Research article

Partial-nodes-based state estimation for complex networks under hybrid attacks: a dynamic event-triggered approach

  • Published: 09 June 2025
  • This article addresses the problem of state estimation for complex networks under hybrid cyber attacks. A hybrid model is constructed to encompass cyber attacks in both deception and denial-of-service (DoS) manners. A dynamic event-triggered mechanism (DETM) is brought into the channel between sensors and the estimator for deducing the transmission frequency. Our primary target is to develop an estimator capable of accurately assessing network states, relying on measurements from partially selected network nodes. Taking use of Lyapunov stability theory and stochastic analysis techniques, several criteria are formulated to guarantee the exponentially mean square ultimate boundedness (EMSUB) of the estimation error dynamics. The estimator gains are determined by resolving specific matrix inequalities. To illustrate the efficacy of our newly devised estimator design approach, a numerical example is provided along with corresponding simulations.

    Citation: Lu Zhou, Jin Hu, Bing Li. Partial-nodes-based state estimation for complex networks under hybrid attacks: a dynamic event-triggered approach[J]. Mathematical Modelling and Control, 2025, 5(2): 202-215. doi: 10.3934/mmc.2025015

    Related Papers:

  • This article addresses the problem of state estimation for complex networks under hybrid cyber attacks. A hybrid model is constructed to encompass cyber attacks in both deception and denial-of-service (DoS) manners. A dynamic event-triggered mechanism (DETM) is brought into the channel between sensors and the estimator for deducing the transmission frequency. Our primary target is to develop an estimator capable of accurately assessing network states, relying on measurements from partially selected network nodes. Taking use of Lyapunov stability theory and stochastic analysis techniques, several criteria are formulated to guarantee the exponentially mean square ultimate boundedness (EMSUB) of the estimation error dynamics. The estimator gains are determined by resolving specific matrix inequalities. To illustrate the efficacy of our newly devised estimator design approach, a numerical example is provided along with corresponding simulations.



    加载中


    [1] S. H. Strogatz, Exploring complex networks, Nature, 410 (2001), 268–276. https://doi.org/10.1038/35065725
    [2] H. Dong, Z. Wang, F. E. Alsaadi, B. Ahmad, Event-triggered robust distributed state estimation for sensor networks with state-dependent noises, Int. J. General Syst., 44 (2015), 254–266. https://doi.org/10.1080/03081079.2014.973726 doi: 10.1080/03081079.2014.973726
    [3] H. Liu, Z. Wang, B. Shen, X. Liu, Event-triggered $H_\infty$ state estimation for delayed stochastic memristive neural networks with missing measurements: the discrete time case, IEEE T. Neural Netw. Learn. Syst., 29 (2018), 3726–3737. https://doi.org/10.1109/TNNLS.2017.2728639 doi: 10.1109/TNNLS.2017.2728639
    [4] S. V. Vasaikar, B. Jayaram, J. Gomes, B. Jayaram, Rapid computation and interpretation of Boolean attractors in biological networks, J. Complex Netw., 3 (2015), 147–157. https://doi.org/10.1093/comnet/cnu011 doi: 10.1093/comnet/cnu011
    [5] R. M. D'Souza, M. Bernardo, Y. Y. Liu, Controlling complex networks with complex nodes, Nat. Rev. Phys., 5 (2023), 250–262. https://doi.org/10.1038/s42254-023-00566-3 doi: 10.1038/s42254-023-00566-3
    [6] D. A. Burbano, G. Russo, M. Bernardo, Pinning controllability of complex network systems with noise, IEEE T. Control Netw. Syst., 6 (2019), 874–883. https://doi.org/10.1109/TCNS.2018.2880300 doi: 10.1109/TCNS.2018.2880300
    [7] I. Macaluso, C. Galiotto, N. Marchetti, L. Doyle, A complex systems science perspective on wireless networks, J. Syst. Sci. Complex, 29 (2016), 1034–1056. https://doi.org/10.1007/s11424-016-4122-8 doi: 10.1007/s11424-016-4122-8
    [8] X. Wan, Z. Wang, M. Wu, X. Liu, $H_\infty$ state estimation for discrete-time nonlinear singularly perturbed complex networks under the round-robin protocol, IEEE T. Neural Netw. Learn. Syst., 30 (2019), 415–426. https://doi.org/10.1109/TNNLS.2018.2839020 doi: 10.1109/TNNLS.2018.2839020
    [9] T. Fang, J. Sun, Further Investigate the stability of complex-valued recurrent neural networks with time-delays, IEEE T. Neural Netw. Learn. Syst., 25 (2014), 1709–1713. https://doi.org/10.1109/TNNLS.2013.2294638 doi: 10.1109/TNNLS.2013.2294638
    [10] X. Yang, J. Lam, D. W. C. Ho, Z. Feng, Fixed-time synchronization of complex networks with impulsive effects via nonchattering control, IEEE T. Automat Control, 62 (2017), 5511–5521. https://doi.org/10.1109/TAC.2017.2691303 doi: 10.1109/TAC.2017.2691303
    [11] H. Rao, L. Zhao, Y. Xu, Z. Huang, R. Lu, Quasisynchronization for neural networks with partial constrained state information via intermittent control approach, IEEE T. Cybernetics, 52 (2022), 8827–8837. https://doi.org/10.1109/TCYB.2021.3049638 doi: 10.1109/TCYB.2021.3049638
    [12] Y. Chen, Z. Wang, B. Shen, H. Dong, Exponential synchronization for delayed dynamical networks via intermittent control: dealing with actuator saturations, IEEE T. Neural Netw. Learn. Syst., 30 (2019), 1000–1012. https://doi.org/10.1109/TNNLS.2018.2854841 doi: 10.1109/TNNLS.2018.2854841
    [13] Y. Wang, H. Liu, H. Tan, An overview of filtering for sampled-data systems under communication constraints, Int. J. Netw. Dyn. Intell., 2 (2023), 100011. https://doi.org/10.53941/ijndi.2023.100011 doi: 10.53941/ijndi.2023.100011
    [14] Y. A. Wang, B. Shen, L. Zou, Q. L. Han, A survey on recent advances in distributed filtering over sensor networks subject to communication constraints, Int. J. Netw. Dyn. Intell., 2 (2023), 100007. https://doi.org/10.53941/ijndi0201007 doi: 10.53941/ijndi0201007
    [15] H. Peng, B. Zeng, L. Yang, Y. Xu, R. Lu, Distributed extended state estimation for complex networks with nonlinear uncertainty, IEEE T. Neural Netw. Learn. Syst., 34 (2023), 5952–5960. https://doi.org/10.1109/TNNLS.2021.3131661 doi: 10.1109/TNNLS.2021.3131661
    [16] M. Zhang, X. Yang, Q. Qi, J. H. Park, State estimation of switched time-delay complex networks with strict decreasing LKF, IEEE T. Neural Netw. Learn. Syst., 35 (2024), 10451–10460. https://doi.org/10.1109/TNNLS.2023.3241955 doi: 10.1109/TNNLS.2023.3241955
    [17] F. Yang, Q. L. Han, Y. Liu, Distributed $H_\infty$ state estimation over a filtering network with time-varying and switching topology and partial information exchange, IEEE T. Cybernetics, 49 (2019), 870–882. https://doi.org/10.1109/TCYB.2017.2789212 doi: 10.1109/TCYB.2017.2789212
    [18] X. Wan, Z. Wang, Q. L. Han, M. Wu, A recursive approach to quantized $H_\infty$ state estimation for genetic regulatory networks under stochastic communication protocols, IEEE T. Neural Netw. Learn. Syst., 30 (2019), 2840–2852. https://doi.org/10.1109/TNNLS.2018.2885723
    [19] J. Hu, Z. Wang, S. Liu, H. Gao, A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements, Automatica, 64 (2016), 155–162. https://doi.org/10.1016/j.automatica.2015.11.008 doi: 10.1016/j.automatica.2015.11.008
    [20] Y. Liu, Z. Wang, Y. Yuan, F. E. Alsaadi, Partial-nodes-based state estimation for complex networks with unbounded distributed delays, IEEE T. Neural Netw. Learn. Syst., 29 (2018), 3906–3912. https://doi.org/10.1109/TNNLS.2017.2740400 doi: 10.1109/TNNLS.2017.2740400
    [21] N. Hou, Z. Wang, D. W. C. Ho, H. Dong, Robust partial-nodes-based state estimation for complex networks under deception attacks, IEEE T. Cybernetics, 50 (2020), 2793–2802. https://doi.org/10.1109/TCYB.2019.2918760 doi: 10.1109/TCYB.2019.2918760
    [22] J. Y. Li, Z. Wang, R. Lu, Y. Xu, Partial-nodes-based state estimation for complex networks with constrained bit rate, IEEE T. Netw. Sci. Eng., 8 (2021), 1887–1899. https://doi.org/10.1109/TNSE.2021.3076113 doi: 10.1109/TNSE.2021.3076113
    [23] N. Hou, J. Li, H. Liu, Y. Ge, H. Dong, Finite-horizon resilient state estimation for complex networks with integral measurements from partial nodes, Sci. China Inf. Sci., 65 (2022), 132205. https://doi.org/10.1007/s11432-020-3243-7 doi: 10.1007/s11432-020-3243-7
    [24] M. Lin, Q. Shen, C. Liu, H. Peng, Y. Xu, Partial‐node‐based resilient set‐membership filtering for output‐coupled complex networks with event‐triggered mechanisms, Int. J. Robust Nonlinear Control, 34 (2024), 5555–5569. https://doi.org/10.1002/rnc.7268 doi: 10.1002/rnc.7268
    [25] L. Zou, Z. Wang, J. Hu, H. Dong, Partial-node-based state estimation for delayed complex networks under intermittent measurement outliers: a multiple-order-holder approach, IEEE T. Neural Netw. Learn. Syst., 34 (2023), 7181–7195. https://doi.org/10.1109/TNNLS.2021.3138979 doi: 10.1109/TNNLS.2021.3138979
    [26] N. Hou, H. Dong, W. Zhang, Y. Liu, F. E. Alsaadi, Event-triggered state estimation for time-delayed complex networks with gain variations based on partial nodes, Int. J. General Syst., 47 (2018), 477–490. https://doi.org/10.1080/03081079.2018.1462352 doi: 10.1080/03081079.2018.1462352
    [27] Y. Deng, Z. Meng, H. Lu, Adaptive event-triggered state estimation for complex networks with nonlinearities against hybrid attacks, AIMS Math., 7 (2022), 2858–2877. https://doi.org/10.3934/math.2022158 doi: 10.3934/math.2022158
    [28] J. Chen, D. Yue, C. Dou, S. Weng, X. Xie, Y. Li, Static and dynamic event-triggered mechanisms for distributed secondary control of inverters in low-voltage islanded microgrids, IEEE T. Cybernetics, 52 (2022), 6925–6938. https://doi.org/10.1109/TCYB.2020.3034727 doi: 10.1109/TCYB.2020.3034727
    [29] M. Shen, S. Yan, G. Zhang, A new approach to event-triggered static output feedback control of networked control systems, ISA Trans., 65 (2016), 468–474. https://doi.org/10.1016/j.isatra.2016.08.014 doi: 10.1016/j.isatra.2016.08.014
    [30] J. Sun, B. Shen, Y. Liu, F. E. Alsaadi, Dynamic event-triggered state estimation for time-delayed spatial-temporal networks under encoding-decoding scheme, Neurocomputing, 500 (2022), 868–876. https://doi.org/10.1016/j.neucom.2022.05.062 doi: 10.1016/j.neucom.2022.05.062
    [31] F. Han, Z. Wang, H. Dong, F. E. Alsaadi, K. H. Alharbi, A local approach to distributed $H_\infty$-consensus state estimation over sensor networks under hybrid attacks: dynamic event-triggered scheme, IEEE T. Signal Inf. Process. Netw., 8 (2022), 556–570. https://doi.org/10.1109/TSIPN.2022.3182273 doi: 10.1109/TSIPN.2022.3182273
    [32] Y. Niu, L. Sheng, M. Gao, D. Zhou, Dynamic event-triggered state estimation for continuous-time polynomial nonlinear systems with external disturbances, IEEE T. Ind. Inform., 17 (2021), 3962–3970. https://doi.org/10.1109/TII.2020.3015004 doi: 10.1109/TII.2020.3015004
    [33] Q. Li, Z. Wang, J. Hu, W. Sheng, Simultaneous state and unknown input estimation for complex networks with redundant channels under dynamic event-triggered mechanisms, IEEE T. Neural Netw. Learn. Syst., 33 (2022), 5441–5451. https://doi.org/10.1109/TNNLS.2021.3070797 doi: 10.1109/TNNLS.2021.3070797
    [34] Z. Han, S. Zhang, Z. Jin, Y. Hu, Secure state estimation for event-triggered cyber-physical systems against deception attacks, J. Franklin Inst., 359 (2022), 11155–11185. https://doi.org/10.1016/j.jfranklin.2022.10.049 doi: 10.1016/j.jfranklin.2022.10.049
    [35] H. Sang, J. Zhao, Input-output finite-time estimation for complex networks with switching topology under dynamic event-triggered transmission, IEEE T. Syst. Man Cybern.: Syst., 51 (2021), 6513–6522. https://doi.org/10.1109/TSMC.2019.2963411 doi: 10.1109/TSMC.2019.2963411
    [36] J. Cheng, L. Liang, J. H. Park, H. Yan, K. Li, A dynamic event-triggered approach to state estimation for switched memristive neural networks with nonhomogeneous sojourn probabilities, IEEE T. Circuits Syst. I, 68 (2021), 4924–4934. https://doi.org/10.1109/TCSI.2021.3117694 doi: 10.1109/TCSI.2021.3117694
    [37] S. Fan, H. Yan, X. Zhan, G. Zhou, K. Shi, Distributed set-membership estimation for state-saturated systems with mixed time-delays via a dynamic event-triggered scheme, J. Franklin Inst., 358 (2021), 10079–10094. https://doi.org/10.1016/j.jfranklin.2021.08.035 doi: 10.1016/j.jfranklin.2021.08.035
    [38] Y. Liu, Z. Wang, Y. Yuan, W. Liu, Event-triggered partial-nodes-based state estimation for delayed complex networks with bounded distributed delays, IEEE T. Syst. Man Cybern.: Syst., 49 (2019), 1088–1098. https://doi.org/10.1109/TSMC.2017.2720121 doi: 10.1109/TSMC.2017.2720121
    [39] N. Lin, D. Chen, J. Hu, C. Jia, Partial-nodes-based state estimation for stochastic coupled complex networks with random sensor delay: an event-triggered communication method, Circuits Syst. Signal Process., 41 (2022), 5461–5491. https://doi.org/10.1007/s00034-022-02059-7 doi: 10.1007/s00034-022-02059-7
    [40] H. Tao, H. Tan, Q. Chen, H. Liu, J. Hu, $H_{\infty}$ state estimation for memristive neural networks with randomly occurring DoS attacks, Syst. Sci. Control Eng., 10 (2022), 154–165. https://doi.org/10.1080/21642583.2022.2048322 doi: 10.1080/21642583.2022.2048322
    [41] Y. Sun, X. Tian, G. Wei, Finite-time distributed resilient state estimation subject to hybrid cyber-attacks: a new dynamic event-triggered case, Int. J. Syst. Sci., 53 (2022), 2832–2844. https://doi.org/10.1080/00207721.2022.2083256 doi: 10.1080/00207721.2022.2083256
    [42] G. Bao, L. Ma, X. Yi, Recent advances on cooperative control of heterogeneous multi-agent systems subject to constraints: a survey, Syst. Sci. Control Eng., 10 (2022), 539–551. https://doi.org/10.1080/21642583.2022.2074169 doi: 10.1080/21642583.2022.2074169
    [43] X. Meng, Y. Chen, L. Ma, H. Liu, Protocol-based variance-constrained distributed secure filtering with measurement censoring, Int. J. Syst. Sci., 53 (2022), 3322–3338. https://doi.org/10.1080/00207721.2022.2080297 doi: 10.1080/00207721.2022.2080297
    [44] B. Shen, Z. Wang, D. Wang, Q. Li, State-saturated recursive filter design for stochastic time-varying nonlinear complex networks under deception attacks, IEEE T. Neural Netw. Learn. Syst., 31 (2020), 3788–3800. https://doi.org/10.1109/TNNLS.2019.2946290 doi: 10.1109/TNNLS.2019.2946290
    [45] C. D. Persis, P. Tesi, Input-to-state stabilizing control under denial-of-service, IEEE T. Automatic Control, 60 (2015), 2930–2944. https://doi.org/10.1109/TAC.2015.2416924 doi: 10.1109/TAC.2015.2416924
    [46] L. Liu, L. Ma, J. Zhang, Y. Bo, Sliding mode control for nonlinear Markovian jump systems with denial-of-service attacks, IEEE/CAA J. Automatica Sin., 7 (2020), 1638–1648. https://doi.org/10.1109/JAS.2019.1911531 doi: 10.1109/JAS.2019.1911531
    [47] M. Zhu, S. Martínez, On the performance analysis of resilient networked control systems under replay attacks, IEEE T. Automatic Control, 59 (2014), 804–808. https://doi.org/10.1109/TAC.2013.2279896 doi: 10.1109/TAC.2013.2279896
    [48] J. Liu, Y. Gu, L. Zha, Y. Liu, J. Cao, Event-triggered $H_\infty $ load frequency control for multiarea power systems under hybrid cyber attacks, IEEE T. Syst. Man Cybern.: Syst., 49 (2019), 1665–1678. https://doi.org/10.1109/TSMC.2019.2895060 doi: 10.1109/TSMC.2019.2895060
    [49] J. Liu, M. Yang, E. Tian, J. Cao, S. Fei, Event-based security control for state-dependent uncertain systems under hybrid-attacks and its application to electronic circuits, IEEE T. Circuits Syst. I: Reg. Papers, 66 (2019), 4817–4828. https://doi.org/10.1109/TCSI.2019.2930572 doi: 10.1109/TCSI.2019.2930572
    [50] Y. Chen, X. Meng, Z. Wang, H. Dong, Event-triggered recursive state estimation for stochastic complex dynamical networks under hybrid attacks, IEEE T. Neural Netw. Learn. Syst., 34 (2023), 1465–1477. https://doi.org/10.1109/TNNLS.2021.3105409 doi: 10.1109/TNNLS.2021.3105409
    [51] Y. Deng, Z. Mo, H. Lu, Robust $H_\infty$ state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks, Chinese Phys. B, 31 (2022), 269–277. https://doi.org/10.1088/1674-1056/ac0ee9 doi: 10.1088/1674-1056/ac0ee9
    [52] Y. Qu, K. Pang, State estimation for a class of artificial neural networks subject to mixed attacks: a set-membership method, Neurocomputing, 411 (2020), 239–246. https://doi.org/10.1016/j.neucom.2020.06.020 doi: 10.1016/j.neucom.2020.06.020
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(870) PDF downloads(64) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog