Research article

Semi-discrete linear hyperbolic polyharmonic flows of closed polygons

  • Received: 15 April 2024 Revised: 14 May 2025 Accepted: 15 May 2025 Published: 23 May 2025
  • We consider the damped hyperbolic motion of polygons by a linear semi-discrete analogue of polyharmonic curve diffusion. We show that such flows may transition any polygon to any other polygon, reminiscent of the Yau problem of evolving one curve to another by a curvature flow, before converging exponentially to a point that, under appropriate rescaling, is a planar basis polygon. We also consider a hyperbolic linear semi-discrete flow of the Yau curvature difference flow, where a polygonal curve is able to flow to any other such that we get convergence to the target polygon in infinite time.

    Citation: James McCoy, Jahne Meyer. Semi-discrete linear hyperbolic polyharmonic flows of closed polygons[J]. Mathematics in Engineering, 2025, 7(3): 281-315. doi: 10.3934/mine.2025013

    Related Papers:

  • We consider the damped hyperbolic motion of polygons by a linear semi-discrete analogue of polyharmonic curve diffusion. We show that such flows may transition any polygon to any other polygon, reminiscent of the Yau problem of evolving one curve to another by a curvature flow, before converging exponentially to a point that, under appropriate rescaling, is a planar basis polygon. We also consider a hyperbolic linear semi-discrete flow of the Yau curvature difference flow, where a polygonal curve is able to flow to any other such that we get convergence to the target polygon in infinite time.



    加载中


    [1] H. Attouch, X. Goudou, P. Redont, The heavy ball with friction method, I. The continuous dynamical system: global exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical system, Commun. Contemp. Math., 2 (2000), 1–34. https://doi.org/10.1142/S0219199700000025 doi: 10.1142/S0219199700000025
    [2] B. Chow, D. Glickenstein, Semidiscrete geometric flows of polygons, Am. Math. Mon., 114 (2007), 316–328. https://doi.org/10.1080/00029890.2007.11920419 doi: 10.1080/00029890.2007.11920419
    [3] F. R. K. Chung, Spectral graph theory, CBMS Regional Conference Series in Mathematics, American Mathematical Society, 1997.
    [4] P. Davis, Circulant matrices, John Wiley & Sons, 1979.
    [5] K. Deckelnick, R. Nürnberg, Discrete hyperbolic curvature flow in the plane, SIAM J. Numer. Anal., 61 (2023), 1835–1857. https://doi.org/10.1137/22M1493112 doi: 10.1137/22M1493112
    [6] X. Goudou, J. Munier, The gradient and heavy ball with friction dynamical systems: the quasiconvex case, Math. Program., 116 (2009), 173–191. https://doi.org/10.1007/s10107-007-0109-5 doi: 10.1007/s10107-007-0109-5
    [7] K. Groh, S. Röck, A contribution to collision-free trajectory planning for handling systems in varying environments, Prod. Eng. Res. Devel., 4 (2010), 101–106. https://doi.org/10.1007/s11740-009-0202-0 doi: 10.1007/s11740-009-0202-0
    [8] B. Hu, S. Xu, Z. Cao, Multi-robot path planning for each robot with several jobs in a single trip, IFAC-PapersOnLine, 53, (2020), 279–284. https://doi.org/10.1016/j.ifacol.2021.04.106
    [9] M. Huptych, S. Röck, Online path planning in dynamic environments using the curve shortening flow method, Prod. Eng. Res. Devel., 9 (2015), 613–621. https://doi.org/10.1007/s11740-015-0641-8 doi: 10.1007/s11740-015-0641-8
    [10] M. Huptych, S. Röck, Real-time path planning in dynamic environments for unmanned aerial vehicles using the curve-shortening flow method, Int. J. Adv. Robotic Syst., 18 (2021), 1–16. https://doi.org/10.1177/1729881420968687 doi: 10.1177/1729881420968687
    [11] Y. C. Lin, D. H. Tsai, Evolving a convex closed curve to another one via a length-preserving linear flow, J. Differ. Equations, 247 (2009), 2620–2636. https://doi.org/10.1016/j.jde.2009.07.024 doi: 10.1016/j.jde.2009.07.024
    [12] J. McCoy, Representation formulae for higher-order linear curvature flows, J. Evol. Equ., 25 (2025), 40. https://doi.org/10.1007/s00028-025-01067-9 doi: 10.1007/s00028-025-01067-9
    [13] J. McCoy, J. Meyer, Linear semi-discrete polyharmonic flows of closed polygons, arXiv, 2025. https://doi.org/10.48550/arXiv.2502.05243
    [14] J. McCoy, I. Otuf, Representation formulae for linear hyperbolic curvature flows, J. Differ. Equations, 397 (2024), 166–198. https://doi.org/10.1016/j.jde.2024.03.007 doi: 10.1016/j.jde.2024.03.007
    [15] J. McCoy, P. Schrader, G. Wheeler, Representation formulae for higher order curvature flows, J. Differ. Equations, 344 (2023), 1–43. https://doi.org/10.1016/j.jde.2022.10.011 doi: 10.1016/j.jde.2022.10.011
    [16] C. Rademacher, H. B. Rademacher, Solitons of discrete curve shortening, Results Math., 71 (2017), 455–482. https://doi.org/10.1007/s00025-016-0572-5 doi: 10.1007/s00025-016-0572-5
    [17] C. Rademacher, H. B. Rademacher, Solitons of the midpoint mapping and affine curvature, J. Geom., 112 (2021), 7. https://doi.org/10.1007/s00022-020-00567-y doi: 10.1007/s00022-020-00567-y
    [18] S. Smith, M. Broucke, B. Francis, Curve shortening and the rendezvous problem for mobile autonomous robots, IEEE Trans. Autom. Control, 52 (2007), 1154–1159. https://doi.org/10.1109/TAC.2007.899024 doi: 10.1109/TAC.2007.899024
    [19] K. Smoczyk, A representation formula for the inverse harmonic mean curvature flow, Elem. Math., 60 (2005), 57–65.
    [20] G. J. Tee, Eigenvectors of block circulant and alternating circulant matrices, N. Z. J. Math., 36 (2007), 195–211.
    [21] F. Tisseur, K. Meerbergen, The quadratic eigenvalue problem, SIAM Rev., 43 (2001), 235–286. https://doi.org/10.1137/S0036144500381988 doi: 10.1137/S0036144500381988
    [22] M. Wardetzky, S. Mathur, F. Kälberer, E. Grinspun, Discrete Laplace operators: no free lunch, Eurographics Symposium on Geometry Processing, 7 (2007), 33–37.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(999) PDF downloads(148) Cited by(1)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog