Application of a coupled FV/FE multiscale method to cement media

  • Received: 01 January 2010 Revised: 01 June 2010
  • 74Q05, 65N30.

  • We present here some results provided by a multiscale resolution method using both Finite Volumes and Finite Elements. This method is aimed at solving very large diffusion problems with highly oscillating coefficients. As an illustrative example, we simulate models of cement media, where very strong variations of diffusivity occur. As a by-product of our simulations, we compute the effective diffusivities of these media. After a short introduction, we present a theorical description of our method. Numerical experiments on a two dimensional cement paste are presented subsequently. The third section describes the implementation of our method in the calculus code MPCube and its application to a sample of mortar. Finally, we discuss strengths and weaknesses of our method, and present our future works on this topic.

    Citation: Thomas Abballe, Grégoire Allaire, Éli Laucoin, Philippe Montarnal. Application of a coupled FV/FE multiscale method to cement media[J]. Networks and Heterogeneous Media, 2010, 5(3): 603-615. doi: 10.3934/nhm.2010.5.603

    Related Papers:

    [1] Thomas Abballe, Grégoire Allaire, Éli Laucoin, Philippe Montarnal . Application of a coupled FV/FE multiscale method to cement media. Networks and Heterogeneous Media, 2010, 5(3): 603-615. doi: 10.3934/nhm.2010.5.603
    [2] Zhangxin Chen . On the control volume finite element methods and their applications to multiphase flow. Networks and Heterogeneous Media, 2006, 1(4): 689-706. doi: 10.3934/nhm.2006.1.689
    [3] Patrick Henning . Convergence of MsFEM approximations for elliptic, non-periodic homogenization problems. Networks and Heterogeneous Media, 2012, 7(3): 503-524. doi: 10.3934/nhm.2012.7.503
    [4] Antoine Gloria Cermics . A direct approach to numerical homogenization in finite elasticity. Networks and Heterogeneous Media, 2006, 1(1): 109-141. doi: 10.3934/nhm.2006.1.109
    [5] Eric Chung, Yalchin Efendiev, Ke Shi, Shuai Ye . A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media. Networks and Heterogeneous Media, 2017, 12(4): 619-642. doi: 10.3934/nhm.2017025
    [6] Patrick Henning, Mario Ohlberger . The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Networks and Heterogeneous Media, 2010, 5(4): 711-744. doi: 10.3934/nhm.2010.5.711
    [7] Jérôme Droniou . Remarks on discretizations of convection terms in Hybrid mimetic mixed methods. Networks and Heterogeneous Media, 2010, 5(3): 545-563. doi: 10.3934/nhm.2010.5.545
    [8] Mario Ohlberger, Ben Schweizer, Maik Urban, Barbara Verfürth . Mathematical analysis of transmission properties of electromagnetic meta-materials. Networks and Heterogeneous Media, 2020, 15(1): 29-56. doi: 10.3934/nhm.2020002
    [9] Giuliano Aretusi, Christian Cardillo, Larry Murcia Terranova, Ewa Bednarczyk . A dissipation model for concrete based on an enhanced Timoshenko beam. Networks and Heterogeneous Media, 2024, 19(2): 700-723. doi: 10.3934/nhm.2024031
    [10] Frederike Kissling, Christian Rohde . The computation of nonclassical shock waves with a heterogeneous multiscale method. Networks and Heterogeneous Media, 2010, 5(3): 661-674. doi: 10.3934/nhm.2010.5.661
  • We present here some results provided by a multiscale resolution method using both Finite Volumes and Finite Elements. This method is aimed at solving very large diffusion problems with highly oscillating coefficients. As an illustrative example, we simulate models of cement media, where very strong variations of diffusivity occur. As a by-product of our simulations, we compute the effective diffusivities of these media. After a short introduction, we present a theorical description of our method. Numerical experiments on a two dimensional cement paste are presented subsequently. The third section describes the implementation of our method in the calculus code MPCube and its application to a sample of mortar. Finally, we discuss strengths and weaknesses of our method, and present our future works on this topic.


  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3586) PDF downloads(65) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog