Research article

Optimal reinsurance design under the VaR risk measure and asymmetric information

  • This paper analyzes a monopoly reinsurance market in the presence of asymmetric information. Insurers use Value-at-Risk measures to quantify their risks and have different risk exposures and risk preferences, but the type of each insurer is hidden information to the reinsurer. The reinsurer maximizes the expected profit under the constraint of incentive compatibility and individual rationality. We deduce the optimal reinsurance menu under the assumption that a type of insurer thinks he is at greater risks. Some comparative analyses are given for two strategies of separating equilibrium and pooling equilibrium.

    Citation: Yuchen Yuan, Ying Fang. Optimal reinsurance design under the VaR risk measure and asymmetric information[J]. Mathematical Modelling and Control, 2022, 2(4): 165-175. doi: 10.3934/mmc.2022017

    Related Papers:

    [1] Jianjun Huang, Xuhong Huang, Ronghao Kang, Zhihong Chen, Junhan Peng . Improved insulator location and defect detection method based on GhostNet and YOLOv5s networks. Electronic Research Archive, 2024, 32(9): 5249-5267. doi: 10.3934/era.2024242
    [2] Ye Yu, Zhiyuan Liu . A data-driven on-site injury severity assessment model for car-to-electric-bicycle collisions based on positional relationship and random forest. Electronic Research Archive, 2023, 31(6): 3417-3434. doi: 10.3934/era.2023173
    [3] Min Li, Ke Chen, Yunqing Bai, Jihong Pei . Skeleton action recognition via graph convolutional network with self-attention module. Electronic Research Archive, 2024, 32(4): 2848-2864. doi: 10.3934/era.2024129
    [4] Linan Fang, Ting Wu, Yongxing Qi, Yanzhao Shen, Peng Zhang, Mingmin Lin, Xinfeng Dong . Improved collision detection of MD5 with additional sufficient conditions. Electronic Research Archive, 2022, 30(6): 2018-2032. doi: 10.3934/era.2022102
    [5] Hui Xu, Jun Kong, Mengyao Liang, Hui Sun, Miao Qi . Video behavior recognition based on actional-structural graph convolution and temporal extension module. Electronic Research Archive, 2022, 30(11): 4157-4177. doi: 10.3934/era.2022210
    [6] Lei Pan, Chongyao Yan, Yuan Zheng, Qiang Fu, Yangjie Zhang, Zhiwei Lu, Zhiqing Zhao, Jun Tian . Fatigue detection method for UAV remote pilot based on multi feature fusion. Electronic Research Archive, 2023, 31(1): 442-466. doi: 10.3934/era.2023022
    [7] Chang Yu, Qian Ma, Jing Li, Qiuyang Zhang, Jin Yao, Biao Yan, Zhenhua Wang . FF-ResNet-DR model: a deep learning model for diabetic retinopathy grading by frequency domain attention. Electronic Research Archive, 2025, 33(2): 725-743. doi: 10.3934/era.2025033
    [8] Miao Luo, Yousong Chen, Dawei Gao, Lijun Wang . Inversion study of vehicle frontal collision and front bumper collision. Electronic Research Archive, 2023, 31(2): 776-792. doi: 10.3934/era.2023039
    [9] Tong Li, Lanfang Lei, Zhong Wang, Peibei Shi, Zhize Wu . An efficient improved YOLOv10 algorithm for detecting electric bikes in elevators. Electronic Research Archive, 2025, 33(6): 3673-3698. doi: 10.3934/era.2025163
    [10] Jinjiang Liu, Yuqin Li, Wentao Li, Zhenshuang Li, Yihua Lan . Multiscale lung nodule segmentation based on 3D coordinate attention and edge enhancement. Electronic Research Archive, 2024, 32(5): 3016-3037. doi: 10.3934/era.2024138
  • This paper analyzes a monopoly reinsurance market in the presence of asymmetric information. Insurers use Value-at-Risk measures to quantify their risks and have different risk exposures and risk preferences, but the type of each insurer is hidden information to the reinsurer. The reinsurer maximizes the expected profit under the constraint of incentive compatibility and individual rationality. We deduce the optimal reinsurance menu under the assumption that a type of insurer thinks he is at greater risks. Some comparative analyses are given for two strategies of separating equilibrium and pooling equilibrium.





    [1] K. Borch, An attempt to determine the optimum amount of stop loss reinsurance, Transactions of the 16th International Congress of Actuaries, 2 (1960), 597–610.
    [2] K. Arrow, Uncertainty and the welfare economics of medical care, Am. Econ. Rev., 53 (1963), 941–973. https://doi.org/10.1515/9780822385028-004 doi: 10.1515/9780822385028-004
    [3] A. Raviv, The design of an optimal insurance policy, Am. Econ. Rev., 69 (1979), 84–96. https://doi.org/10.1007/978-94-015-7957-5_13 doi: 10.1007/978-94-015-7957-5_13
    [4] J. Cai, K. Tan, C. Weng, Y. Zhang, Optimal reinsurance under VaR and CTE risk measures, Insurance: Mathematics and Economics, 43 (2008), 185–196. https://doi.org/10.1016/j.insmatheco.2008.05.011 doi: 10.1016/j.insmatheco.2008.05.011
    [5] H. Assa, On optimal reinsurance policy with distortion risk measures and premiums, Insurance: Mathematics and Economics, 61 (2015), 70–75. https://doi.org/10.1016/j.insmatheco.2014.11.007 doi: 10.1016/j.insmatheco.2014.11.007
    [6] S. Zhuang, C. Weng, K. Tan, H. Assa, Marginal indemnification function formulation for optimal reinsurance, Insurance: Mathematics and Economics, 67 (2016), 65–76. https://doi.org/10.1016/j.insmatheco.2015.12.003 doi: 10.1016/j.insmatheco.2015.12.003
    [7] A. Lo, A Neyman–Pearson perspective on optimal reinsurance with constraints, ASTIN Bulletin: The Journal of the IAA, 47 (2017), 467–499. https://doi.org/10.1017/asb.2016.42 doi: 10.1017/asb.2016.42
    [8] M. Rothschild, J. Stiglitz, Equilibrium in competitive insurance markets: an essay on the economics of imperfect information, Uncertainty in economics, (1978), 257–280.
    [9] J. E. Stiglitz, Monopoly, non-linear pricing and imperfect information: the insurance market, The Review of Economic Studies, 44 (1977), 407–430. https://doi.org/10.2307/2296899 doi: 10.2307/2296899
    [10] V. R. Young, M. J. Browne, Equilibrium in competitive insurance markets under adverse selection and Yaari's dual theory of risk, Geneva Papers on Risk and Insurance Theory, 25 (2000), 141–157. https://doi.org/10.1023/A:1008762312418 doi: 10.1023/A:1008762312418
    [11] M. J. Ryan, R. Vaithianathan, Adverse selection and insurance contracting:a rank-dependent utility analysis, Contributions in Theoretical Economics, 3 (2003), 1–18. https://doi.org/10.2202/1534-5971.1074 doi: 10.2202/1534-5971.1074
    [12] M. Jeleva, B. Villeneuve, Insurance contracts with imprecise probabilities and adverse selection, Economic Theory, 23 (2004), 777–794. https://doi.org/10.1007/s00199-003-0396-x doi: 10.1007/s00199-003-0396-x
    [13] H. Chade, E. Schlee, Optimal insurance with adverse selection, Theoretical Economics, 7 (2012), 571–607. https://doi.org/10.3982/TE671 doi: 10.3982/TE671
    [14] K. Cheung, S. C. P. Yam, F. L. Yuen, Reinsurance contract design with adverse selection, Scandinavian Actuarial Journal, 9 (2019), 784–798. https://doi.org/10.1080/03461238.2019.1616323 doi: 10.1080/03461238.2019.1616323
    [15] K. Cheung, S. C. P. Yam, F. L. Yuen, Y. Zhang, Concave distortion risk minimizing reinsurance design under adverse selection, Insurance: Mathematics and Economics, 91 (2020), 155–165. https://doi.org/10.1016/j.insmatheco.2020.02.001 doi: 10.1016/j.insmatheco.2020.02.001
    [16] G. Huberman, D. Mayers, C. W. Smith Jr, Optimal insurance policy indemnity schedules, Bell Journal of Economics, 14 (1983), 415–426. https://doi.org/10.2307/3003643 doi: 10.2307/3003643
    [17] M. Denuit, C. Vermandele, Optimal reinsurance and stop-loss order, Insurance: Mathematics and Economics, 22 (1998), 229–233. https://doi.org/10.1016/s0167-6687(97)00039-5 doi: 10.1016/s0167-6687(97)00039-5
    [18] T. J. Boonen, Y. Zhang, Optimal reinsurance design with distortion risk measures and asymmetric information, ASTIN Bulletin: The Journal of the IAA, 51 (2021), 607–629. https://doi.org/10.1017/asb.2021.8 doi: 10.1017/asb.2021.8
    [19] M. Landsberger, I. Meilijson, A general model of insurance under adverse selection, Econ. Theor., 14 (1999), 331–352. https://doi.org/10.1007/s001990050297 doi: 10.1007/s001990050297
    [20] J. J. Laffont, D. Martimort, The Theory of Incentives: The Principal-Agent Model, New Jersey, USA: Princeton University Press, 2001.
  • This article has been cited by:

    1. Gregory Roth, Paul L. Salceanu, Sebastian J. Schreiber, Robust Permanence for Ecological Maps, 2017, 49, 0036-1410, 3527, 10.1137/16M1066440
    2. Jude D. Kong, Paul Salceanu, Hao Wang, A stoichiometric organic matter decomposition model in a chemostat culture, 2018, 76, 0303-6812, 609, 10.1007/s00285-017-1152-3
    3. Muhammad Dur-e-Ahmad, Mudassar Imran, Adnan Khan, Analysis of a Mathematical Model of Emerging Infectious Disease Leading to Amphibian Decline, 2014, 2014, 1085-3375, 1, 10.1155/2014/145398
    4. Paul L. Salceanu, Robust uniform persistence in discrete and continuous nonautonomous systems, 2013, 398, 0022247X, 487, 10.1016/j.jmaa.2012.09.005
    5. Azmy S. Ackleh, Robert J. Sacker, Paul Salceanu, On a discrete selection–mutation model, 2014, 20, 1023-6198, 1383, 10.1080/10236198.2014.933819
    6. Mudassar Imran, Muhammad Usman, Muhammad Dur-e-Ahmad, Adnan Khan, Transmission Dynamics of Zika Fever: A SEIR Based Model, 2017, 0971-3514, 10.1007/s12591-017-0374-6
    7. Azmy S. Ackleh, John Cleveland, Horst R. Thieme, Population dynamics under selection and mutation: Long-time behavior for differential equations in measure spaces, 2016, 261, 00220396, 1472, 10.1016/j.jde.2016.04.008
    8. AZMY S. ACKLEH, J. M. CUSHING, PAUL L. SALCEANU, ON THE DYNAMICS OF EVOLUTIONARY COMPETITION MODELS, 2015, 28, 08908575, 380, 10.1111/nrm.12074
    9. Mudassar Imran, Muhammad Usman, Tufail Malik, Ali R. Ansari, Mathematical analysis of the role of hospitalization/isolation in controlling the spread of Zika fever, 2018, 255, 01681702, 95, 10.1016/j.virusres.2018.07.002
    10. Azmy S. Ackleh, Paul L. Salceanu, Competitive exclusion and coexistence in ann-species Ricker model, 2015, 9, 1751-3758, 321, 10.1080/17513758.2015.1020576
    11. Azmy S. Ackleh, Paul Salceanu, Amy Veprauskas, A nullcline approach to global stability in discrete-time predator–prey models, 2021, 27, 1023-6198, 1120, 10.1080/10236198.2021.1963440
    12. Térence Bayen, Henri Cazenave-Lacroutz, Jérôme Coville, Stability of the chemostat system including a linear coupling between species, 2023, 28, 1531-3492, 2104, 10.3934/dcdsb.2022160
    13. Qihua Huang, Paul L. Salceanu, Hao Wang, Dispersal-driven coexistence in a multiple-patch competition model for zebra and quagga mussels, 2022, 28, 1023-6198, 183, 10.1080/10236198.2022.2026342
    14. Hayriye Gulbudak, Paul L. Salceanu, Gail S. K. Wolkowicz, A delay model for persistent viral infections in replicating cells, 2021, 82, 0303-6812, 10.1007/s00285-021-01612-3
    15. J. C. Macdonald, H. Gulbudak, Forward hysteresis and Hopf bifurcation in an Npzd model with application to harmful algal blooms, 2023, 87, 0303-6812, 10.1007/s00285-023-01969-7
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1423) PDF downloads(85) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog