Citation: Grigory Panasenko, Ruxandra Stavre. Asymptotic analysis of the Stokes flow with variable viscosity in a thin elastic channel[J]. Networks and Heterogeneous Media, 2010, 5(4): 783-812. doi: 10.3934/nhm.2010.5.783
[1] | Grigory Panasenko, Ruxandra Stavre . Asymptotic analysis of a non-periodic flow in a thin channel with visco-elastic wall. Networks and Heterogeneous Media, 2008, 3(3): 651-673. doi: 10.3934/nhm.2008.3.651 |
[2] | Grigory Panasenko, Ruxandra Stavre . Asymptotic analysis of the Stokes flow with variable viscosity in a thin elastic channel. Networks and Heterogeneous Media, 2010, 5(4): 783-812. doi: 10.3934/nhm.2010.5.783 |
[3] | Gung-Min Gie, Makram Hamouda, Roger Temam . Asymptotic analysis of the Navier-Stokes equations in a curved domain with a non-characteristic boundary. Networks and Heterogeneous Media, 2012, 7(4): 741-766. doi: 10.3934/nhm.2012.7.741 |
[4] | Andro Mikelić, Giovanna Guidoboni, Sunčica Čanić . Fluid-structure interaction in a pre-stressed tube with thick elastic walls I: the stationary Stokes problem. Networks and Heterogeneous Media, 2007, 2(3): 397-423. doi: 10.3934/nhm.2007.2.397 |
[5] | S. E. Pastukhova . Asymptotic analysis in elasticity problems on thin periodic structures. Networks and Heterogeneous Media, 2009, 4(3): 577-604. doi: 10.3934/nhm.2009.4.577 |
[6] | Yangyang Qiao, Huanyao Wen, Steinar Evje . Compressible and viscous two-phase flow in porous media based on mixture theory formulation. Networks and Heterogeneous Media, 2019, 14(3): 489-536. doi: 10.3934/nhm.2019020 |
[7] | Iryna Pankratova, Andrey Piatnitski . Homogenization of convection-diffusion equation in infinite cylinder. Networks and Heterogeneous Media, 2011, 6(1): 111-126. doi: 10.3934/nhm.2011.6.111 |
[8] | Ciro D’Apice, Umberto De Maio, T. A. Mel'nyk . Asymptotic analysis of a perturbed parabolic problem in a thick junction of type 3:2:2. Networks and Heterogeneous Media, 2007, 2(2): 255-277. doi: 10.3934/nhm.2007.2.255 |
[9] | Grégoire Allaire, Tuhin Ghosh, Muthusamy Vanninathan . Homogenization of stokes system using bloch waves. Networks and Heterogeneous Media, 2017, 12(4): 525-550. doi: 10.3934/nhm.2017022 |
[10] | Serge Nicaise, Cristina Pignotti . Asymptotic analysis of a simple model of fluid-structure interaction. Networks and Heterogeneous Media, 2008, 3(4): 787-813. doi: 10.3934/nhm.2008.3.787 |
[1] | S. Čanić and A. Mikelić, Effective equations describing the flow of a viscous incompressible fluid through a long elastic tube, C. R. Acad. Sci. Paris, Série IIb, 330 (2002), 661-666. |
[2] | S. Čanić and A. Mikelić, A two-dimensional effective model describing fluid-structure interaction in blood flow: Analysis, simulation and experimental validation, C. R. Acad. Sci. Mécanique, 333 (2005), 867-883. |
[3] | C. Conca, J. San Martin and M. Tucsnak, Existence of solutions for the equations modeling the motion of a rigid body in a viscous fluid, Comm. Partial Diff. Eqns., 25 (2000), 1019-1042. |
[4] | B. Desjardins, M. J. Esteban, C. Grandmont and P. le Talec, Weak solutions for a fluid-structure interaction model, Rev. Mat. Comput., 14 (2001), 523-538. |
[5] |
B. Desjardins and M. J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Rational Mech. Anal., 146 (1999), 59-71. doi: 10.1007/s002050050136
![]() |
[6] | G. P. Galdi, "An Introduction to the Mathematical Theory of Navier-Stokes Equations," Vol. I, Springer-Verlag, New York, 1994. |
[7] | V. Girault and P. A. Raviart, "Finite Element Methods for Navier-Stokes Equations," Springer-Verlag, Berlin, 1986. |
[8] |
C. Grandmont and Y. Maday, Existence for an unsteady fluid-structure interaction problem, M2AN Math. Model. Numer. Anal., 34 (2000), 609-636. doi: 10.1051/m2an:2000159
![]() |
[9] |
B. M. Haines, I. S. Aranson, L. Berlyand and D. A. Karpeev, Effective viscosity of dilute bacterial suspensions: A two dimensional model, Phys. Biol., 5 (2008), 1-9. doi: 10.1088/1478-3975/5/4/046003
![]() |
[10] | J-L. Lions, "Quelques Mèthodes de Résolution des Problèmes aux Limites Non Linéaires," Dunod, Gauthier-Villars, Paris, 1969. |
[11] | S. A. Nazarov and B. A. Plamenevskii, "Elliptic Problems in Domains with Piecewise Smooth Boundaries," Walter de Gruyter, Berlin, 1994. |
[12] |
G. P. Panasenko and R. Stavre, Asymptotic analysis of a periodic flow in a thin channel with visco-elastic wall, J. Math. Pures Appl., 85 (2006), 558-579. doi: 10.1016/j.matpur.2005.10.011
![]() |
[13] | G. P. Panasenko and R. Stavre, Asymptotic analysis of a non-periodic flow in a thin channel with visco-elastic wall, Networks and Heterogeneous Media, 3 (2008), 651-673. |
[14] |
G. P. Panasenko, Y. Sirakov and R. Stavre, Asymptotic and numerical modelling of a flow in a thin channel with visco-elastic wall, Int. J. Multiscale Comput. Engng., 5 (2007), 473-482. doi: 10.1615/IntJMultCompEng.v5.i6.40
![]() |
[15] | D. Serre, Chute libre d'un solide dans un fluide visqueux incompressible. Existence, Japan J. Appl. Math., 4 (1987), 99-110. |
[16] | R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis," 3rd edition, North-Holland, Amsterdam, 1984. |
1. | G.P. Panasenko, R. Stavre, Asymptotic analysis of the Stokes flow in a thin cylindrical elastic tube, 2012, 91, 0003-6811, 1999, 10.1080/00036811.2011.584187 | |
2. | R. Fares, G. P. Panasenko, R. Stavre, A Viscous Fluid Flow through a Thin Channel with Mixed Rigid-Elastic Boundary: Variational and Asymptotic Analysis, 2012, 2012, 1085-3375, 1, 10.1155/2012/152743 | |
3. | G. P. Panasenko, R. Stavre, Three Dimensional Asymptotic Analysis of an Axisymmetric Flow in a Thin Tube with Thin Stiff Elastic Wall, 2020, 22, 1422-6928, 10.1007/s00021-020-0484-8 | |
4. | R. Bunoiu, G. Cardone, R. Kengne, J. L. Woukeng, Homogenization of 2D Cahn–Hilliard–Navier–Stokes system, 2020, 6, 2296-9020, 377, 10.1007/s41808-020-00074-w | |
5. | V A Kozlov, S A Nazarov, A one-dimensional model of flow in a junction of thin channels, including arterial trees, 2017, 208, 1064-5616, 1138, 10.1070/SM8748 | |
6. | Владимир Аркадьевич Козлов, Vladimir Arkad'evich Kozlov, Сергей Александрович Назаров, Sergei Aleksandrovich Nazarov, Одномерная модель течения в сочленении тонких каналов в том числе артериальных деревьев, 2017, 208, 0368-8666, 56, 10.4213/sm8748 | |
7. | Irina Malakhova-Ziablova, Grigory Panasenko, Ruxandra Stavre, Asymptotic analysis of a thin rigid stratified elastic plate – viscous fluid interaction problem, 2016, 95, 0003-6811, 1467, 10.1080/00036811.2015.1132311 | |
8. | V. A. Kozlov, S. A. Nazarov, Asymptotic Models of the Blood Flow in Arteries and Veins, 2013, 194, 1072-3374, 44, 10.1007/s10958-013-1505-4 | |
9. | Ruxandra Stavre, A boundary control problem for the blood flow in venous insufficiency. The general case, 2016, 29, 14681218, 98, 10.1016/j.nonrwa.2015.11.003 | |
10. | Alexandra Ciorogar, Ruxandra Stavre, A Thermal Fluid–Structure Interaction Problem: Modeling, Variational and Numerical Analysis, 2023, 25, 1422-6928, 10.1007/s00021-023-00783-x | |
11. | Kristina Kaulakytė, Nikolajus Kozulinas, Grigory Panasenko, Konstantinas Pileckas, Vytenis Šumskas, Poiseuille-Type Approximations for Axisymmetric Flow in a Thin Tube with Thin Stiff Elastic Wall, 2023, 11, 2227-7390, 2106, 10.3390/math11092106 | |
12. | G. P. Panasenko, R. Stavre, Asymptotic analysis of a viscous fluid–thin plate interaction: Periodic flow, 2014, 24, 0218-2025, 1781, 10.1142/S0218202514500079 |