Research article Special Issues

Theory of partial agonist activity of steroid hormones

  • Received: 30 January 2015 Accepted: 07 April 2015 Published: 15 April 2015
  • The different amounts of residual partial agonist activity (PAA) of antisteroids under assorted conditions have long been useful in clinical applications but remain largely unexplained. Not only does a given antagonist often afford unequal induction for multiple genes in the same cell but also the activity of the same antisteroid with the same gene changes with variations in concentration of numerous cofactors. Using glucocorticoid receptors as a model system,we have recently succeeded in constructing from first principles a theory that accurately describes how cofactors can modulate the ability of agonist steroids to regulate both gene induction and gene repression. We now extend this framework to the actions of antisteroids in gene induction. The theory shows why changes in PAA cannot be explained simply by differences in ligand affinity for receptor and requires action at a second step or site in the overall sequence of reactions. The theory also provides a method for locating the position of this second site,relative to a concentration limited step (CLS),which is a previously identified step in glucocorticoid-regulated transactivation that always occurs at the same position in the overall sequence of events of gene induction. Finally,the theory predicts that classes of antagonist ligands may be grouped on the basis of their maximal PAA with excess added cofactor and that the members of each class differ by how they act at the same step in the overall gene induction process. Thus,this theory now makes it possible to predict how different cofactors modulate antisteroid PAA,which should be invaluable in developing more selective antagonists.

    Citation: Carson C. Chow, Karen M. Ong, Benjamin Kagan, S. Stoney Simons Jr.. Theory of partial agonist activity of steroid hormones[J]. AIMS Molecular Science, 2015, 2(2): 101-123. doi: 10.3934/molsci.2015.2.101

    Related Papers:

    [1] Lunyi Liu, Qunying Wu . Complete integral convergence for weighted sums of negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(9): 22319-22337. doi: 10.3934/math.20231138
    [2] Mingzhou Xu, Kun Cheng, Wangke Yu . Complete convergence for weighted sums of negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2022, 7(11): 19998-20019. doi: 10.3934/math.20221094
    [3] Mingzhou Xu . Complete convergence and complete moment convergence for maximal weighted sums of extended negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(8): 19442-19460. doi: 10.3934/math.2023992
    [4] Shuyan Li, Qunying Wu . Complete integration convergence for arrays of rowwise extended negatively dependent random variables under the sub-linear expectations. AIMS Mathematics, 2021, 6(11): 12166-12181. doi: 10.3934/math.2021706
    [5] Mingzhou Xu . On the complete moment convergence of moving average processes generated by negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2024, 9(2): 3369-3385. doi: 10.3934/math.2024165
    [6] He Dong, Xili Tan, Yong Zhang . Complete convergence and complete integration convergence for weighted sums of arrays of rowwise $ m $-END under sub-linear expectations space. AIMS Mathematics, 2023, 8(3): 6705-6724. doi: 10.3934/math.2023340
    [7] Chengcheng Jia, Qunying Wu . Complete convergence and complete integral convergence for weighted sums of widely acceptable random variables under the sub-linear expectations. AIMS Mathematics, 2022, 7(5): 8430-8448. doi: 10.3934/math.2022470
    [8] Mingzhou Xu . Complete convergence of moving average processes produced by negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(7): 17067-17080. doi: 10.3934/math.2023871
    [9] Xiaocong Chen, Qunying Wu . Complete convergence and complete integral convergence of partial sums for moving average process under sub-linear expectations. AIMS Mathematics, 2022, 7(6): 9694-9715. doi: 10.3934/math.2022540
    [10] Haiwu Huang, Yuan Yuan, Hongguo Zeng . An extension on the rate of complete moment convergence for weighted sums of weakly dependent random variables. AIMS Mathematics, 2023, 8(1): 622-632. doi: 10.3934/math.2023029
  • The different amounts of residual partial agonist activity (PAA) of antisteroids under assorted conditions have long been useful in clinical applications but remain largely unexplained. Not only does a given antagonist often afford unequal induction for multiple genes in the same cell but also the activity of the same antisteroid with the same gene changes with variations in concentration of numerous cofactors. Using glucocorticoid receptors as a model system,we have recently succeeded in constructing from first principles a theory that accurately describes how cofactors can modulate the ability of agonist steroids to regulate both gene induction and gene repression. We now extend this framework to the actions of antisteroids in gene induction. The theory shows why changes in PAA cannot be explained simply by differences in ligand affinity for receptor and requires action at a second step or site in the overall sequence of reactions. The theory also provides a method for locating the position of this second site,relative to a concentration limited step (CLS),which is a previously identified step in glucocorticoid-regulated transactivation that always occurs at the same position in the overall sequence of events of gene induction. Finally,the theory predicts that classes of antagonist ligands may be grouped on the basis of their maximal PAA with excess added cofactor and that the members of each class differ by how they act at the same step in the overall gene induction process. Thus,this theory now makes it possible to predict how different cofactors modulate antisteroid PAA,which should be invaluable in developing more selective antagonists.


    Peng [1,2] introduced seminal concepts of the sub-linear expectations space to study the uncertainty in probability. The works of Peng [1,2] stimulate many scholars to investigate the results under sub-linear expectations space, extending those in classic probability space. Zhang [3,4] got exponential inequalities and Rosenthal's inequality under sub-linear expectations. For more limit theorems under sub-linear expectations, the readers could refer to Zhang [5], Xu and Zhang [6,7], Wu and Jiang [8], Zhang and Lin [9], Zhong and Wu [10], Chen [11], Chen and Wu [12], Zhang [13], Hu et al. [14], Gao and Xu [15], Kuczmaszewska [16], Xu and Cheng [17,18,19], Xu et al. [20] and references therein.

    In probability space, Shen et al. [21] obtained equivalent conditions of complete convergence and complete moment convergence for extended negatively dependent random variables. For references on complete moment convergence and complete convergence in probability space, the reader could refer to Hsu and Robbins [22], Chow [23], Ko [24], Meng et al. [25], Hosseini and Nezakati [26], Meng et al. [27] and refercences therein. Inspired by the work of Shen et al. [21], we try to investigate complete convergence and complete moment convergence for negatively dependent (ND) random variables under sub-linear expectations, and the Marcinkiewicz-Zygmund type result for ND random variables under sub-linear expectations, which complements the relevant results in Shen et al. [21].

    Recently, Srivastava et al. [28] introduced and studied comcept of statistical probability convergence. Srivastava et al. [29] investigated the relevant results of statistical probability convergence via deferred Nörlund summability mean. For more recent works, the interested reader could refer to Srivastava et al. [30,31,32], Paikary et al. [33] and references therein. We conjecture the relevant notions and results of statistical probability convergence could be extended to that under sub-linear expectation.

    We organize the remainders of this article as follows. We cite relevant basic notions, concepts and properties, and present relevant lemmas under sub-linear expectations in Section 2. In Section 3, we give our main results, Theorems 3.1 and 3.2, the proofs of which are given in Section 4.

    In this article, we use notions as in the works by Peng [2], Zhang [4]. Suppose that $ (\Omega, {\mathcal F}) $ is a given measurable space. Assume that $ {\mathcal H} $ is a collection of all random variables on $ (\Omega, {\mathcal F}) $ satisfying $ \varphi(X_1, \cdots, X_n)\in {\mathcal H} $ for $ X_1, \cdots, X_n\in {\mathcal H} $, and each $ \varphi\in {\mathcal C}_{l, Lip}(\mathbb{R}^n) $, where $ {\mathcal C}_{l, Lip}(\mathbb{R}^n) $ represents the space of $ \varphi $ fulfilling

    $ |\varphi(\mathbf{x})-\varphi(\mathbf{y})|\le C(1+|\mathbf{x}|^m+|\mathbf{y}|^m)(|\mathbf{x}-\mathbf{y}|), \forall \mathbf{x}, \mathbf{y}\in \mathbb{R}^n $

    for some $ C > 0 $, $ m\in \mathbb{N} $ relying on $ \varphi $.

    Definition 2.1. A sub-linear expectation $ \mathbb{E} $ on $ {\mathcal H} $ is a functional $ \mathbb{E}:{\mathcal H}\mapsto \bar{ \mathbb{R}}: = [-\infty, \infty] $ fulfilling the following: for every $ X, Y\in {\mathcal H} $,

    $ \rm (a) $ $ X\ge Y $ yields $ \mathbb{E}[X]\ge \mathbb{E}[Y] $;

    $ \rm (b) $ $ \mathbb{E}[c] = c $, $ \forall c\in \mathbb{R} $;

    $ \rm (c) $ $ \mathbb{E}[\lambda X] = \lambda \mathbb{E}[X] $, $ \forall \lambda\ge 0 $;

    $ \rm (d) $ $ \mathbb{E}[X+Y]\le \mathbb{E}[X]+ \mathbb{E}[Y] $ whenever $ \mathbb{E}[X]+ \mathbb{E}[Y] $ is not of the form $ \infty-\infty $ or $ -\infty+\infty $.

    We name a set function $ V:{\mathcal F}\mapsto[0, 1] $ a capacity if

    $ \rm (a) $$ V(\emptyset) = 0 $, $ V(\Omega) = 1 $;

    $ \rm (b) $$ V(A)\le V(B) $, $ A\subset B $, $ A, B\in {\mathcal F} $.

    Moreover, if $ V $ is continuous, then $ V $ obey

    $ \rm (c) $ $ A_n\uparrow A $ concludes $ V(A_n)\uparrow V(A) $;

    $ \rm (d) $ $ A_n\downarrow A $ concludes $ V(A_n)\downarrow V(A) $.

    $ V $ is named to be sub-additive when $ V(A+B)\le V(A)+V(B) $, $ A, B\in {\mathcal F} $.

    Under the sub-linear expectation space $ (\Omega, {\mathcal H}, \mathbb{E}) $, set $ \mathbb{V}(A): = \inf\{ \mathbb{E}[\xi]:I_A\le \xi, \xi\in {\mathcal H}\} $, $ \forall A\in {\mathcal F} $ (cf. Zhang [3,4,9,13], Chen and Wu [12], Xu et al. [20]). $ \mathbb{V} $ is a sub-additive capacity. Set

    $ \mathbb{V}^{*}(A) = \inf\left\{\sum\limits_{n = 1}^{\infty} \mathbb{V}(A_n):A\subset\bigcup\limits_{n = 1}^{\infty}A_n\right\}, A\in {\mathcal F}. $

    By Definition 4.2 and Lemma 4.3 of Zhang [34], if $ \mathbb{E} = \mathbf{E} $ is linear expectation, $ \mathbb{V}^{*} $ coincide with the probability measure introduced by the linear expectation $ \mathbf{E} $. As in Zhang [3], $ \mathbb{V}^{*} $ is countably sub-additive, $ \mathbb{V}^{*}(A)\le \mathbb{V}(A) $. Hence, in Theorem 3.1, Corollary 3.1, $ \mathbb{V} $ could be replaced by $ \mathbb{V}^{*} $, implying that the results here could be considered as natural extensions of the corresponding ones in classic probability space. Write

    $ C_{ \mathbb{V}}(X): = \int_{0}^{\infty} \mathbb{V}(X > x) \mathrm{d} x +\int_{-\infty}^{0}( \mathbb{V}(X > x)-1) \mathrm{d} x. $

    Assume $ \mathbf{X} = (X_1, \cdots, X_m) $, $ X_i\in{\mathcal H} $ and $ \mathbf{Y} = (Y_1, \cdots, Y_n) $, $ Y_i\in {\mathcal H} $ are two random vectors on $ (\Omega, {\mathcal H}, \mathbb{E}) $. $ \mathbf{Y} $ is called to be negatively dependent to $ \mathbf{X} $, if for $ \psi_1 $ on $ {\mathcal C}_{l, Lip}(\mathbb{R}^m) $, $ \psi_2 $ on $ {\mathcal C}_{l, Lip}(\mathbb{R}^n) $, we have $ \mathbb{E}[\psi_1(\mathbf{X})\psi_2(\mathbf{Y})]\le \mathbb{E}[\psi_1(\mathbf{X})] \mathbb{E}[\psi_2(\mathbf{Y})] $ whenever $ \psi_1(\mathbf{X})\ge 0 $, $ \mathbb{E}[\psi_2(\mathbf{Y})]\ge 0 $, $ \mathbb{E}[|\psi_1(\mathbf{X})\psi_2(\mathbf{Y})|] < \infty $, $ \mathbb{E}[|\psi_1(\mathbf{X})|] < \infty $, $ \mathbb{E}[|\psi_2(\mathbf{Y})|] < \infty $, and either $ \psi_1 $ and $ \psi_2 $ are coordinatewise nondecreasing or $ \psi_1 $ and $ \psi_2 $ are coordinatewise nonincreasing (cf. Definition 2.3 of Zhang [3], Definition 1.5 of Zhang [4]).

    $ \{X_n\}_{n = 1}^{\infty} $ is called to be negatively dependent, if $ X_{n+1} $ is negatively dependent to $ (X_{1}, \cdots, X_{n}) $ for each $ n\ge 1 $. The existence of negatively dependent random variables $ \{X_n\}_{n = 1}^{\infty} $ under sub-linear expectations could be yielded by Example 1.6 of Zhang [4] and Kolmogorov's existence theorem in classic probabililty space. We below give an concrete example.

    Example 2.1. Let $ {\mathcal P} = \{Q_1, Q_2\} $ be a family of probability measures on $ (\Omega, {\mathcal F}) $. Suppose that $ \{X_n\}_{n = 1}^{\infty} $ are independent, identically distributed under each $ Q_i $, $ i = 1, 2 $ with $ Q_1(X_1 = -1) = Q_1(X_1 = 1) = 1/2 $, $ Q_2(X_1 = -1) = 1 $. Define $ \mathbb{E}[\xi] = \sup_{Q\in {\mathcal P}}\mathbf{E}_{Q}[\xi] $, for each random variable $ \xi $. Here $ \mathbb{E}[\cdot] $ is a sub-linear expectation. By the discussion of Example 1.6 of Zhang [4], we see that $ \{X_n\}_{n = 1}^{\infty} $ are negatively dependent random variables under $ \mathbb{E} $.

    Assume that $ \mathbf{X}_1 $ and $ \mathbf{X}_2 $ are two $ n $-dimensional random vectors in sub-linear expectation spaces $ (\Omega_1, {\mathcal H}_1, \mathbb{E}_1) $ and $ (\Omega_2, {\mathcal H}_2, \mathbb{E}_2) $ repectively. They are named identically distributed if for every $ \psi\in{\mathcal C}_{l, Lip}(\mathbb{R}^n) $,

    $ \mathbb{E}_1[\psi(\mathbf{X}_1)] = \mathbb{E}_2[\psi(\mathbf{X}_2)]. \mbox{ } $

    $ \{X_n\}_{n = 1}^{\infty} $ is called to be identically distributed if for every $ i\ge 1 $, $ X_i $ and $ X_1 $ are identically distributed.

    In this article we assume that $ \mathbb{E} $ is countably sub-additive, i.e., $ \mathbb{E}(X)\le \sum_{n = 1}^{\infty} \mathbb{E}(X_n) $ could be implied by $ X\le \sum_{n = 1}^{\infty}X_n $, $ X, X_n\in {\mathcal H} $, and $ X\ge 0 $, $ X_n\ge 0 $, $ n = 1, 2, \ldots $. Write $ S_n = \sum_{i = 1}^{n}X_i $, $ n\ge 1 $. Let $ C $ denote a positive constant which may vary in different occasions. $ I(A) $ or $ I_A $ represent the indicator function of $ A $. The notion $ a_x\approx b_x $ means that there exist two positive constants $ C_1 $, $ C_2 $ such that $ C_1 |b_x|\le |a_x|\le C_2 |b_x| $.

    As in Zhang [4], by definition, if $ X_1, X_2, \ldots, X_n $ are negatively dependent random variables and $ f_1 $, $ f_2, \ldots, f_n $ are all non increasing (or non decreasing) functions, then $ f_1(X_1) $, $ f_2(X_{2}), \ldots, f_n(X_{n}) $ are still negatively dependent random variables.

    We cite the useful inequalities under sub-linear expectations.

    Lemma 2.1. (See Lemma 4.5 (III) of Zhang [3]) If $ \mathbb{E} $ is countably sub-additive under $ (\Omega, {\mathcal H}, \mathbb{E}) $, then for $ X\in {\mathcal H} $,

    $ \mathbb{E}|X|\le C_{ \mathbb{V}}\left(|X|\right). $

    Lemma 2.2. (See Lemmas 2.3, 2.4 of Xu et al. [20] and Theorem 2.1 of Zhang [4]) Assume that $ p\ge 1 $ and $ \{X_n; n\ge 1\} $ is a sequence of negatively dependent random varables under $ (\Omega, {\mathcal H}, \mathbb{E}) $. Then there exists a positive constant $ C = C(p) $ relying on $ p $ such that

    $ E[|nj=1Xj|p]C{ni=1E|Xi|p+(ni=1[|E(Xi)|+|E(Xi)|])p},1p2,
    $
    (2.1)
    $ E[max1in|ij=1Xj|p]C(logn)p{ni=1E|Xi|p+(ni=1[|E(Xi)|+|E(Xi)|])p},1p2,
    $
    (2.2)
    $ E[max1in|ij=1Xi|p]C{ni=1E|Xi|p+(ni=1EX2i)p/2+(ni=1[|E(Xi)|+|E(Xi)|])p},p2.
    $
    (2.3)

    Lemma 2.3. Assume that $ X\in{\mathcal H} $, $ \alpha > 0 $, $ \gamma > 0 $, $ C_{ \mathbb{V}}\left(|X|^{\alpha}\right) < \infty $. Then there exists a positive constant $ C $ relying on $ \alpha, \gamma $ such that

    $ \int_{0}^{\infty} \mathbb{V}\left\{|X| > \gamma y\right\}y^{\alpha-1} \mathrm{d} y\le C C_{ \mathbb{V}}\left(|X|^{\alpha}\right) < \infty. $

    Proof. By the method of substitution of definite integral, letting $ \gamma y = z^{1/\alpha} $, we get

    $ \int_{0}^{\infty} \mathbb{V}\left\{|X| > \gamma y\right\}y^{\alpha-1} \mathrm{d} y\le \int_{0}^{\infty} \mathbb{V}\left\{|X|^{\alpha} > z\right\}(z^{1/\alpha}/\gamma)^{\alpha -1} z^{1/\alpha -1}/\gamma \mathrm{d} z\le CC_{ \mathbb{V}}\left(|X|^{\alpha}\right) < \infty. $

    Lemma 2.4. Let $ Y_n, Z_n\in {\mathcal H} $. Then for any $ q > 1 $, $ \varepsilon > 0 $ and $ a > 0 $,

    $ E(max1jn|ji=1(Yi+Zi)|εa)+(1εq+1q1)1aq1E(max1jn|ji=1Yi|q)+E(max1jn|ji=1Zi|).
    $
    (2.4)

    Proof. By Markov' inequality under sub-linear expectations, Lemma 2.1, and the similar proof of Lemma 2.4 of Sung [35], we could finish the proof. Hence, the proof is omitted here.

    Our main results are below.

    Theorem 3.1. Suppose $ \alpha > \frac12 $ and $ \alpha p > 1 $. Assume that $ \{X_n, n\ge 1\} $ is a sequence of negatively dependent random variables, and for each $ n\ge1 $, $ X_n $ is identically distributed as $ X $ under sub-linear expectation space $ (\Omega, {\mathcal H}, \mathbb{E}) $. Moreover, assume $ \mathbb{E}(X) = \mathbb{E}(-X) = 0 $ if $ p\ge 1 $. Suppose $ C_{ \mathbb{V}}\left(|X|^p\right) < \infty $. Then for all $ \varepsilon > 0 $,

    $ n=1nαp2V{max1jn|ji=1Xi|>εnα}<.
    $
    (3.1)

    Remark 3.1. By Example 2.1, the assumption $ \mathbb{E}(X) = \mathbb{E}(-X) = 0 $ if $ p\ge 1 $ in Theorem 3.1 can not be weakened to $ \mathbb{E}(X) = 0 $ if $ p\ge 1 $. In fact, in the case of Example 2.1, if $ \frac12 < \alpha\le 1 $, $ \alpha p > 1 $, then for any $ 0 < \varepsilon < 1 $,

    $ \sum\limits_{n = 1}^{\infty}n^{\alpha p-2} \mathbb{V}\left\{\max\limits_{1\le j\le n}\left|\sum\limits_{i = 1}^{j}X_i\right| > \varepsilon n^{\alpha}\right\}\ge\sum\limits_{n = 1}^{\infty}n^{\alpha p-2} \mathbb{V}\left\{\max\limits_{1\le j\le n}\left|\sum\limits_{i = 1}^{j}X_i\right|\ge n\right\} = \sum\limits_{n = 1}^{\infty}n^{\alpha p-2} = +\infty, $

    which implies that Theorems 3.1, 3.2, Corollary 3.1 do not hold. However, by Example 1.6 of Zhang [4], the assumptions of Theorem 3.3, Corollary 3.2 hold for random variables in Example 2.1, hence Theorem 3.3, Corollary 3.2 are valid in this example.

    By Theorem 3.1, we could get the Marcinkiewicz-Zygmund strong law of large numbers for negatively dependent random variables under sub-linear expectations below.

    Corollary 3.1. Let $ \alpha > \frac12 $ and $ \alpha p > 1 $. Assume that under sub-linear expectation space $ (\Omega, {\mathcal H}, \mathbb{E}) $, $ \{X_n\} $ is a sequence of negatively dependent random variables and for each $ n $, $ X_n $ is identically distributed as $ X $. Moreover, assume $ \mathbb{E}(X) = \mathbb{E}(-X) = 0 $ if $ p\ge 1 $. Assume that $ \mathbb{V} $ induced by $ \mathbb{E} $ is countably sub-additive. Suppose $ C_{ \mathbb{V}}\{|X|^p\} < \infty $. Then

    $ V(lim supn1nα|ni=1Xi|>0)=0.
    $
    (3.2)

    Theorem 3.2. If the assumptions of Theorem 3.1 hold for $ p\ge1 $ and $ C_{ \mathbb{V}}\{|X|^p\log^{\theta}|X|\} < \infty $ for some $ \theta > \max\{\frac{\alpha p-1}{\alpha -\frac12}, p\} $, then for any $ \varepsilon > 0 $,

    $ n=1nαp2αE(max1jn|ji=1Xi|εnα)+<.
    $
    (3.3)

    By the similar proof of Theorem 3.1, with Theorem 2.1 (b) for negative dependent random variables of Zhang [4] (cf. the proof of Theorem 2.1 (c) there) in place of Lemma 2.2 here, we could obtain the following result.

    Theorem 3.3. Suppose $ \alpha > \frac12 $, $ p\ge1 $, and $ \alpha p > 1 $. Assume that $ X_k $ is negatively dependent to $ (X_{k+1}, \ldots, X_n) $, for each $ k = 1, \ldots, n $, $ n\ge 1 $. Suppose for each $ n $, $ X_n $ is identically distributed as $ X $ under sub-linear expectation space $ (\Omega, {\mathcal H}, \mathbb{E}) $. Suppose $ C_{ \mathbb{V}}\left(|X|^p\right) < \infty $. Then for all $ \varepsilon > 0 $,

    $ n=1nαp2V{max1jnji=1[XiE(Xi)]>εnα}<,
    $
    $ n=1nαp2V{max1jnji=1[XiE(Xi)]>εnα}<.
    $

    By the similar proof of Corollary 3.1, with Theorem 3.3 in place of Theorem 3.1, we get the following result.

    Corollary 3.2. Let $ \alpha > \frac12 $, $ p\ge 1 $, and $ \alpha p > 1 $. Assume that $ X_k $ is negatively dependent to $ (X_{k+1}, \ldots, X_n) $, for each $ k = 1, \ldots, n $, $ n\ge 1 $. Suppose for each $ n $, $ X_n $ is identically distributed as $ X $ under sub-linear expectation space $ (\Omega, {\mathcal H}, \mathbb{E}) $. Assume that $ \mathbb{V} $ induced by $ \mathbb{E} $ is countably sub-additive. Suppose $ C_{ \mathbb{V}}\{|X|^p\} < \infty $. Then

    $ V({lim supn1nαni=1[XiE(Xi)]>0}{lim supn1nαni=1[XiE(Xi)]>0})=0.
    $

    By the similar proof of Theorem 3.1 and Corollary 3.1, and adapting the proof of (4.10), we could obtain the following result.

    Corollary 3.3. Suppose $ \alpha > 1 $ and $ p\ge 1 $. Assume that $ \{X_n, n\ge 1\} $ is a sequence of negatively dependent random variables, and for each $ n\ge1 $, $ X_n $ is identically distributed as $ X $ under sub-linear expectation space $ (\Omega, {\mathcal H}, \mathbb{E}) $. Suppose $ C_{ \mathbb{V}}\left(|X|^p\right) < \infty $. Then for all $ \varepsilon > 0 $,

    $ n=1nαp2V{max1jnji=1[XiE(Xi)]>εnα}<,
    $
    $ n=1nαp2V{max1jnji=1[XiE(Xi)]>εnα}<.
    $

    Moreover assume that $ \mathbb{V} $ induced by $ \mathbb{E} $ is countably sub-additive. Then

    $ V({lim supn1nαni=1[XiE(Xi)]>0}{lim supn1nαni=1[XiE(Xi)]>0})=0.
    $

    By the discussion below Definition 4.1 of Zhang [34], and Corollary 3.2, we conjecture the following.

    Conjecture 3.1. Suppose $ \frac12 < \alpha\le 1 $ and $ \alpha p > 1 $. Assume that $ \{X_n, n\ge 1\} $ is a sequence of negatively dependent random variables, and for each $ n\ge1 $, $ X_n $ is identically distributed as $ X $ under sub-linear expectation space $ (\Omega, {\mathcal H}, \mathbb{E}) $. Assume that $ \mathbb{V} $ induced by $ \mathbb{E} $ is continuous. Suppose $ C_{ \mathbb{V}}\{|X|^p\} < \infty $. Then

    $ V({lim supn1nαni=1[XiE(Xi)]>0}{lim supn1nαni=1[XiE(Xi)]>0})=0.
    $

    Proof of Theorem 3.1. We investigate the following cases.

    Case 1. $ 0 < p < 1 $.

    For fixed $ n\ge 1 $, for $ 1\le i\le n $, write

    $ Y_{ni} = -n^{\alpha}I\{X_i < -n^{\alpha}\}+X_iI\{|X_i|\le n^{\alpha}\}+n^{\alpha}I\{X_i > n^{\alpha}\}, $
    $ Z_{ni} = (X_i-n^{\alpha})I\{X_i > n^{\alpha}\}+(X_i+n^{\alpha})I\{X_i < -n^{\alpha}\}, $
    $ Y_{n} = -n^{\alpha}I\{X < -n^{\alpha}\}+XI\{|X|\le n^{\alpha}\}+n^{\alpha}I\{X > n^{\alpha}\}, $
    $ Z_{n} = X-Y_n. $

    Observing that $ X_i = Y_{ni}+Z_{ni} $, we see that for all $ \varepsilon > 0 $,

    $ n=1nαp2V{max1jn|ji=1Xi|>εnα}n=1nαp2V{max1jn|ji=1Yni|>εnα/2}+n=1nαp2V{max1jn|ji=1Zni|>εnα/2}=:I1+I2.
    $
    (4.1)

    By Markov's inequality under sub-linear expectations, $ C_r $ inequality, and Lemmas 2.1, 2.3, we conclude that

    $ I1Cn=1nαp2αni=1E|Yni|=Cn=1nαp1αE|Yn|Cn=1nαp1αCV(|Yn|)Cn=1nαp1αnα0V{|Yn|>x}dx=Cn=1nαp1αnk=1kα(k1)αV{|X|>x}dx=Ck=1kα(k1)αV{|X|>x}dxn=knαp1α=Ck=1kα1V{|X|>(k1)α}kαpαCk=1kαp1V{|X|>kα}+CC0xαp1V{|X|>xα}dx+CCCV{|X|p}+C<,
    $
    (4.2)

    and

    $ I2Cn=1nαp2αp/2ni=1E|Zni|p/2Cn=1nαp/21E|Zn|p/2Cn=1nαp/21CV{|Zn|p/2}Cn=1nαp/21CV{|X|p/2I{|X|>nα}}Cn=1nαp/21[nα0V{|X|>nα}sp/21ds+nαV{|X|>s}sp/21ds]Cn=1nαp1V{|X|>nα}+Cn=1nαp/21k=n(k+1)αkαV{|X|>s}sp/21dsCCV{|X|p}+Ck=1(k+1)αkαV{|X|>s}sp/21dskn=1nαp/21CCV{|X|p}+Ck=1V{|X|>kα}kαp1CCV{|X|p}+CCV{|X|p}<.
    $
    (4.3)

    Therefore, by (4.1)–(4.3), we deduce that (3.1) holds.

    Case 2. $ p\ge 1 $.

    Observing that $ \alpha p > 1 $, we choose a suitable $ q $ such that $ \frac{1}{\alpha p} < q < 1 $. For fixed $ n\ge 1 $, for $ 1\le i\le n $, write

    $ X_{ni}^{(1)} = -n^{\alpha q}I\{X_i < -n^{\alpha q}\}+X_iI\{|X_i|\le n^{\alpha q}\}+n^{\alpha q}I(X_i > n^{\alpha q}), $
    $ X_{ni}^{(2)} = (X_i-n^{\alpha q})I\{X_i > n^{\alpha q}\}, X_{ni}^{(3)} = (X_i+n^{\alpha q})I\{X_i < -n^{\alpha q}\}, $

    and $ X_n^{(1)} $, $ X_n^{(2)} $, $ X_{n}^{(3)} $ is defined as $ X_{ni}^{(1)} $, $ X_{ni}^{(2)} $, $ X_{ni}^{(3)} $ only with $ X $ in place of $ X_i $ above. Observing that $ \sum_{i = 1}^{j}X_i = \sum_{i = 1}^{j}X_{ni}^{(1)}+\sum_{i = 1}^{j}X_{ni}^{(2)}+\sum_{i = 1}^{j}X_{ni}^{(3)} $, for $ 1\le j\le n $, we see that for all $ \varepsilon > 0 $,

    $ n=1nαp2V{max1jn|ji=1Xi|>εnα}n=1nαp2V{max1jn|ji=1X(1)ni|>εnα/3}+n=1nαp2V{max1jn|ji=1X(2)ni|>εnα/3}+n=1nαp2V{max1jn|ji=1X(3)ni|>εnα/3}=:II1+II2+II3.
    $
    (4.4)

    Therefore, to establish (3.1), it is enough to prove that $ II_1 < \infty $, $ II_2 < \infty $, $ II_3 < \infty $.

    For $ II_1 $, we first establish that

    $ nαmax1jn|ji=1EX(1)ni|0, as n.
    $
    (4.5)

    By $ \mathbb{E}(X) = 0 $, Markov's inequality under sub-linear expectations, Lemma 2.1, we conclude that

    $ nαmax1jn|ji=1EX(1)ni|nαni=1|E(X(1)n)|n1α|E(X(1)n)E(X)|n1αE|X(1)nX|n1αCV(|X(1)nX|)Cn1α[0V{|X|I{|X|>nαq}>x}dx]Cn1α[nαq0V{|X|>nαq}dx+nαqV{|X|>y}dy]Cn1α+αqV{|X|>nαq}+Cn1αnαqV{|X|>y}yp1nαq(p1)dyCn1α+αqE|X|pnαqp+Cn1α+αqαqpCV{|X|p}Cn1αqpα+αqCV{|X|p},
    $

    which results in (4.5) by $ C_{ \mathbb{V}}\{|X|^p\} < \infty $ and $ 1/(\alpha p) < q < 1 $. Thus, from (4.5), it follows that

    $ II1Cn=1nαp2V{max1jn|ji=1(X(1)niEX(1)ni)|>εnα6}.
    $
    (4.6)

    For fixed $ n\ge 1 $, we note that $ \{X_{ni}^{(1)}- \mathbb{E} X_{ni}^{(1)}, 1\le i\le n\} $ are negatively dependent random variables. By (4.6), Markov's inequality under sub-linear expectations, and Lemma 2.2, we see that for any $ \beta\ge2 $,

    $ II1Cn=1nαp2αβE(max1jn|ji=1(X(1)niEX(1)ni)|β)Cn=1nαp2αβ[ni=1E|X(1)ni|β+(ni=1E|X(1)ni|2)β/2+(ni=1[|EX(1)ni|+|E(X(1)ni)|])β]=:II11+II12+II13.
    $
    (4.7)

    Taking $ \beta > \max\left\{\frac{\alpha p-1}{\alpha-1/2}, 2, p, \frac{\alpha p-1}{\alpha qp-\alpha q+\alpha-1}\right\} $, we obtain

    $ \alpha p-\alpha \beta+\alpha q\beta-\alpha pq-1 = \alpha(p-\beta)(1-q)-1 < -1, $
    $ \alpha p-2-\alpha\beta+\beta/2 < -1, $

    and

    $ \alpha p-2-\alpha\beta+\beta-\alpha q(p-1)\beta < -1. $

    By $ C_r $ inequality, Markov's inequality under sub-linear expectations, Lemma 2.1, we see that

    $ II11Cn=1nαp2αβni=1E|X(1)ni|βCn=1nαp1αβE|X(1)n|βCn=1nαp1αβCV{|X(1)n|β}=Cn=1nαp1αβnαqβ0V{|X|β>x}dxCn=1nαp1αβnαq0V{|X|>x}xβ1dxCn=1nαp1αβnαq0V{|X|>x}xp1nαq(βp)dxCn=1nαp1αβ+αqβαqpCV{|X|p}<,
    $
    (4.8)
    $ II12Cn=1nαp2αβ(ni=1E|X(1)n|2)β/2Cn=1nαp2αβ+β/2(CV{|X(1)n|2})β/2Cn=1nαp2αβ+β/2(nαq0V{|X|>x}xdx)β/2{Cn=1nαp2αβ+β/2(CV{|X|2})β/2, if p2;Cn=1nαp2αβ+β/2(nαq0V{|X|>x}xp1nαq(2p)dx)β/2, if 1p<2,{Cn=1nαp2αβ+β/2(CV{|X|2})β/2<, if p2;Cn=1n(αp1)(1β/2)1(CV(|X|p))β/2<, if 1p<2,
    $
    (4.9)

    and

    $ II13Cn=1nαp2αβ(ni=1[|EX(1)n|+|E(X(1)n)|])βCn=1nαp2αβ+β(E|X(1)nX|)βCn=1nαp2αβ+β(E|X|p)βnαq(p1)βCn=1nαp2αβ+βαq(p1)β(CV(|X|p))β<.
    $
    (4.10)

    Therefore, combining (4.7)–(4.10) results in $ II_1 < \infty $.

    Next, we will establish that $ II_{2} < \infty $. Let $ g_{\mu}(x) $ be a non-increasing Lipschitz function such that $ I\{x\le \mu\}\le g_{\mu}(x)\le I\{x\le 1\} $, $ \mu\in (0, 1) $. Obviously, $ I\{x > \mu\} > 1-g_{\mu}(x) > I\{x > 1\} $. For fixed $ n\ge 1 $, for $ 1\le i\le n $, write

    $ X_{ni}^{(4)} = (X_i-n^{\alpha q})I\left(n^{\alpha q} < X_i\le n^{\alpha}+n^{\alpha q}\right)+n^{\alpha}I\left(X_i > n^{\alpha}+n^{\alpha q}\right), $

    and

    $ X_{n}^{(4)} = (X-n^{\alpha q})I\left(n^{\alpha q} < X\le n^{\alpha}+n^{\alpha q}\right)+n^{\alpha}I\left(X > n^{\alpha}+n^{\alpha q}\right). $

    We see that

    $ \left(\max\limits_{1\le j\le n}\left|\sum\limits_{j = 1}^{i}X_{ni}^{(2)}\right| > \frac{\varepsilon n^{\alpha}}{3}\right)\subset \left(\max\limits_{1\le i\le n}|X_i| > n^{\alpha}\right)\bigcup\left(\max\limits_{1\le j\le n}\left|\sum\limits_{j = 1}^{i}X_{ni}^{(4)}\right| > \frac{\varepsilon n^{\alpha}}{3}\right), $

    which results in

    $ II2n=1nαp2ni=1V{|Xi|>nα}+n=1nαp2V{max1jn|ij=1X(4)ni|>εnα3}=:II21+II22.
    $
    (4.11)

    By $ C_{ \mathbb{V}}\{|X|^p\} < \infty $, we conclude that

    $ II21Cn=1nαp2ni=1E[1gμ(|Xi|)]=Cn=1nαp1E[1gμ(|X|)]Cn=1nαp1V{|X|>μnα}C0xαp1V{|X|>μxα}dxCCV(|X|p)<.
    $
    (4.12)

    Observing that $ \frac{1}{\alpha p} < q < 1 $, from the definition of $ X_{ni}^{(2)} $, follows that

    $ nαmax1jn|ji=1EX(4)ni|Cn1αE|X(4)n|Cn1αCV(|X(4)n|)Cn1α[nαq0V{|X|I{|X|>nαq}>x}dx+nαqV{|X|>x}dx]Cn1α+αqE|X|pnαpq+Cn1αnαqV{|X|>x}xp1nαq(p1)dxCn1α+αqαpqCV{|X|p}0 as n.
    $
    (4.13)

    By $ X_{ni}^{(4)} > 0 $, (4.11)–(4.13), we see that

    $ II2Cn=1nαp2V{|ni=1[X(4)niEX(4)ni]|>εnα6}.
    $
    (4.14)

    For fixed $ n\ge 1 $, we know that $ \{X_{ni}^{(4)}- \mathbb{E} X_{ni}^{(4)}, 1\le i\le n\} $ are negatively dependent random variables under sub-linear expectations. By Markov's inequality under sub-linear expectations, $ C_r $-inequality, Lemma 2.2, we obtain

    $ II2Cn=1nαp2αβE(|ni=1[X(4)niEX(4)ni]|β)Cn=1nαp2αβ[ni=1E|X(4)ni|β+(ni=1E(X(4)ni)2)β/2+(ni=1[|EX(4)ni|+|E(X(4)ni)|])β]=:II21+II22+II23.
    $
    (4.15)

    By $ C_r $ inequality, Lemma 2.3, we have

    $ II21Cn=1nαp2αβni=1E|X(4)n|βCn=1nαp1αβCV{|X(4)n|β}Cn=1nαp1αβCV{|X|βI{nαq<Xnα+nαq}+nαqβI{X>nα+nαq}}Cn=1nαp1αβ2nα0V{|X|>x}xβ1dxCn=1nαp1αβnk=12kα2(k1)αV{|X|>x}xβ1dxCk=1V{|X|>2(k1)α}kαβ1n=knαp1αβCk=1V{|X|>2(k1)α}kαp1C0V{|X|>2xα}xαp1dxCCV{|X|p}<.
    $
    (4.16)

    As in the proof of (4.9) and (4.16), we can deduce that $ II_{22} < \infty $.

    By Lemma 2.1, we see that

    $ II23Cn=1nαp1αβnβ(E|X(4)n|)βCn=1nαp1αβ+β(E|X|pnαq(p1))βCn=1nαp1αβ+βαq(p1)(CV{|X|p})β<.
    $
    (4.17)

    By (4.15)–(4.17), we deduce that $ II_2 < \infty $.

    As in the proof of $ II_2 < \infty $, we also can obtain $ II_3 < \infty $. Therefore, combining (4.5), $ II_1 < \infty $, $ II_2 < \infty $, and $ II_3 < \infty $ results in (3.1). This finishes the proof.

    Proof of Corollary 3.1. By $ C_{ \mathbb{V}}\{|X|^p\} < \infty $, and Theorem 3.1, we deduce that for all $ \varepsilon > 0 $,

    $ n=1nαp2V(max1jn|ji=1Xi|>εnα)<.
    $
    (4.18)

    By (4.18), we conclude that for any $ \varepsilon > 0 $,

    $ >n=1nαp2V(max1jn|ji=1Xi|>εnα)=k=02k+11n=2knαp2V(max1jn|ji=1Xi|>εnα){k=0(2k)αp22kV(max1j2k|ji=1Xi|>ε2(k+1)α), if αp2,k=0(2k+1)αp22kV(max1j2k|ji=1Xi|>ε2(k+1)α), if 1<αp<2,{k=0V(max1j2k|ji=1Xi|>ε2(k+1)α), if αp2,k=012V(max1j2k|ji=1Xi|>ε2(k+1)α), if 1<αp<2,
    $

    which, combined with Borel-Cantell lemma under sub-linear expectations, yields that

    $ V(lim supnmax1j2k|ji=1Xi|2(k+1)α>0)=0.
    $
    (4.19)

    For all positive integers $ n $, $ \exists $ a positive integer $ k $ satisfying $ 2^{k-1}\le n < 2^k $, we see that

    $ n^{-\alpha}\left|\sum\limits_{i = 1}^{n}X_i\right|\le \max\limits_{2^{k-1}\le n\le 2^{k}}n^{-\alpha}\left|\sum\limits_{i = 1}^{n}X_i\right|\le \frac{2^{2\alpha}\max\nolimits_{1\le j\le 2^{k}}|\sum\nolimits_{i = 1}^{j}X_i|}{2^{(k+1)\alpha}}, $

    which yields (3.2). This completes the proof.

    Proof of Theorem 3.2. For fixed $ n\ge 1 $, for $ 1\le i\le n $, write

    $ Y_{ni} = -n^{\alpha}I\{X_i < -n^{\alpha}\}+X_iI\{|X_i|\le n^{\alpha}\}+n^{\alpha}I\{X_i > n^{\alpha}\}, $
    $ Z_{ni} = X_i-Y_{ni} = (X_i-n^{\alpha})I\{X_i > n^{\alpha}\}+(X_i+n^{\alpha})I\{X_i < -n^{\alpha}\}, $

    and

    $ Y_{n} = -n^{\alpha}I\{X < -n^{\alpha}\}+XI\{|X|\le n^{\alpha}\}+n^{\alpha}I\{X > n^{\alpha}\}, $
    $ Z_{n} = X-Y_{n} = (X-n^{\alpha})I\{X > n^{\alpha}\}+(X+n^{\alpha})I\{X < -n^{\alpha}\}. $

    From Lemma 2.4 follows that for any $ \beta > 1 $,

    $ n=1nαp2αE(max1jn|ji=1Xi|εnα)+Cn=1nαp2αβE(max1jn|ji=1(YniEYni)|β)+n=1nαp2αE(max1jn|ji=1(ZniEZni)|)=:III1+III2.
    $
    (4.20)

    Noticing that $ Z_n\le (|X|-n^{\alpha})I(|X| > n^{\alpha})\le |X|I(|X| > n^{\alpha}) $, by Lemma 2.3, we see that

    $ III2Cn=1nαp2αni=1E|Zni|Cn=1nαp1αE|Zn|Cn=1nαp1αCV{|Zn|}Cn=1nαp1αCV{|X|I(|X|>nα)}Cn=1nαp1α[nα0V{|X|>nα}dx+nαV{|X|>x}dx]Cn=1nαp1V{|X|>nα}+Cn=1nαp1αk=n(k+1)αkαV{|X|>x}dxCCV{|X|p}+Ck=1V{|X|>kα}kα1kn=1nαp1α{CCV{|X|p}+Ck=1V{|X|>kα}kα1log(k), if p=1,CCV{|X|p}+Ck=1V{|X|>kα}kαp1, if p>1,{CCV{|X|log|X|}<, if p=1,CCV{|X|p}<, if p>1.
    $
    (4.21)

    Now, we will establish $ III_1 < \infty $. Observing that $ \theta > p\ge 1 $, we can choose $ \beta = \theta $. We analysize the following two cases.

    Case 1. $ 1 < \theta\le 2 $. From (2.2) of Lemma 2.2, Lemma 2.1, $ \mathbb{E}(Y) = \mathbb{E}(-Y) = 0 $, and Markov's inequality under sub-linear expectations follows that

    $ III1=Cn=1nαp2αθE(max1jn|ji=1(YniEYni)|θ)Cn=1nαp2αθlogθn[ni=1E|Yni|θ+(ni=1[|E(Yni)|+|E(Yni)|])θ]=Cn=1nαp2αθlogθn[ni=1E|Yn|θ+(ni=1[|E(Yn)|+|E(Yn)|])θ]Cn=1nαp1αθlogθnCV{|Yn|θ}+Cn=1nαp2αθ+θlogθn(E|YnX|)θCn=1nαp1αθlogθnnα0V{|X|>x}xθ1dx+Cn=1nαp2αθ+θlogθn(CV{|YnX|})θCn=1nαp1αθlogθnnk=1kα(k1)αV{|X|>x}xθ1dx+Cn=1nαp2αθ+θlogθn(CV{|X|I{|X|>nα}})θCk=1V{|X|>(k1)α}kαθ1n=knαp1αθ+Cn=1nαp2αθ+θlogθn(0V{|X|I{|X|>nα}>y}dy)θCk=1V{|X|>(k1)α}kαp1logθk+Cn=1nαp2αθ+θlogθn(nαE{|X|plogθ|X|}nαplogθn)θ+Cn=1nαp2αθ+θlogθn(nαV{|X|plogθ|X|>yplogθy}d(yplogθy)/(nα(p1)logθn))θC0V{|X|>xα}xαp1logθxdx+C(CV{|X|plogθ|X|})θ+Cn=1nαp2+θαpθlogθθ2n(CV{|X|plogθ|X|})θCCV{|X|plogθ|X|}+C(CV{|X|plogθ|X|})θ<.
    $
    (4.22)

    Case 2. $ \theta > 2 $. Observe that $ \theta > \frac{\alpha p-1}{\alpha -\frac12} $, we conclude that $ \alpha p-2-\alpha\theta+\frac{\theta}{2} < -1 $. As in the proof of (4.22), by Lemma 2.2, and $ C_r $ inequality, we see that

    $ III1=Cn=1nαp2αθE(max1jn|ji=1(YniE(Yni))|θ)Cn=1nαp2αθ[ni=1E|Yni|θ+(ni=1E|Yni|2)θ/2+(ni=1[|E(Yni)|+|E(Yni)|])θ]=:III11+III12+III13.
    $
    (4.23)

    By Lemma 2.3, we see that

    $ III11Cn=1nαp1αθE|Yn|θCn=1nαp1αθCV{|Yn|θ}Cn=1nαp1αθnα0V{|X|>x}xθ1dx=Cn=1nαp1αθnk=1kα(k1)αV{|X|>x}xθ1dxCk=1V{|X|>(k1)α}kαθ1n=knαp1αθCk=1V{|X|>(k1)α}kαp1C0V{|X|>xα}xαp1dxCCV{|X|p}<.
    $

    By Lemma 2.1, we deduce that

    $ III12Cn=1nαp2αθ(ni=1E|Yn|2)θ/2{Cn=1nαp2αθ+θ/2(E|X|2)θ/2, if p2,Cn=1nαp2αθ+θ/2(E|X|pnα(2p))θ/2, if 1p<2,{CCV{|X|2}<, if p2,Cn=1nαp2+θ/2αpθ/2(CV{|X|p})θ/2<, if 1p<2.
    $

    And the proof of $ III_{13} < \infty $ is similar to that of (4.22). This finishes the proof.

    We have obtained new results about complete convergence and complete moment convergence for maximum partial sums of negatively dependent random variables under sub-linear expectations. Results obtained in our article extend those for negatively dependent random variables under classical probability space, and Theorems 3.1, 3.2 here are different from Theorems 3.1, 3.2 of Xu et al. [20], and the former can not be deduced from the latter. Corollary 3.1 complements Theorem 3.1 in Zhang [9] in the case $ p\ge 2 $, Corollaries 3.2, 3.3 complement Theorem 3.3 in Zhang [4] in the case $ p > 1 $ in some sense.

    This study was supported by Science and Technology Research Project of Jiangxi Provincial Department of Education of China (No. GJJ2201041), Academic Achievement Re-cultivation Project of Jingdezhen Ceramic University (No. 215/20506135), Doctoral Scientific Research Starting Foundation of Jingdezhen Ceramic University (No. 102/01003002031).

    All authors state no conflicts of interest in this article.

    [1] Zajchowski DA,Kauser K,Zhu D,et al. (2000) Identification of selective estrogen receptor modulators by their gene expression fingerprints. J Biol Chem 275: 15885-15894. doi: 10.1074/jbc.M909865199
    [2] Simons Jr. SS (2003) The importance of being varied in steroid receptor transactivation. TIPS 24: 253-259.
    [3] Johnson AB,O'Malley BW (2012) Steroid receptor coactivators 1,2,and 3: Critical regulators of nuclear receptor activity and steroid receptor modulator (SRM)-based cancer therapy. Mol Cell Endocrinol 348: 430-439. doi: 10.1016/j.mce.2011.04.021
    [4] Shang Y,Brown M (2002) Molecular determinants for the tissue specificity of SERMs. Science 295: 2465-2468. doi: 10.1126/science.1068537
    [5] Zalachoras I,Houtman R,Atucha E,et al. (2013) Differential targeting of brain stress circuits with a selective glucocorticoid receptor modulator. Proc Natl Acad Sci U S A 110: 7910-7915. doi: 10.1073/pnas.1219411110
    [6] MacGregor JI,Jordan VC (1998) Basic guide to the mechanisms of antiestrogen action. Pharmacol Rev 50: 151-196.
    [7] Ojasoo T,Dore J-C,Gilbert J,Raynaud J-P (1988) Binding of steroids to the progestin and glucocorticoid receptors analyzed by correspondence analysis. J Med Chem 31: 1160-1169. doi: 10.1021/jm00401a015
    [8] Szapary D,Xu M,Simons Jr. SS (1996) Induction properties of a transiently transfected glucocorticoid-responsive gene vary with glucocorticoid receptor concentration. J Biol Chem 271: 30576-30582. doi: 10.1074/jbc.271.48.30576
    [9] Wang Q,Blackford Jr. JA,Song L-N,et al. (2004) Equilibrium interactions of corepressors and coactivators modulate the properties of agonist and antagonist complexes of glucocorticoid receptors. Mol Endocrinol 18: 1376-1395. doi: 10.1210/me.2003-0421
    [10] Simons Jr. SS,Edwards DP,Kumar R (2014) Minireview: dynamic structures of nuclear hormone receptors: new promises and challenges. Mol Endocrinol 28: 173-182. doi: 10.1210/me.2013-1334
    [11] Simons Jr. SS (2008) What goes on behind closed doors: physiological versus pharmacological steroid hormone actions. Bioessays 30: 744-756. doi: 10.1002/bies.20792
    [12] Cho S,Blackford Jr. JA,Simons Jr. SS (2005) Role of activation function domain 1,DNA binding,and coactivator in the expression of partial agonist activity of glucocorticoid receptor complexes. Biochemistry 44: 3547-3561. doi: 10.1021/bi048777i
    [13] Cho S,Kagan BL,Blackford Jr. JA,et al. (2005) Glucocorticoid receptor ligand binding domain is sufficient for the modulation of glucocorticoid induction properties by homologous receptors,coactivator transcription intermediary factor 2,and Ubc9. Mol Endo 19: 290-311. doi: 10.1210/me.2004-0134
    [14] Raynaud JP,Bouton MM,Ojasoo T (1980) The use of interaction kinetics to distinguish potential antagonists from agonists. TIPS 324-327.
    [15] Sistare FD,Hager GL,Simons Jr. SS (1987) Mechanism of dexamethasone 21-mesylate antiglucocorticoid action: I. Receptor-antiglucocorticoid complexes do not competitively inhibit receptor-glucocorticoid complex activation of gene transcription in vivo. Mol Endocrinol 1: 648-658.
    [16] Miller PA,Simons Jr. SS (1988) Comparison of glucocorticoid receptors in two rat hepatoma cell lines with different sensitivities to glucocorticoids and antiglucocorticoids. Endocrinology 122: 2990-2998. doi: 10.1210/endo-122-6-2990
    [17] Nagy L,Schwabe JW (2004) Mechanism of the nuclear receptor molecular switch. Trends Biochem Sci 29: 317-324. doi: 10.1016/j.tibs.2004.04.006
    [18] Szapary D,Huang Y,Simons Jr. SS (1999) Opposing effects of corepressor and coactivators in determining the dose-response curve of agonists,and residual agonist activity of antagonists,for glucocorticoid receptor regulated gene expression. Mol Endocrinol 13: 2108-2121. doi: 10.1210/mend.13.12.0384
    [19] Shiau AK,Barstad D,Radek JT,et al. (2002) Structural characterization of a subtype-selective ligand reveals a novel mode of estrogen receptor antagonism. Nat Struct Biol 9: 359-364.
    [20] Tao Y-G,Xu Y,Xu HE,et al. (2008) Mutations of glucocorticoid receptor differentially affect AF2 domain activity in a steroid-selective manner to alter the potency and efficacy of gene induction and repression. Biochemistry 47: 7648-7662. doi: 10.1021/bi800472w
    [21] Lee G-S,Simons Jr. SS (2011) Ligand binding domain mutations of glucocorticoid receptor selectively modify effects with,but not binding of,cofactors. Biochemistry 50: 356-366. doi: 10.1021/bi101792d
    [22] Ong KM,Blackford Jr. JA,Kagan BL,et al. (2010) A theoretical framework for gene induction and experimental comparisons. Proc Natl Acad Sci U S A 107: 7107-7112. doi: 10.1073/pnas.0911095107
    [23] Dougherty EJ,Guo C,Simons Jr. SS,et al. (2012) Deducing the temporal order of cofactor function in ligand-regulated gene transcription: theory and experimental verification. PLoS ONE 7: e30225.
    [24] Blackford Jr. JA,Guo C,Zhu R,et al. (2012) Identification of Location and Kinetically Defined Mechanism of Cofactors and Reporter Genes in the Cascade of Steroid-regulated Transactivation. J Biol Chem 287: 40982-40995. doi: 10.1074/jbc.M112.414805
    [25] Luo M,Lu X,Zhu R,et al. (2013) A Conserved Protein Motif Is Required for Full Modulatory Activity of Negative Elongation Factor Subunits NELF-A and NELF-B in Modifying Glucocorticoid Receptor-regulated Gene Induction Properties. J Biol Chem 288: 34055-34072. doi: 10.1074/jbc.M113.512426
    [26] Zhang Z,Sun Y,Cho Y-W,et al. (2013) PA1: a new competitive decelerator acting at more than one step to impede glucocorticoid receptor-mediated transactivation. J Biol Chem 288: 42-58. doi: 10.1074/jbc.M112.427740
    [27] Zhu R,Lu X,Pradhan M,et al. (2014) A kinase-independent activity of Cdk9 modulates glucocorticoid receptor-mediated gene induction. Biochemistry 53: 1753-1767. doi: 10.1021/bi5000178
    [28] Chow CC,Finn KK,Storchan GB,L et al. (2015) Kinetically-defined component actions in gene repression. PLoS Comput Biol 11: e1004122. doi: 10.1371/journal.pcbi.1004122
    [29] Perissi V,Rosenfeld MG (2005) Controlling nuclear receptors: the circular logic of cofactor cycles. Nat Rev Mol Cell Biol 6: 542-554. doi: 10.1038/nrm1680
    [30] Pons M,Simons Jr. SS (1981) Facile,high yield synthesis of spiro C-17-steroidal oxetan-3'-ones. J Org Chem 46: 3262-3264. doi: 10.1021/jo00329a024
    [31] Kaul S,Blackford Jr. JA,Chen J,et al. (2000) Properties of the glucocorticoid modulatory element binding proteins GMEB-1 and -2: potential new modifiers of glucocorticoid receptor transactivation and members of the family of KDWK proteins. Mol Endocrinol 14: 1010-1027. doi: 10.1210/mend.14.7.0494
    [32] He Y,Simons Jr. SS (2007) STAMP: a novel predicted factor assisting TIF2 actions in glucocorticoid receptor-mediated induction and repression. Mol Cell Biol 27: 1467-1485. doi: 10.1128/MCB.01360-06
    [33] Kaul S,Blackford Jr. JA,Cho S,et al. (2002) Ubc9 is a novel modulator of the induction properties of glucocorticoid receptors. J Biol Chem 277: 12541-12549. doi: 10.1074/jbc.M112330200
    [34] Simons Jr. SS,Thompson EB (1981) Dexamethasone 21-mesylate: an affinity label of glucocorticoid receptors from rat hepatoma tissue culture cells. Proc Natl Acad Sci USA 78: 3541-3545. doi: 10.1073/pnas.78.6.3541
    [35] Stromstedt P-E,Berkenstam A,Jornvall H,et al. (1990) Radiosequence analysis of the human progestin receptor charged with [3H]promegestone. A comparison with the glucocorticoid receptor. J Biol Chem 265: 12973-12977.
    [36] Luo M,Simons Jr. SS (2009) Modulation of glucocorticoid receptor induction properties by cofactors in peripheral blood mononuclear cells. Hum Immunol 70: 785-789. doi: 10.1016/j.humimm.2009.07.029
    [37] Blackford Jr. JA,Brimacombe KR,Dougherty EJ,et al. (2014) Modulators of glucocorticoid receptor activity identified by a new high-throughput screening assay. Mol Endocrinol 28: 1194-1206. doi: 10.1210/me.2014-1069
    [38] Simons Jr. SS,Kumar R (2013) Variable steroid receptor responses: Intrinsically disordered AF1 is the key. Mol Cell Endocrinol 376: 81-84. doi: 10.1016/j.mce.2013.06.007
    [39] Kim Y,Sun Y,Chow C,et al. (2006) Effects of acetylation,polymerase phosphorylation,and DNA unwinding in glucocorticoid receptor transactivation. J Steroid Biochem Molec Biol 100: 3-17. doi: 10.1016/j.jsbmb.2006.03.003
    [40] Giannoukos G,Szapary D,Smith CL,et al. (2001) New antiprogestins with partial agonist activity: potential selective progesterone receptor modulators (SPRMs) and probes for receptor- and coregulator-induced changes in progesterone receptor induction properties. Mol Endocrinol 15: 255-270. doi: 10.1210/mend.15.2.0596
  • This article has been cited by:

    1. Mingzhou Xu, Complete convergence of moving average processes produced by negatively dependent random variables under sub-linear expectations, 2023, 8, 2473-6988, 17067, 10.3934/math.2023871
    2. Mingzhou Xu, Xuhang Kong, Complete qth moment convergence of moving average processes for m-widely acceptable random variables under sub-linear expectations, 2024, 214, 01677152, 110203, 10.1016/j.spl.2024.110203
    3. Mingzhou Xu, Kun Cheng, Wangke Yu, Convergence of linear processes generated by negatively dependent random variables under sub-linear expectations, 2023, 2023, 1029-242X, 10.1186/s13660-023-02990-6
    4. Mingzhou Xu, On the complete moment convergence of moving average processes generated by negatively dependent random variables under sub-linear expectations, 2024, 9, 2473-6988, 3369, 10.3934/math.2024165
    5. Mingzhou Xu, Complete convergence and complete moment convergence for maximal weighted sums of extended negatively dependent random variables under sub-linear expectations, 2023, 8, 2473-6988, 19442, 10.3934/math.2023992
    6. Lunyi Liu, Qunying Wu, Complete integral convergence for weighted sums of negatively dependent random variables under sub-linear expectations, 2023, 8, 2473-6988, 22319, 10.3934/math.20231138
    7. Yuyan Wei, Xili Tan, Peiyu Sun, Shuang Guo, Weak and strong law of large numbers for weakly negatively dependent random variables under sublinear expectations, 2025, 10, 2473-6988, 7540, 10.3934/math.2025347
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5377) PDF downloads(1078) Cited by(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog