In this paper, we defined that a conjunction multiplication and an unshuffle comultiplication on the vector space spanned by (0,1)-matrices. Then, we proved that the vector space with these two operations is a bialgebra. In fact, it is a graded connected bialgebra, so it is a Hopf algebra.
Citation: Sifan Song, Huilan Li. A Hopf algebra on (0,1)-matrices[J]. Mathematical Modelling and Control, 2025, 5(2): 193-201. doi: 10.3934/mmc.2025014
In this paper, we defined that a conjunction multiplication and an unshuffle comultiplication on the vector space spanned by (0,1)-matrices. Then, we proved that the vector space with these two operations is a bialgebra. In fact, it is a graded connected bialgebra, so it is a Hopf algebra.
| [1] | H. Hopf, Über die topologie der Gruppen-Mannigfaltigkeiten und ihrer verallgemeinerungen, In: Selecta Heinz Hopf, Berlin, Heidelberg: Springer, 1964. https://doi.org/10.1007/978-3-662-25046-4_9 |
| [2] |
J. W. Milnor, J. C. Moore, On the structure of Hopf algebras, Ann. Math., 81 (1965), 211–264. https://doi.org/10.2307/1970615 doi: 10.2307/1970615
|
| [3] | M. E. Sweedler, Hopf algebras, New York: W. A. Benjamin, 1969. |
| [4] | S. U. Chase, M. E. Sweedler, Hopf algebras and Galois theory, Berlin: Springer, 1969. https://doi.org/10.1007/BFb0101433 |
| [5] |
S. A. Joni, G. C. Rota, Coalgebras and bialgebras in combinatorics, Stud. Appl. Math., 61 (1979), 93–139. https://doi.org/10.1002/sapm197961293 doi: 10.1002/sapm197961293
|
| [6] |
Y. Vargas, Hopf algebra of permutation pattern functions, Discrete Math. Theor. Comput. Sci., 2014,839–850. https://doi.org/10.46298/dmtcs.2446 doi: 10.46298/dmtcs.2446
|
| [7] |
M. Aguiar, F. Sottile, Cocommutative Hopf algebras of permutations and trees, J. Algebr. Comb., 22 (2005), 451–470. https://doi.org/10.1007/s10801-005-4628-y doi: 10.1007/s10801-005-4628-y
|
| [8] |
R. Ehrenborg, On posets and Hopf algebras, Adv. Math., 119 (1996), 1–25. https://doi.org/10.1006/aima.1996.0026 doi: 10.1006/aima.1996.0026
|
| [9] |
W. R. Schmitt, Incidence Hopf algebras, J. Pure Appl. Algebra, 96 (1994), 299–330. https://doi.org/10.1016/0022-4049(94)90105-8 doi: 10.1016/0022-4049(94)90105-
|
| [10] |
C. Malvenuto, C. Reutenauer, Duality between quasi-symmetrical functions and the Solomon descent algebra, J. Algebra, 177 (1995), 967–982. https://doi.org/10.1006/jabr.1995.1336 doi: 10.1006/jabr.1995.1336
|
| [11] |
S. Giraudo, S. Vialette, Algorithmic and algebraic aspects of unshuffling permutations, Theor. Comput. Sci., 729 (2018), 20–41. https://doi.org/10.1016/j.tcs.2018.02.007 doi: 10.1016/j.tcs.2018.02.007
|
| [12] |
M. Zhao, H. Li, A pair of dual Hopf algebras on permutations, AIMS Math., 6 (2021), 5106–5123. https://doi.org/10.3934/math.2021302 doi: 10.3934/math.2021302
|
| [13] |
J. C. Aval, N. Bergeron, J. Machacek, New invariants for permutations, orders and graphs, Adv. Appl. Math., 121 (2020), 102080. https://doi.org/10.1016/J.AAM.2020.102080 doi: 10.1016/J.AAM.2020.102080
|
| [14] |
M. Liu, H. Li, A Hopf algebra on permutations arising from super-shuffle product, Symmetry, 13 (2021), 1010. https://doi.org/10.3390/SYM13061010 doi: 10.3390/SYM13061010
|
| [15] |
J. Dong, H. Li, Hopf algebra of labeled simple graphs, Open J. Appl. Sci., 13 (2023), 120–135. https://doi.org/10.4236/ojapps.2023.131011 doi: 10.4236/ojapps.2023.131011
|
| [16] |
X. Huang, Q. Huang, On regular graphs with four distinct eigenvalues, Linear Algebra Appl., 512 (2017), 219–233. https://doi.org/10.1016/j.laa.2016.09.043 doi: 10.1016/j.laa.2016.09.043
|
| [17] |
D. M. Cardoso, O. Rojo, Edge perturbations on graphs with cluster: adjacency, Laplacian and signless Laplacian eigenvalues, Linear Algebra Appl., 512 (2017), 113–128. https://doi.org/10.1016/j.laa.2016.09.031 doi: 10.1016/j.laa.2016.09.031
|
| [18] | R. A. Brualdi, H. J. Ryser, Combinatorial matrix theory, New York: Cambridge University Press, 1991. https://doi.org/10.1017/CBO9781107325708 |
| [19] |
J. S. Borrero, C. Gillen, O. A. Prokopyev, A simple technique to improve linearized reformulations of fractical (hyperbolic) 0-1 programming problems, Oper. Res. Lett., 44 (2016), 479–486. https://doi.org/10.1016/j.orl.2016.03.015 doi: 10.1016/j.orl.2016.03.015
|
| [20] |
A. P. Punnen, P. Sripratak, D. Karapetyan, The bipartite unconstrained 0-1 quadratic programming problem: polynomially solvable cases, Discrete Appl. Math., 193 (2015), 1–10. https://doi.org/10.1016/j.dam.2015.04.004 doi: 10.1016/j.dam.2015.04.004
|
| [21] |
B. Soylu, Heuristic approaches for biojective mixed 0-1 integer linear programming problems, Eur. J. Oper. Res., 245 (2015), 690–703. https://doi.org/10.1016/j.ejor.2015.04.010 doi: 10.1016/j.ejor.2015.04.010
|
| [22] | S. Zhang, P. Lin, K. Wang, Construction of binary shift dual codes, J. Jiangxi Univ. Sci. Technol., 37 (2016). |
| [23] |
D. Manchon, Hopf algebras in renormalisation, Handbook Algebra, 5 (2008), 365–427. https://doi.org/10.1016/S1570-7954(07)05007-3 doi: 10.1016/S1570-7954(07)05007-3
|