3] Teng Li, Xiang Chen, Shuai Cao, Xu Zhang, Xun Chen . Human hands-and-knees crawling movement analysis based on time-varying synergy and synchronous synergy theories. Mathematical Biosciences and Engineering, 2019, 16(4): 2492-2513. doi: 10.3934/mbe.2019125
    [4] Konki Sravan Kumar, Daehyun Lee, Ankhzaya Jamsrandoj, Necla Nisa Soylu, Dawoon Jung, Jinwook Kim, Kyung Ryoul Mun . sEMG-based Sarcopenia risk classification using empirical mode decomposition and machine learning algorithms. Mathematical Biosciences and Engineering, 2024, 21(2): 2901-2921. doi: 10.3934/mbe.2024129
    [5] Baohua Hu, Yong Wang, Jingsong Mu . A new fractional fuzzy dispersion entropy and its application in muscle fatigue detection. Mathematical Biosciences and Engineering, 2024, 21(1): 144-169. doi: 10.3934/mbe.2024007
    [6] Xiebing Chen, Yuliang Ma, Xiaoyun Liu, Wanzeng Kong, Xugang Xi . Analysis of corticomuscular connectivity during walking using vine copula. Mathematical Biosciences and Engineering, 2021, 18(4): 4341-4357. doi: 10.3934/mbe.2021218
    [7] Qun Xu, Suqi Xue, Farong Gao, Qiuxuan Wu, Qizhong Zhang . Evaluation method of motor unit number index based on optimal muscle strength combination. Mathematical Biosciences and Engineering, 2023, 20(2): 3854-3872. doi: 10.3934/mbe.2023181
    [8] Shaojun Zhu, Jinhui Zhao, Yating Wu, Qingshan She . Intermuscular coupling network analysis of upper limbs based on R-vine copula transfer entropy. Mathematical Biosciences and Engineering, 2022, 19(9): 9437-9456. doi: 10.3934/mbe.2022439
    [9] Liangyu Yang, Tianyu Shi, Jidong Lv, Yan Liu, Yakang Dai, Ling Zou . A multi-feature fusion decoding study for unilateral upper-limb fine motor imagery. Mathematical Biosciences and Engineering, 2023, 20(2): 2482-2500. doi: 10.3934/mbe.2023116
    [10] Chengliang Wu, Weiya Hao, Wei He, Xiaofei Xiao, Xuhong Li, Wei Sun . Biomechanical and neuromuscular strategies on backward somersault landing in artistic gymnastics: A case study. Mathematical Biosciences and Engineering, 2019, 16(5): 5862-5876. doi: 10.3934/mbe.2019293
  • The concept of metastability has caused a lot of interest in recent years. The spectral decomposition of the generator matrix of a stochastic network exposes all of the transition processes in the system. The assumption of the existence of a low lying group of eigenvalues separated by a spectral gap has become a popular theme. We consider stochastic networks representing potential energy landscapes whose states and edges correspond to local minima and transition states respectively, and the pairwise transition rates are given by the Arrhenuis formula. Using the minimal spanning tree, we construct the asymptotics for eigenvalues and eigenvectors of the generator matrix starting from the low lying group. This construction gives rise to an efficient algorithm suitable for large and complex networks. We apply it to Wales's Lennard-Jones-38 network with 71887 states and 119853 edges where the underlying energy landscape has a double-funnel structure. Our results demonstrate that the concept of metastability should be applied with care to this system. For the full network, there is no significant spectral gap separating the eigenvalue corresponding to the exit from the wider and shallower icosahedral funnel at any reasonable temperature range. However, if the observation time is limited, the expected spectral gap appears.


    Nonlinear partial differential equations (PDEs) are often used to describe some significant problems in natural science and engineering technology. The analysis of nonlinear waves has garnered increasing attention in the fields of shallow water, plasma, nonlinear optics, Bose−Einstein condensates, and fluids. The nonlinear PDEs in these fields can be solved using lump solutions. The lump solution and interaction hybrid solutions were first discovered by Zakharov in [1] and Craik in [2], respectively. These special solutions are of great significance for the study of nonlinear integrable equations [3,4,5]. To obtain these analytical solutions, the scholars have proposed a variety of methods, including Ansatz technique [6], Hirota's bilinear method (HBM) [7], and the inverse scattering transform (IST) [8]. The HBM proposed by Hirota, has been widely used as an effective approach to study the nonlinear dynamics wave equation, resulting in numerous richer solutions, such as solitons solutions, novel breather waves, lump solutions, two-wave solutions, and rogue wave solutions ([9,10,11,12,13,14]). These solutions are visualized in three-dimensional graphics via numerical simulations, making it easier to understand the propagation of nonlinear waves.

    The study of the stability of integrable equations, such as the KPI equation, the Ishimori equation, the nonlinear Schrödinger (NLS) equation and the KdV equation have further enriched the theory of nonlinear wave equations. Spectral methods can effectively solve the problem of linear stability. In [15], Degasperis et al. proposed the construction of the eigenmodes of the linearized equation using the associated Lax pair and provided the computation of both analytical and numerical solutions with the example of two coupled NLS equations. In [16], Ablowitz provided a comprehensive review of research methods for integrability and nonlinear waves, including Bäcklund transformations, Darboux transformations, direct integral equations or Riemann−Hilbert or Dbar methods, and HBM. By combining the KdV and NLS equations, the author further elaborated on the ideas and background of the IST method.

    The computation of nonlinear PDEs has become a very active research topic. With advancements in traditional methods like finite element ([17,18]), finite difference ([19,20,21,22,23,24]), finite volume ([25,26,27]), and spectral methods ([28,29,30]), numerous outstanding research results have been achieved in the numerical approximations of nonlinear PDEs. In [31], the authors developed a time-two-grid difference scheme for nonlinear Burgers equations. In [32], a method combining the barycentre Lagrange interpolation collocation technique with a second-order operator splitting approach was proposed for the purpose of solving the NLS equation. Based on novel shifted Delannoy functions, Ansari et al. [33] employed a matrix collocation technique to numerically approximate the singularly perturbed parabolic convection−diffusion−reaction problems.

    In recent years, for the treatment of nonlinear terms, there have been a lot of unconditionally energy dissipative numerical schemes for Allen−Cahn and Cahn−Hilliard gradient flows models, such as:

    (ⅰ) CSS (convex splitting) scheme [34,35,36];

    (ⅱ) IMEX (stabilized semi-implicit) scheme [37,38];

    (ⅲ) ETD (exponential time differencing) scheme [39,40];

    (ⅳ) IEQ (invariant energy quadratization) scheme [41];

    (ⅴ) SAV (scalar auxiliary variable) scheme [42,43];

    (ⅵ) E-SAV (exponential scalar auxiliary variable) scheme [44].

    The idea of (ⅰ) is to decompose the energy function into convex and concave parts, handling the convex part implicitly and the concave part explicitly. The advantage is that it can achieve second-order unconditional stability. However, the drawback is that it still requires solving nonlinear equations. The method of (ⅱ) yields extra error, which makes it difficult to construct a higher-order scheme. The (ⅳ) and (ⅴ) approaches make it easier to handle nonlinear terms by defining auxiliary variables that transform the nonlinear potential function into a simple quadratic form. Nevertheless, an inner product must be calculated before obtaining the next time value. Compared with (ⅳ) and (ⅴ), the variable defined in (ⅵ) does not require any assumptions. And the E-SAV method can easily construct an explicit scheme that can preserve energy stability. But this physical property can not be satisfied with the explicit SAV scheme.

    In addition, Huang et al. [45] studied a new SAV method to approximate the gradient flows, which is an improvement of the SAV method. By defining an auxiliary variable in the new SAV method as a shifted total energy function, instead of focusing on the nonlinear parts of the classic SAV method, we replace the dynamic equation for that variable with the energy balance equation of the gradient flow. This facilitates the construction of high-order and energy-stable discrete schemes. In [46], Liu et al. further developed an exponential semi-implicit scalar auxiliary variable (ESI-SAV) method for the phase field equation. The ESI-SAV method can preserve the advantages of both the new SAV and E-SAV methods and be applied more effectively to other dissipative systems.

    On the basis of the above methods, researchers began to apply the above nonlinear processing techniques to approximate semi-linear wave equations. Jiang et al. [47] proposed an IEQ approach and established an energy-preserving linear implicit scheme for the sine-Gordon equation. In [48], based on the SAV method with a combination of the Gauss technique and the extrapolation method, Li et al. provided a high-order energy-conserving and linearly implicit scheme. Wang et al. [49] developed a second-order SAV Fourier spectral method to solve a nonlinear fractional generalized wave equation.

    The primary objective of this paper is to develop second-order and Hamiltonian conserved semi-discrete schemes for semi-linear wave equations. Following the superiorities of the E-SAV and ESI-SAV methods, two different numerical schemes are given by utilizing the Crank−Nicolson scheme for temporal approximation. Furthermore, the convergence order and the evolution curve of the Hamiltonian function are validated through numerical experiments.

    The paper is organized as follows: In Section 2, by introducing scalar auxiliary variables, we obtain two equivalent forms for the semi-linear wave equation in the continuous case. In Sections 3 and 4, by using the Crank−Nicolson scheme, we propose two semi-discrete schemes corresponding to the equivalent forms and provide proof of the convergence order. Two numerical examples are implemented to test the effectiveness of the theoretical analysis in Section 5.

    We consider the following semi-linear wave equation:

    $ {yttΔyf(y)=0,xΩ,t(0,T),y(x,t)=0,xΩ,t(0,T),y(x,0)=y0(x),yt(x,0)=g(x),xΩ, $ (2.1)

    where $ \Omega \subset \mathbb{R}^{d} (d = 2, 3) $ is a bounded convex domain, $ T > 0 $ is a fixed number, $ f(y) = -F'(y) $ is a nonlinear term, and $ F(y) $ satisfies $ F(y)\in\mathcal{C}^{3}(R) $. The Hamiltonian function is defined as

    $ H(y)=12||yt||2+12||y||2+ΩF(y)dx. $ (2.2)

    Proposition 2.1. The system (2.1) holds the following Hamiltonian conservation law:

    $ dH(y)dt=0. $ (2.3)

    Proof. Multiplying the first equation of the system (2.1) by $ y_{t} $ yields

    $ yttytΔyytf(y)yt=0. $ (2.4)

    By using the continuous Leibniz rule, we obtain

    $ yttyt=12((yt)2)t,f(y)yt=(F(y))t, $ (2.5)

    and

    $ Δyyt=(yx1x1+yx2x2)yt=(yx1yt)x1+(yx2yt)x2yx1(yt)x1yx2(yt)x2=(yx1yt)x1+(yx2yt)x212(y2x1+y2x2)t. $ (2.6)

    Inserting (2.5) and (2.6) into (2.4), we obtain

    $ [12((yt)2)t+12(y2x1+y2x2)t+(F(y))t][(yx1yt)x1+(yx2yt)x2]=0. $ (2.7)

    Integrating (2.7) over the spatial domain $ \Omega $ and combining the boundary conditions leads to

    $ Ω[12((yt)2)t+12(y2x1+y2x2)t+(F(y))t]dx=0, $ (2.8)

    From (2.8) and (2.2), we can deduce that

    $ dH(y)dt=Ω[12((yt)2)t+12(y2x1+y2x2)t+(F(y))t]dx=0. $ (2.9)

    The proof is complete.

    We introduce two scalar auxiliary variables as

    $ \omega = y_{t},\; r(t) = \int_{\Omega}F(y)d\boldsymbol{x} = \mathcal{H}_{2}(y). $

    Then the system (2.1) can be equivalently rewritten as

    $ ω=yt,xΩ,t(0,T), $ (2.10)
    $ ωtΔyqy,rf(y)=0,xΩ,t(0,T), $ (2.11)
    $ rt=qy,r(f(y),ω),xΩ,t(0,T), $ (2.12)
    $ y(x,t)=0,ω(x,t)=0,xΩ,t(0,T), $ (2.13)
    $ y(x,0)=y0(x),ω(x,0)=g(x),r(0)=H2(y0(x)),xΩ, $ (2.14)

    where

    $ qy,r=exp{r}exp{H2(y)}. $

    For the system (2.10)–(2.14), we have the following lemma:

    Lemma 2.1. (Hamiltonian conservation) The above system (2.10)–(2.14) satisfies

    $ d˜H(y)dt=0, $ (2.15)

    where the modified Hamiltonian function

    $ ˜H(t)=12||ω||2+12||y||2+r. $ (2.16)

    Proof. Taking the inner product of (2.11) by $ \omega $, then combining (2.10) and (2.12), we obtain

    $ (ωt,ω)+(y,yt)+rt=0. $

    Obviously, we can deduce

    $ ddt(12||ω||2+12||y||2+r)=0. $

    The proof is complete.

    Next, introducing a new variable

    $ \mathcal{R}(t) = H(y), $

    which satisfies the dissipation law

    $ dRdt=dH(y)dt=0, $ (2.17)

    and defining $ \xi = \frac{\exp (\mathcal{R})}{\exp (H(y))} $, we can know that $ \xi\equiv1 $ in the continuous case. Replacing the factor $ q^{y, r} $ in (2.11) by $ Q(\xi) $, where $ Q(\xi) $ is a polynomial function of $ \xi $, the system (2.1) can be transformed into the following equivalent form:

    $ ω=yt,xΩ,t(0,T), $ (2.18)
    $ ωtΔyQ(ξ)f(y)=0,xΩ,t(0,T), $ (2.19)
    $ ξ=exp(R)exp(H(y))xΩ,t(0,T), $ (2.20)
    $ Q(ξ)=ξ(2ξ)xΩ,t(0,T), $ (2.21)
    $ dRdt=0,xΩ,t(0,T), $ (2.22)
    $ y(x,t)=0,ω(x,t)=0,xΩ,t(0,T), $ (2.23)
    $ y(x,0)=y0(x),ω(x,0)=g(x),R(0)=H(y0),xΩ. $ (2.24)

    Furthermore, (2.17) and (2.22) imply that the system (2.18)–(2.24) is Hamiltonian conserved.

    Let $ 0 = t_{0} < t_{1} < ... < t_{N} = T $ be a uniform partition of the time interval $ [0, T] $ with the time steps $ \Delta t = T/N $ and $ t^{n} = n\Delta t $. Then, utilizing the Crank−Nicolson scheme to discretize the system (2.10)–(2.14), a second-order Carnk−Nicolson E-SAV (CN-E-SAV) scheme can be formulated as follows:

    $ ωn+12=1Δt(yn+1yn), $ (3.1)
    $ 1Δt(ωn+1ωn)Δyn+12ˆqn+12f(ˆyn+12)=0, $ (3.2)
    $ 1Δt(rn+1rn)=(ˆqn+12f(ˆyn+12),ωn+12), $ (3.3)

    where

    $ ωn+12=12(ωn+1+ωn),yn+12=12(yn+1+yn), $

    and $ \hat{q}^{n+\frac{1}{2}} > 0 $ with $ (\hat{y}^{n+\frac{1}{2}}, \hat{r}^{n+\frac{1}{2}}) $ being generated by the first-order scheme with the time step size $ \dfrac{\Delta t}{2} $, i.e.,

    $ ˆωn+12=1Δt/2(ˆyn+12yn), $ (3.4)
    $ 1Δt/2(ˆωn+12ωn)Δˆyn+12qnf(yn)=0, $ (3.5)
    $ 1Δt/2(ˆrn+12rn)=qn(f(yn),ˆωn+12). $ (3.6)

    In order to better understand this scheme, by plugging (3.1) into (3.2) and (3.4) into (3.5), respectively, we can get

    $ 2Δt2yn+112Δyn+1=2Δt2yn+2Δtωn+12Δyn+ˆqn+12f(ˆyn+12), $ (3.7)
    $ 4Δt2ˆyn+12Δˆyn+12=4Δt2yn+2Δtωn+qnf(yn). $ (3.8)

    So we can implement the CN-E-SAV scheme as follows:

    $ (i). Computeqnfromqn=exp{rn}exp{H2(yn)};(ii). Computeˆyn+12from(3.8);(iii). Computeˆωn+12from(3.4);(iv). Computeˆrn+12from(3.6);(v). Computeˆqn+12fromˆqn+12=exp{ˆrn+12}exp{H2(ˆyn+12)};(vi). Computeyn+1from(3.7);(vii). Computeωn+1from(3.1);(viii). Computern+1from(3.3). $

    We show the conservation of the CN-E-SAV scheme by the following theorem:

    Theorem 3.1. The CN-E-SAV scheme (3.1)–(3.3) is Hamiltonian conserved:

    $ Hn+1=HnwithHn=12||ωn||2+12||yn||2+rn. $ (3.9)

    Proof. Taking the inner product with (3.1) and (3.2) by $ y^{n+\frac{1}{2}} $, $ \omega^{n+\frac{1}{2}} $, we have

    $ (ωn+12,yn+12)=12Δt||yn+1||212Δt||yn||2, $ (3.10)

    and

    $ 12||ωn+1||212||ωn||2+Δt(yn+12,ωn+12)ˆqn+12(f(ˆyn+12),ωn+12)Δt=0. $ (3.11)

    Substituting (3.10) into (3.11) and combining (3.3), we obtain

    $ (12||ωn+1||2+12||yn+1||2+rn+1)(12||ωn||2+12||yn||2+rn)=0. $

    The proof is complete.

    We will follow the next two steps to complete the error estimation of the CN-E-SAV scheme:

    step (ⅰ): complete the error between (2.10)–(2.14) and (3.4)–(3.6);

    step (ⅱ): with the help of the results of step (ⅰ), the error of (2.10)–(2.14) and (3.1)–(3.3) is further estimated.

    For simplicity, we define

    $ ˆen+12ω=ω(tn+12)ˆωn+12,enω=ω(tn)ωn,ˆen+12y=y(tn+12)ˆyn+12,eny=y(tn)yn,ˆen+12r=r(tn+12)ˆrn+12,enr=r(tn)rn. $

    It follows from (2.10)–(2.14) that the exact solution $ (\omega, y, r) $ satisfies

    $ ω(tn+12)=1Δt/2(y(tn+12)y(tn))1Δt/2ˆTny1, $ (3.12)
    $ ω(tn+12)ω(tn)Δt/2Δy(tn+12)q(tn)f(y(tn))=1Δt/2ˆTnωΔ(y(tn+12)y(tn)), $ (3.13)
    $ r(tn+12)r(tn)=(q(tn)f(y(tn)),y(tn+12)y(tn)ˆTny2)+ˆTnr, $ (3.14)

    where the truncation functions are defined as

    $ ˆTnω=tn+12tn(tn+12t)ωttdt,ˆTny1=tn+12tn(tnt)yttdt,ˆTny2=tn+12tn(tn+12t)yttdt,ˆTnr=tn+12tn(tn+12t)rttdt, $

    and satisfy

    $ ||ˆTnω||2C(Δt)3tn+12tn||ωtt||2dt,||ˆTny1||2C(Δt)3tn+12tn||ytt||2dt, $ (3.15)
    $ ||ˆTny2||2C(Δt)3tn+12tn||ytt||2dt,|ˆTnr|2C(Δt)3tn+12tn|rtt|2dt. $ (3.16)

    For the purposes of theorem proving, we present the following assumptions and lemmas:

    Assumption 3.1. There exist constants $ Q^{*} $, $ Q_{*} $, $ \tilde{Q}^{*} $, and $ \tilde{Q}_{*} $ independent of $ \Delta t $ such that $ Q_{*} \leq q^{n}\leq Q^{*} $, $ \tilde{Q}_{*} \leq\hat{q}^{n+\frac{1}{2}}\leq \tilde{Q}^{*} $ for all n.

    Lemma 3.1. Denote

    $ A=q(tn)f(y(tn))qnf(yn),B=ˆqn+12f(ˆyn+12)q(tn+12)f(y(tn+12)), $

    then the following holds:

    $ ||A||C(||eny||+|enr|),||B||C(||ˆen+12y||+|ˆen+12r|), $

    where the constant $ C > 0 $ depends on $ Q^{*}, Q_{*}, \tilde{Q}^{*} $, $ \tilde{Q}_{*}, |\Omega|, y_{0} $, and $ ||f||_{C^{1}(R)} $.

    Proof. Similar to the proof of Lemma 4 of [51], the results can be proved by applying Poincaré's inequality to $ ||e_{y}^{n}||, ||\hat{e}_{y}^{n+\frac{1}{2}}|| $ once more.

    Lemma 3.2. Assume $ \Delta t $ is sufficiently small and satisfies

    $ ytL(0,T;L2)L2(0,T;H2),yttL2(0,T;L2)L2(0,T;H1),ytttL2(0,T;L2). $

    Then, we have

    $ ||ˆen+12ω||2+||ˆen+12y||2+|ˆen+12r|2ˇC(Δt)3tn+12tn(||ωtt||2+||ytt||2+|rtt|2+||ytt||2+||yt||2H2(Ω))ds+ˇC(||enω||2+||eny||2+|enr|2). $ (3.17)

    Proof. Subtracting (3.4)–(3.6) from (3.12)–(3.14), we have the error equations as

    $ ˆen+12ω=1Δt/2(ˆen+12yeny)1Δt/2ˆTny1, $ (3.18)
    $ ˆen+12ωenωΔt/2Δˆen+12y=q(tn)f(y(tn))qnf(yn)Δ(y(tn+12)y(tn))+1Δt/2ˆTnω, $ (3.19)
    $ ˆen+12renr=(qnf(yn),ˆen+12yeny)+(qnf(yn)q(tn)f(y(tn)),y(tn+12)y(tn))+(q(tn)f(y(tn)),ˆTny2)+ˆTnr. $ (3.20)

    Taking the inner product of (3.19) with $ \hat{e}_{\omega}^{n+\frac{1}{2}} $ and combining (3.18), we have

    $ ||ˆen+12ω||2||enω||2+||ˆen+12ωenω||2+||ˆen+12y||2||eny||2+||(ˆen+12yeny)||2=Δt(A,ˆen+12ω)Δt(Δ(y(tn+12)y(tn)),ˆen+12ω)+2(ˆTnω,ˆen+12ω)2(ˆTny1,Δˆen+12y):=Λ1+Λ2+Λ3+Λ4. $ (3.21)

    For the first term on the right-hand side of (3.21), according to Lemma 3.1, we obtain

    $ Λ1C(Δt)2||A||2+14||ˆen+12ω||2˜C1(Δt)2(||eny||2+|enr|2)+14||ˆen+12ω||2. $ (3.22)

    Then for $ \Lambda_{2}, \; \Lambda_{3}, \; \Lambda_{4} $, using Young's inequality and (3.15), one has

    $ Λ2C(Δt)3tn+12tn||yt||2H2(Ω)ds+14||ˆen+12ω||2, $ (3.23)
    $ Λ3C(Δt)3tn+12tn||ωtt||2dt+14||ˆen+12ω||2, $ (3.24)
    $ Λ4C(Δt)3tn+12tn||ytt||2dt+14||ˆen+12y||2. $ (3.25)

    Combining (3.22)–(3.25) with (3.21), we can have

    $ ||ˆen+12ω||2+4||ˆen+12ωenω||2+||ˆen+12y||2+4||(ˆen+12yeny)||24˜C1(Δt)2(||eny||2+|enr|2)+4(||enω||2+||eny||2)+C(Δt)3tn+12tn(||ωtt||2+||ytt||2+||yt||2H2(Ω))ds. $ (3.26)

    Multiplying (3.20) by $ \hat{e}_{r}^{n+\frac{1}{2}} $, we can obtain

    $ |ˆen+12r|2|enr|2+|ˆen+12renr|2=2(qnf(yn),ˆen+12yeny)ˆen+12r2(A,y(tn+12)y(tn))ˆen+12r+2(q(tn)f(y(tn)),ˆTny2)ˆen+12r+2ˆTnrˆen+12r:=Ψ1+Ψ2+Ψ3+Ψ4. $ (3.27)

    According to $ q^{n}\leq Q^{*}, \; F\in \mathcal{C}^{3}(R) $, and Poincaré's inequality, we can derive the following estimate for $ \Psi_{1} $:

    $ Ψ1||qnf(yn)||||ˆen+12yeny|||ˆen+12r|C||(ˆen+12yeny)||2+14|ˆen+12r|2. $ (3.28)

    The estimate for $ \Psi_{2} $ is similar to (3.22), so we obtain

    $ Ψ2Δt||A||||y(tn+12)y(tn)Δt|||ˆen+12r|˜C2(Δt)2(||eny||2+|enr|2)+14|ˆen+12r|2. $ (3.29)

    For the last two terms of (3.27), by utilizing (3.16), we have that

    $ Ψ3+Ψ4C(Δt)3tn+12tn(|rtt|2+||ytt||2)ds+14|ˆen+12r|2. $ (3.30)

    Therefore, injecting (3.28)–(3.30) into (3.27) leads to

    $ |ˆen+12r|2+4|ˆen+12renr|24˜C2(Δt)2(||eny||2+|enr|2)+C(Δt)3tn+12tn(|rtt|2+||ytt||2)dt+4C||(ˆen+12yeny)||2+4|enr|2. $ (3.31)

    Multiplying (3.26) by $ C^{*} $ and adding it to (3.31) implies

    $ C||ˆen+12ω||2+C||ˆen+12y||2+|ˆen+12r|24(˜C1C+˜C2)(Δt)2(||eny||2+|enr|2)+4C(||enω||2+||eny||2)+4|enr|2+C(Δt)3tn+12tn(||ωtt||2+||ytt||2+|rtt|2+||ytt||2+||yt||2H2(Ω))ds. $

    The proof is completed when $ C^{*}\geq1 $ and $ (\Delta t)^{2}\leq\frac{C^{*}}{\tilde{C}_{1}C^{*}+\tilde{C}_{2}} $.

    Next, we will derive the convergence order of the CN-E-SAV scheme (3.1)–(3.3). Clearly, the exact solution $ (\omega, y, r) $ satisfies

    $ ω(tn+1)+ω(tn)2=1Δt(y(tn+1)y(tn))+Rnω1ΔtTny, $ (3.32)
    $ 1Δt(ω(tn+1)ω(tn))Δy(tn+1)+y(tn)2q(tn+12)f(y(tn+12))=1ΔtTnωΔRny, $ (3.33)
    $ 1Δt(r(tn+1)r(tn))=(q(tn+12)f(y(tn+12)),ω(tn+1)+ω(tn)2Rω)+1ΔtTnr, $ (3.34)

    where the truncation functions are defined by

    $ Tω=ω(tn+1)ω(tn)Δtωt(tn+12),Ty=y(tn+1)y(tn)Δtyt(tn+12),Tr=r(tn+1)r(tn)Δtrt(tn+12),Rω=ω(tn+1)+ω(tn)2ω(tn+12),Ry=y(tn+1)+y(tn)2y(tn+12),Rr=r(tn+1)+r(tn)2r(tn+12). $

    The truncation functions satisfy the following lemma:

    Lemma 3.3. ([50]) The following estimates hold

    $ ||Tω||2C(Δt)5tn+1tn||ωttt||2ds,||Ty||2C(Δt)5tn+1tn||yttt||2ds,|Tr|2C(Δt)5tn+1tn|rttt|2ds,||Rω||2C(Δt)3tn+1tn||ωtt||2ds,||Ry||2C(Δt)3tn+1tn||ytt||2ds,|Rr|2C(Δt)3tn+1tn|rtt|2ds. $

    Theorem 3.2. Let $ (\omega(t_{n}), y(t_{n}), r(t_{n})) $ and $ (\omega^{n}, y^{n}, r^{n}) $ be the solutions of (2.10)–(2.14) and CN-E-SAV scheme (3.1)–(3.3), respectively. Suppose that the assumptions in Lemma 3.2 hold and assume further

    $ yttL2(0,T;L2)L2(0,T;H2),ytttL2(0,T;L2)L2(0,T;H1),yttttL2(0,T;L2). $

    Then, we have

    $ ||enω||2+||eny||2+|enr|2C(Δt)4. $

    Proof. Subtracting (3.1)–(3.3) from (3.32)–(3.34), we derive the following error equations:

    $ en+12ω=1Δt(en+1yeny)+Rnω1ΔtTny, $ (3.35)
    $ 1Δt(en+1ωenω)Δen+12y=q(tn+12)f(y(tn+12))ˆqn+12f(ˆyn+12)+1ΔtTnωΔRny, $ (3.36)
    $ 1Δt(en+1renr)=(ˆqn+12f(ˆyn+12)q(tn+12)f(y(tn+12)),ω(tn+1)+ω(tn)2)(ˆqn+12f(ˆyn+12),en+12ω)+(q(tn+12)f(y(tn+12)),Rnω)+1ΔtTnr. $ (3.37)

    Taking the inner product of (3.36) with $ e_{\omega}^{n+\frac{1}{2}} $ and combining (3.35), we have

    $ 12||en+1ω||212||enω||2+12||en+1y||212||eny||2=Δt(B,en+12ω)+(Tnω,en+12ω)Δt(ΔRny,en+12ω)Δt(en+12y,Rnω)Δt(en+12y,Tny):=Υ1+Υ2+Υ3+Υ4+Υ5. $ (3.38)

    According to Lemma 3.1, we obtain

    $ Υ1CΔt(|ˆen+12r|2+||ˆen+12y||2+||en+12ω||2). $ (3.39)

    For the last four terms of (3.38), it follows from Lemma 3.3 that

    $ Υ2C(Δt)4tn+1tn||ωttt||2dt+CΔt||en+12ω||2, $ (3.40)
    $ Υ3C(Δt)4tn+1tn||Δytt||2dt+CΔt||en+12ω||2, $ (3.41)
    $ Υ4C(Δt)4tn+1tn||ωtt||2dt+CΔt||en+12y||2, $ (3.42)
    $ Υ5C(Δt)4tn+1tn||yttt||2dt+CΔt||en+12y||2. $ (3.43)

    Substituting (3.39)–(3.43) into (3.38), we can obtain

    $ 12||en+1ω||212||enω||2+12||en+1y||212||eny||2CΔt(|ˆen+12r|2+||ˆen+12y||2)+CΔt(||en+12ω||2+||en+12y||2)+C(Δt)4tn+1tn(||ωttt||2+||yttt||2+||Δytt||2+||ωtt||2)dt. $ (3.44)

    Multiplying (3.3) by $ e_{r}^{n+\frac{1}{2}} $, we obtain

    $ 12(|en+1r|2|enr|2)=Δten+12r(B,ω(tn+1)+ω(tn)2)Δten+12r(ˆqn+12f(ˆyn+12),en+12ω)+Δt(q(tn+12)f(y(tn+12)),Rnω)en+12r+Tnren+12r:=Φ1+Φ2+Φ3+Φ4. $ (3.45)

    Next, we estimate the right-hand side of (3.45). Applying Lemma 3.1, Lemma 3.3, and Young's inequality, we deduce that

    $ Φ1CΔt|en+12r|||B||||ω(tn+1)+ω(tn)2||CΔt(|ˆen+12r|2+||ˆen+12y||2+|en+12r|2), $ (3.46)
    $ Φ2CΔt(|en+12r|2+||en+12ω||2), $ (3.47)
    $ Φ3+Φ4C(Δt)4tn+1tn(||ωtt||2+|rttt|2)dt+CΔt|en+12r|2. $ (3.48)

    Combining the above estimates of (3.46)–(3.48) together, one has

    $ 12|en+1r|212|enr|2CΔt(|ˆen+12r|2+||ˆen+12y||2)+CΔt(||en+12ω||2+|en+12r|2)+C(Δt)4tn+1tn(||ωtt||2+|rttt|2)dt. $ (3.49)

    By adding (3.44) and (3.49) and summing the index $ k $ from $ 0 $ to $ n-1 $, we obtain

    $ ||enω||2+||eny||2+||enr||2CΔtn1k=0(||ekω||2+||eky||2+|ekr|2)+CΔtn1k=0(|ˆek+12r|2+||ˆek+12y||2)+C(Δt)4tn0(||ωttt||2+|rttt|2+||yttt||2+||ωtt||2+||ytt||2+|rtt|2+||Δytt||2+||ωtt||2)dt. $

    Applying Lemma 3.2 and the discrete Gronwall's inequality, we can complete the proof.

    For the system (2.18)–(2.24), we obtain the semi-discrete new Crank−Nicolson E-SAV (New-CN-E-SAV) scheme by adopting the Crank−Nicolson scheme as

    $ ωn+1+ωn2=1Δt(yn+1yn), $ (4.1)
    $ 1Δt(ωn+1ωn)Δyn+1+yn2Q(ξn+1)f(ˆyn+12)=0, $ (4.2)
    $ ξn+1=exp(Rn+1)exp(H(ˆyn+12)), $ (4.3)
    $ Q(ξn+1)=ξn+1(2ξn+1), $ (4.4)
    $ 1Δt(Rn+1Rn)=0, $ (4.5)

    where $ \hat{y} ^{n+\frac{1}{2}} $ is obtained by solving the following equation:

    $ ˆwn+12=1Δt/2(ˆyn+12yn), $ (4.6)
    $ 1Δt/2(ˆωn+12ωn)Δˆyn+12f(yn)=0. $ (4.7)

    From (4.5), we can find that the New-CN-E-SAV scheme (4.1)–(4.5) also enjoys the same conservation as the CN-E-SAV scheme (3.1)–(3.3).

    Theorem 4.1. The New-CN-E-SAV scheme (4.1)–(4.5) is Hamiltonian conserved in the sense that

    $ Rn+1=Rn==R0. $

    Further, according to Theorem 4.1, the Eq (4.3) can be simplified as

    $ ξn+1=exp(R0)exp(H(ˆyn+12)). $ (4.8)

    In order to better illustrate the calculation process of the New-CN-E-SAV scheme (4.1)–(4.5), plugging (4.1) and (4.6) into (4.2) and (4.7), respectively, we obtain

    $ (2Δt212Δ)yn+1=2Δt2yn+2Δtωn+12Δyn+Q(ξn+1)f(ˆyn+12), $ (4.9)
    $ (4Δt2Δ)ˆyn+12=4Δt2yn+2Δtωn+f(yn). $ (4.10)

    So the New-CN-E-SAV scheme can be implemented as follows:

    $ (i). solveˆyn+12from(4.10);(ii). solveˆωn+12from(4.6);(iii). computeξn+1from(4.8);(iv). computeQ(ξn+1)from(4.4);(v). solveyn+12from(4.9);(vi). solveωn+12from(4.1). $

    For the convergence order of the New-CN-E-SAV scheme, from (4.6) and (4.7), we can obtain

    $ ˆyn+12=y(tn+12)+O(Δt2), $ (4.11)
    $ ˆωn+12=ω(tn+12)+O(Δt2). $ (4.12)

    Referring to [46] and combining (4.11) and (4.12), we obtain

    $ ξn+1=exp(R0)exp(H(ˆyn+12))=ξ(tn+1)+CΔt=1+CΔt. $

    Then, we derive that

    $ Q(ξn+1)=ξn+1(2ξn+1)=(ξ(tn+1)+CΔt)(2ξ(tn+1)CΔt)=(1+CΔt)(1CΔt)=1C2Δt2, $

    which means that the New-CN-E-SAV scheme can achieve second-order approximation.

    In this section, two examples are presented to test the validity of the theory. We set

    $ \Omega = [0,L]^{2},\; L = 2,\; T = 1, $
    $ y_{0} = 0.005 \sin \pi x_{1}\sin \pi x_{2}, $
    $ \omega_{0} = 0.005 \sin \pi x_{1}\sin \pi x_{2}, $

    and consider different nonlinear functions $ F(y) $ to simulate the order of convergence and the Hamiltonian conservation. Discretize the physical space by the Fourier spectral method with a spatial step $ h = L/2^9 $. Since we do not have the exact solution, we thus select the sufficiently small time step $ \Delta t = 1/1024 $ as the reference solution.

    Example 5.1. In this example, we choose the nonlinear function $ F(y) $ and initial values $ r_{0}, \mathcal{R}_{0} $ as follows:

    $ F(y) = 1-\cos y,\quad r_{0} = \int_{\Omega}F(y_{0})d\boldsymbol{x},\quad \mathcal{R}_{0} = H(y_{0}). $

    Example 5.2 In this example, we select

    $ F(y) = \frac{1}{4}(y^{2}-1)^{2},\quad r_{0} = \int_{\Omega}F(y_{0})d\boldsymbol{x},\quad \mathcal{R}_{0} = H(y_{0}). $

    For the CN-E-SAV and New-CN-E-SAV schemes, the error between the numerical solution and the exact solution in the sense of $ L^{2} $-norm is listed in Tables 16, where Tables 13 and 46 show the numerical results for Examples 5.1 and 5.2, respectively.

    Table 1.  Error results and convergence rate of $ \| e_{y}^{n}\| $ for the CN-E-SAV and New-CN-E-SAV schemes in Example 5.1.
    $ \Delta t $ $ \| e_{y}^{n}\| $ $ \textbf{Rate} $
    $ \textbf{ CN-E-SAV } $ $ 1/2^{4} $ 0.0368091884426225 -
    $ 1/2^{5} $ 0.00932236109731148 1.98129864079567
    $ 1/2^{6} $ 0.00233174733113645 1.99928392995304
    $ 1/2^{7} $ 0.000576576259379840 2.01582812615784
    $ 1/2^{8} $ 0.000137310038533674 2.07007433221585
    $ \| e_{y}^{n}\| $ $ \textbf{Rate} $
    $ \textbf{ New-CN-E-SAV } $ $ 1/2^{4} $ 0.0368091815051726 -
    $ 1/2^{5} $ 0.00932235922830067 1.98129865813145
    $ 1/2^{6} $ 0.00233174685298024 1.99928393655572
    $ 1/2^{7} $ 0.000576576140697115 2.01582812727880
    $ 1/2^{8} $ 0.000137310011085410 2.07007432364543

     | Show Table
    DownLoad: CSV
    Table 2.  Error results and convergence rate of $ \| e_{\omega}^{n}\| $ for the CN-E-SAV and New-CN-E-SAV schemes in Example 5.1.
    $ \Delta t $ $ \| e_{\omega}^{n}\| $ $ \textbf{Rate} $
    $ \textbf{ CN-E-SAV } $ $ 1/2^{4} $ 0.0689301039227398 -
    $ 1/2^{5} $ 0.0168861504409056 2.02929371796555
    $ 1/2^{6} $ 0.00418704131563571 2.01183741338057
    $ 1/2^{7} $ 0.00103299161999948 2.01910260335564
    $ 1/2^{8} $ 0.000245854829212462 2.07094995184852
    $ \| e_{\omega}^{n}\| $ $ \textbf{Rate} $
    $ \textbf{ New-CN-E-SAV } $ $ 1/2^{4} $ 0.0689300760782284 -
    $ 1/2^{5} $ 0.0168861432622035 2.02929374850860
    $ 1/2^{6} $ 0.00418703950543584 2.01183742378274
    $ 1/2^{7} $ 0.0010329911717826 2.01910260561751
    $ 1/2^{8} $ 0.000245854724513483 2.07094994024234

     | Show Table
    DownLoad: CSV
    Table 3.  Error results and convergence rate of $ | e_{r}^{n}| $ for the CN-E-SAV scheme in Example 5.1.
    $ \Delta t $ $ | e_{r}^{n}| $ $ \textbf{Rate} $
    $ \textbf{ CN-E-SAV } $ $ 1/2^{4} $ 2.86566749793482e-07 -
    $ 1/2^{5} $ 6.97595495640488e-08 2.03840859427113
    $ 1/2^{6} $ 1.72124441615129e-08 2.01893875053861
    $ 1/2^{7} $ 4.23455884358817e-09 2.02316839164966
    $ 1/2^{8} $ 1.00635793461970e-09 2.07306815290817

     | Show Table
    DownLoad: CSV
    Table 4.  Error results and convergence rate of $ \| e_{y}^{n}\| $ for the CN-E-SAV and New-CN-E-SAV schemes in Example 5.2.
    $ \Delta t $ $ \| e_{y}^{n}\| $ $ \textbf{Rate} $
    $ \textbf{ CN-E-SAV } $ $ 1/2^{4} $ 0.0371725171404962 -
    $ 1/2^{5} $ 0.00943514340320470 1.97812003334643
    $ 1/2^{6} $ 0.00236120638866597 1.99852029490610
    $ 1/2^{7} $ 0.000583930678977017 2.01565513477143
    $ 1/2^{8} $ 0.000139064798763014 2.07003983134903
    $ \| e_{y}^{n}\| $ $ \textbf{Rate} $
    $ \textbf{ New-CN-E-SAV } $ $ 1/2^{4} $ 0.0371725163498753 -
    $ 1/2^{5} $ 0.00943514322606903 1.97812002974700
    $ 1/2^{6} $ 0.00236120634599168 1.99852029389485
    $ 1/2^{7} $ 0.000583930668215755 2.01565513528492
    $ 1/2^{8} $ 0.000139064795893768 2.07003983452791

     | Show Table
    DownLoad: CSV
    Table 5.  Error results and convergence rate of $ \| e_{\omega}^{n}\| $ for the CN-E-SAV and New-CN-E-SAV schemes in Example 5.2.
    $ \Delta t $ $ \| e_{\omega}^{n}\| $ $ \textbf{Rate} $
    $ \textbf{ CN-E-SAV } $ $ 1/2^{4} $ 0.0818241862777186 -
    $ 1/2^{5} $ 0.0201549897717315 2.02139029902935
    $ 1/2^{6} $ 0.00500392653834192 2.01000453619864
    $ 1/2^{7} $ 0.00123483574539119 2.01874145867249
    $ 1/2^{8} $ 0.000293902813805396 2.07090807463406
    $ \| e_{\omega}^{n}\| $ $ \textbf{Rate} $
    $ \textbf{ New-CN-E-SAV } $ $ 1/2^{4} $ 0.0818241821912869 -
    $ 1/2^{5} $ 0.0201549887134675 2.02139030272942
    $ 1/2^{6} $ 0.00500392626767036 2.01000453848608
    $ 1/2^{7} $ 0.00123483567363466 2.01874146446974
    $ 1/2^{8} $ 0.000293902792746018 2.07090809417398

     | Show Table
    DownLoad: CSV
    Table 6.  Error results and convergence rate of $ | e_{r}^{n}| $ for the CN-E-SAV scheme in Example 5.2.
    $ \Delta t $ $ | e_{r}^{n}| $ $ \textbf{Rate} $
    $ \textbf{ CN-E-SAV } $ $ 1/2^{4} $ 3.36996122007882e-07 -
    $ 1/2^{5} $ 8.30406444718435e-08 2.02084244415644
    $ 1/2^{6} $ 2.05944534759084e-08 2.01156179910102
    $ 1/2^{7} $ 5.07805131277905e-09 2.01990896293877
    $ 1/2^{8} $ 1.20806775694149e-09 2.07157359980540

     | Show Table
    DownLoad: CSV

    The evolution of the Hamiltonian function with respect to the CN-E-SAV and New-CN-E-SAV schemes in Examples 5.1 and 5.2 is depicted in Figure 1.

    Figure 1.  Evolutions of the Hamiltonian for the CN-E-SAV and New-CN-E-SAV schemes with the time step $ \Delta t = \frac{1}{2^{6}} $ in Example 5.1 (left) and in Example 5.2 (right).

    From the analysis of the data presented in Tables 16, it is evident that the error decreases as the time step $ \Delta t $ decreases. And the numerical results for the convergence order of the variables $ \omega, y, r $ in Examples 5.1 and 5.2 are consistent with the theoretical results. This thereby further illustrates the effectiveness of the CN-E-SAV and New-CN-E-SAV schemes.

    Figure 1 clearly shows that, regardless of the different nonlinear functions selected in the two examples, the CN-E-SAV and New-CN-E-SAV schemes successfully maintain the conservation property of the Hamiltonian function.

    In this work, we develop the CN-E-SAV and New-CN-E-SAV schemes to approximate a semi-linear wave equation with the following advantages: (ⅰ) it preserves Hamiltonian conservation; (ⅱ) it is efficient; and (ⅳ) it is easy to implement. The further topic can also involve designing the high-order BDFk-E-SAV schemes or applying them to other nonlinear problems. It is also meaningful to consider the construction of numerical schemes for the nonlinear localized wave equations.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work is supported by the National Natural Science Foundation of China (Granted No. 11961008) and Guizhou University Doctoral Foundation (Granted NO. 15 (2022)).

    The authors declare there is no conflict of interest.

    [1] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice Hall, New Jersey, 1993.
    [2] O. M. Becker and M. Karplus, The topology of multidimensional potential energy surfaces: theory and application to peptide structure and kinetics, J. Chem. Phys., 106 (1997), 1495-1517. doi: 10.1063/1.473299
    [3] A. Bovier, M. Eckhoff, V. Gayrard and M. Klein, Metastability and low lying spectra in reversible Markov chains, Comm. Math. Phys., 228 (2002), 219-255. doi: 10.1007/s002200200609
    [4] A. Bovier, Metastability, in Methods of Contemporary Statistical Mechanics, (ed. R. Kotecky), Lecture Notes in Math., Springer, 1970 (2009), 177-221. doi: 10.1007/978-3-540-92796-9
    [5] A. Bovier, M. Eckhoff, V. Gayrard and M. Klein, Metastability in reversible diffusion processes I. Sharp estimates for capacities and exit times, J. Eur. Math. Soc., 6 (2004), 399-424. doi: 10.4171/JEMS/14
    [6] A. Bovier, V. Gayrard and M. Klein, Metastability in reversible diffusion processes. II. Precise estimates for small eigenvalues, J. Eur. Math. Soc., 7 (2005), 69-99. doi: 10.4171/JEMS/22
    [7] M. K. Cameron, Computing Freidlin's cycles for the overdamped Langevin dynamics, J. Stat. Phys., 152 (2013), 493-518. doi: 10.1007/s10955-013-0770-4
    [8] M. Cameron, R. V. Kohn, and E. Vanden-Eijnden, The string method as a dynamical dystem, J. Nonlin. Sc., 21 (2011), 193-230. doi: 10.1007/s00332-010-9081-y
    [9] M. K. Cameron and E. Vanden-Eijnden, Flows in complex networks: Theory, algorithms, and application to Lennard-Jones cluster rearrangement, J. Stat. Phys., 156 (2014),427-454. arXiv:1402.1736. doi: 10.1007/s10955-014-0997-8
    [10] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, 1997. doi: 10.1137/1.9781611971446
    [11] E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematic, 1 (1959), 269-271. doi: 10.1007/BF01386390
    [12] J. P. K. Doye, M. A. Miller and D. J. Wales, The double-funnel energy landscape of the 38-atom Lennard-Jones cluster, J. Chem. Phys., 110 (1999), 6896-6906. doi: 10.1063/1.478595
    [13] W. J. Ewens, Mathematical Population Genetics 1: Theoretical Introduction, 2nd Ed., Springer Science+Business Media, Inc., 2004. doi: 10.1007/978-0-387-21822-9
    [14] F. C. Frank, Supercooling of liquids, Proc. R. Soc. Lond. A Math. Phys. Sci., 215 (1952), 43-46. doi: 10.1098/rspa.1952.0194
    [15] M. I. Freidlin, Sublimiting distributions and stabilization of solutions of parabolic equations with small parameter, Soviet Math. Dokl., 18 (1977), 1114-1118.
    [16] M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, 3rd ed, Springer-Verlag Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-25847-3
    [17] M. I. Freidlin, Quasi-deterministic approximation, metastability and stochastic resonance, Physica D, 137 (2000), 333-352. doi: 10.1016/S0167-2789(99)00191-8
    [18] preprint.
    [19] W. Huisinga, S. Meyn and Ch. Schuette, Phase transitions and metastability in Markovian and molecular systems, Ann. Appl. Prob., 14 (2004), 419-458. doi: 10.1214/aoap/1075828057
    [20] M. Kimura, The Neutral Theory of Molecular Evolution, Cambridge University Press, 1985. doi: 10.1017/CBO9780511623486
    [21] J. B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem, Proc. Amer. Math. Soc., 7 (1956), 48-50. doi: 10.1090/S0002-9939-1956-0078686-7
    [22] V. A. Mandelshtam and P. A. Frantsuzov, Multiple structural transformations in Lennard-Jones clusters: Generic versus size-specific behavior, J. Chem. Phys., 124 (2006), 204511. doi: 10.1063/1.2202312
    [23] J. H. Gillespie, Population Genetics: A Concise Guide, 2nd Ed. John Hopkins University Press, 2004.
    [24] preprint, arXiv:1305.1352.
    [25] J. P. Neirotti, F. Calvo, D. L. Freeman and J. D. Doll, Phase changes in 38-atom Lennard-Jones clusters. I. A parallel tempering study in the canonical ensemble, J. Chem. Phys., 112 (2000), 10340. doi: 10.1063/1.481671
    [26] M. Picciani, M. Athenes, J. Kurchan and J. Taileur, Simulating structural transitions by direct transition current sampling: the example of $LJ_{38}$, J. Chem. Phys., 135 (2011), 034108. doi: 10.1063/1.3609972
    [27] M. Sarich, N. Djurdjevac, S. Bruckner, T. O. F. Conrad and Ch. Schuette, Modularity revisited: a novel dynamics-based concept for decomposing complex networks, Journal of Computational Dynamics, (2013) (In Press). doi: 10.3934/jcd.2014.1.191
    [28] Ch. Schuette, W. Huisinga and S. Meyn, Metastability of diffusion processes, IUTAM Symposium on Nonlinear Stochastic Dynamics Solid Mechanics and Its Applications, 110 (2003), 71-81. doi: 10.1007/978-94-010-0179-3_6
    [29] D. J. Wales, Discrete Path Sampling, Mol. Phys., 100 (2002), 3285-3306. doi: 10.1080/00268970210162691
    [30] D. J. Wales, Some further applications of discrete path sampling to cluster isomerization, Mol. Phys., 102 (2004), 891-908. doi: 10.1080/00268970410001703363
    [31] D. J. Wales, Energy landscapes: calculating pathways and rates, International Review in Chemical Physics, 25 (2006), 237-282. doi: 10.1080/01442350600676921
    [32] http://www-wales.ch.cam.ac.uk/examples/PATHSAMPLE/.
    [33] http://www-wales.ch.cam.ac.uk.
    [34] D. J. Wales and J. P. K. Doye, Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters containing up to 110 Atoms, J. Phys. Chem. A, 101 (1997), 5111-5116. doi: 10.1021/jp970984n
    [35] D. J. Wales, M. A. Miller and T. R. Walsh, Archetypal energy landscapes, Nature , 394 (1998), 758-760. doi: 10.1038/29487
    [36] D. J. Wales, Energy Landscapes: Applications to Clusters, Biomolecules and Glasses, Cambridge University Press, 2003.
    [37] D. J. Wales and P. Salamon, Observation time scale, free-energy landscapes, and molecular symmetry, Proc. Natl. Acad. Sci. USA, 111 (2014), 617-622. doi: 10.1073/pnas.1319599111
    [38] A. D. Wentzell, Ob asimptotike naibol'shego sobstvennogo znacheniya ellipticheskogo differentsial'nogo operatora s malym parametrom pri starshikh proizvodnykh, (Russian) [On the asymptotics of the largest eigenvalue of the elliptic differential operator with a small parameter at the highest derivatives], Dokl. Akad. Nauk SSSR, 202 (1972), 19-21.
    [39] A. D. Wentzell, On the asymptotics of eigenvalues of matrices with elements of order $\exp\{-V_{ij}/2 (\epsilon^2)}$, Soviet Math. Dokl., 13 (1972), 65-68.
  • This article has been cited by:

    1. Ze Chen, Min Li, Hongxing Cui, Xipeng Wu, Fangmin Chen, Wei Li, Effects of kinesio taping therapy on gait and surface electromyography in stroke patients with hemiplegia, 2022, 13, 1664-042X, 10.3389/fphys.2022.1040278
    2. Runping Yuan, Congzhi Tang, Yong Jiang, Hongxing Wang, 2022, Effects of upper limb robot-assisted rehabilitation on motor function recovery and neuromuscular electrophysiological changes of stroke patients, 9781450395854, 73, 10.1145/3529261.3529274
    3. Yuqi LI, Guozhi HUANG, Pengcheng LU, Longlong HE, Wenhao HUANG, Chuhong HUANG, Qing ZENG, Effect of Rehabilitation Robot Combined with Upper Limb Rehabilitation Training on Hemiplegic Patients in Recovery Stage of Stroke, 2022, 32, 2096-0328, 111, 10.3724/SP.J.1329.2022.02004
    4. Le Wu, Xu Zhang, Xuan Zhang, Xiang Chen, Xun Chen, Metric learning for novel motion rejection in high-density myoelectric pattern recognition, 2021, 227, 09507051, 107165, 10.1016/j.knosys.2021.107165
    5. Dongdong Bu, Shuxiang Guo, Jin Guo, He Li, Hanze Wang, Low-Density sEMG-Based Pattern Recognition of Unrelated Movements Rejection for Wrist Joint Rehabilitation, 2023, 14, 2072-666X, 555, 10.3390/mi14030555
    6. Runping Yuan, Xu Qiao, Congzhi Tang, Ting Zhou, Wenli Chen, Ruyan Song, Yong Jiang, Jan D. Reinhardt, Hongxing Wang, Effects of Uni- vs. Bilateral Upper Limb Robot-Assisted Rehabilitation on Motor Function, Activities of Daily Living, and Electromyography in Hemiplegic Stroke: A Single-Blinded Three-Arm Randomized Controlled Trial, 2023, 12, 2077-0383, 2950, 10.3390/jcm12082950
    7. Beatriz Madroñero-Miguel, César Cuesta-García, Spanish consensus of occupational therapists on upper limb assessment tools in stroke, 2023, 86, 0308-0226, 648, 10.1177/03080226231175574
    8. Wenwen Lv, Kai Liu, Ping Zhou, Fei Huang, Zhiyuan Lu, Surface EMG analysis of weakness distribution in upper limb muscles post-stroke, 2023, 14, 1664-2295, 10.3389/fneur.2023.1135564
    9. Denise Bolonhezi Ribeiro, Larissa Gomes Sartori, María Verónica González Méndez, Roger Burgo de Souza, Daniel Prado Campos, Paulo Broniera Júnior, José J. A. Mendes Junior, Eddy Krueger, MES-FES Interface Enhances Quadriceps Muscle Response in Sitting Position in Incomplete Spinal Cord Injury: Pilot Study, 2024, 6, 2673-1592, 643, 10.3390/prosthesis6030045
    10. I Wayan Widhiada, Tjokorda Gde Tirta Nindhia, Made Adi Guna Dharma, I Dewa Gede Agung Eka Putra, Divyananda Japara, Kadek Yuma Kusuma Dewi, Anak Agung Gede Cahya Wedanta, I Komang Arimbawa, 2024, Development of Muscle Strength Scale Monitoring System for Stroke Patients Using Sensor AD8619-Based Surface Electromyography, 9798400717055, 155, 10.1145/3669754.3669778
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4107) PDF downloads(119) Cited by(13)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog