This paper presents a theoretical approach to studying so-called canards (or duck trajectories) and their possible approximations using Padé approximations for the Darier wind turbine model. One of the central issues arising when applying the theory of canards to solve specific practical problems is the challenge of calculating the so-called canard values of the parameters. To demonstrate the advantages of Padé approximations in the study of canards, both a mathematical example and the van der Pol equation are considered. Subsequently, a model of wind turbine dynamics under varying external loads is examined. It is shown that the model can experience an Andronov-Hopf bifurcation followed by a canard explosion, i.e., a sharp increase in the cycle amplitude when one of the parameters changes in a very narrow interval. It is the fact that this phenomenon is characterized by an exponentially small change of a parameter that was the motivation for increasing the accuracy of the applied asymptotic methods without additional cumbersome calculations. Numerical experiments demonstrate a good agreement of numerical data with the results of asymptotic analysis and a noticeable advantage of fractional-rational approximations Padé over the commonly used approximations based on Maclaurin series with expansions by powers of a small parameter.
Citation: Alena Kirsanova, Vladimir Sobolev. Padé approximants of canards and critical regimes of Darrieus wind turbine model[J]. Mathematics in Engineering, 2025, 7(3): 194-207. doi: 10.3934/mine.2025009
This paper presents a theoretical approach to studying so-called canards (or duck trajectories) and their possible approximations using Padé approximations for the Darier wind turbine model. One of the central issues arising when applying the theory of canards to solve specific practical problems is the challenge of calculating the so-called canard values of the parameters. To demonstrate the advantages of Padé approximations in the study of canards, both a mathematical example and the van der Pol equation are considered. Subsequently, a model of wind turbine dynamics under varying external loads is examined. It is shown that the model can experience an Andronov-Hopf bifurcation followed by a canard explosion, i.e., a sharp increase in the cycle amplitude when one of the parameters changes in a very narrow interval. It is the fact that this phenomenon is characterized by an exponentially small change of a parameter that was the motivation for increasing the accuracy of the applied asymptotic methods without additional cumbersome calculations. Numerical experiments demonstrate a good agreement of numerical data with the results of asymptotic analysis and a noticeable advantage of fractional-rational approximations Padé over the commonly used approximations based on Maclaurin series with expansions by powers of a small parameter.
| [1] | I. V. Andrianov, J. Awrejcewicz, Asymptotic methods for engineers, 1 Ed., Boca Raton: CRC Press, 2024. https://doi.org/10.1201/9781003467465 |
| [2] |
A. Agataeva, E. A. Shchepakina, Critical conditions of ignition of fuel spray containing liquid fuel droplets, CEUR Workshop Proceedings, 1638 (2016), 484–492. https://doi.org/10.18287/1613-0073-2016-1638-484-492 doi: 10.18287/1613-0073-2016-1638-484-492
|
| [3] | G. A. Baker, P. Graves-Morris, Padé approximants: encyclopedia of mathematics and its applications, 2 Eds., Cambridge University Press, 1996. |
| [4] | E. Benoit, J. L. Callot, F. Diener, M. Diener, Chasse au canard, Collect. Math., 32 (1981), 37–76. |
| [5] |
B. F. Blackwell, R. E. Sheldahl, Selected wind tunnel test results for the Darrieus wind turbine J. Energy, 1 (1977), 382–387. https://doi.org/10.2514/3.47948 doi: 10.2514/3.47948
|
| [6] | M. Brøns, Bifurcations and instabilities in the Greitzer model for compressor system surge, Math. Eng. Ind., 2 (1988), 51–63. |
| [7] |
M. Brøns, K. Bar-Eli, Asymptotic analysis of canards in the EOE equations and the role of the inflection line, Proc. R. Soc. Lond. A, 445 (1994), 305–322. https://doi.org/10.1098/rspa.1994.0063 doi: 10.1098/rspa.1994.0063
|
| [8] |
M. Brøns, Relaxation oscillations and canards in a nonlinear model of discontinuous plastic deformation in metals at very low temperatures, Proc. R. Soc. Lond. A, 461 (2005), 2289–2302. https://doi.org/10.1098/rspa.2005.1486 doi: 10.1098/rspa.2005.1486
|
| [9] |
P. T. Cardin, M. A. Teixeira, Fenichel theory for multiple time scale singular perturbation problems, SIAM J. Appl. Dyn. Syst., 16 (2017), 1425–1452. https://doi.org/10.1137/16M1067202 doi: 10.1137/16M1067202
|
| [10] |
G. A. Chumakov, N. A. Chumakova, Relaxation oscillations in a kinetic model of catalytic hydrogen oxidation involving a chase on canards, Chem. Eng. J., 91 (2003), 151–158. https://doi.org/10.1016/S1385-8947(02)00148-1 doi: 10.1016/S1385-8947(02)00148-1
|
| [11] |
M. Z. Dosaev, C. H. Lin, W. L. Lu, V. A. Samsonov, Y. D. Selyutskii, A qualitative analysis of the steady modes of operation of small wind power generators, J. Appl. Math. Mech., 73 (2009), 259–263. https://doi.org/10.1016/j.jappmathmech.2009.07.015 doi: 10.1016/j.jappmathmech.2009.07.015
|
| [12] |
M. Z. Dosaev, V. A. Samsonov, Y. D. Selyutskii, W. L. Lu, C. H. Lin, Bifurcation of operation modes of small wind power stations and optimization of their characteristics, Mech. Solids, 44 (2009), 214–221. https://doi.org/10.3103/S002565440902006X doi: 10.3103/S002565440902006X
|
| [13] |
F. Dumortier, R. Roussarie, Canard cycles and center manifolds, Mem. Amer. Math. Soc., 121 (1996), 577. https://doi.org/10.1090/memo/0577 doi: 10.1090/memo/0577
|
| [14] | W. Eckhaus, Relaxation oscillations including a standard chase on French ducks, In: F. Verhulst, Asymptotic analysis II, Lecture Notes in Mathematics, Springer, 985 (1983), 449–494. https://doi.org/10.1007/BFb0062381 |
| [15] |
N. Firstova, E. Shchepakina, Study of oscillatory processes in the one model of electrochemical reactor, CEUR Workshop Proceedings, 1638 (2016), 731–741. https://doi.org/10.18287/1613-0073-2016-1638-731-741 doi: 10.18287/1613-0073-2016-1638-731-741
|
| [16] |
N. Firstova, E. Shchepakina, Conditions for the critical phenomena in a dynamic model of an electrocatalytic reaction, J. Phys.: Conf. Ser., 811 (2017), 012002. https://doi.org/10.1088/1742-6596/811/1/012002 doi: 10.1088/1742-6596/811/1/012002
|
| [17] |
N. Firstova, E. Shchepakina, Modelling of Critical Conditions for an Electrochemical Reactor Model, Procedia Eng., 201 (2017), 495–502. https://doi.org/10.1016/j.proeng.2017.09.621 doi: 10.1016/j.proeng.2017.09.621
|
| [18] |
V. Gol'dshtein, A. Zinoviev, V. Sobolev, E. Shchepakina, Criterion for thermal explosion with reactant consumption in a dusty gas, Proc. R. Soc. Lond. A, 452 (1996), 2103–2119. https://doi.org/10.1098/rspa.1996.0111 doi: 10.1098/rspa.1996.0111
|
| [19] |
E. Golodova, E. Shchepakina, Maximal combustion temperature estimation, J. Phys.: Conf. Ser., 55 (2006), 94. https://doi.org/10.1088/1742-6596/55/1/009 doi: 10.1088/1742-6596/55/1/009
|
| [20] |
E. Golodova, E. Shchepakina, Modeling of safe combustion at the maximum temperature, Math. Models Comput. Simul., 1 (2009), 322–334. https://doi.org/10.1134/S207004820902015X doi: 10.1134/S207004820902015X
|
| [21] |
G. N. Gorelov, V. A. Sobolev, Duck-trajectories in a thermal explosion problem, Appl. Math. Lett., 5 (1992), 3–6. https://doi.org/10.1016/0893-9659(92)90002-q doi: 10.1016/0893-9659(92)90002-q
|
| [22] |
G. N. Gorelov, V. A. Sobolev, Mathematical modelling of critical phenomena in thermal explosion theory, Combust. Flame, 87 (1991), 203–210. https://doi.org/10.1016/0010-2180(91)90170-G doi: 10.1016/0010-2180(91)90170-G
|
| [23] |
G. N. Golodov, E. A. Shchepakina, V. A. Sobolev, Canards and critical behavior in autocatalytic combustion models, J. Eng. Math., 56 (2006), 143–160. https://doi.org/10.1007/s10665-006-9047-0 doi: 10.1007/s10665-006-9047-0
|
| [24] |
J. S. D. Kamaha, J. H. Talla Mbé, S. Noubissie, H. B. Fotsin, P. Woafo, Dynamics of optoelectronic oscillators with band-pass filter and laser nonlinearities: theory and experiment, Opt. Quant. Electron., 54 (2022), 178. https://doi.org/10.1007/s11082-022-03546-6 doi: 10.1007/s11082-022-03546-6
|
| [25] | A. Kirsanova, Critical phenomena in the Darrieus wind turbine model, 2023 16th International Conference Management of large-scale system development (MLSD), 2023, 1–4. https://doi.org/10.1109/MLSD58227.2023.10304042 |
| [26] |
M. Krupa, P. Szmolyan, Relaxation oscillation and canard solution, J. Differ. Equ., 174 (2001), 312–368. https://doi.org/10.1006/jdeq.2000.3929 doi: 10.1006/jdeq.2000.3929
|
| [27] | C. Kuehn, Multiple time scale dynamics, Applied Mathematical Sciences, Vol. 191, Springer, 2015. https://doi.org/10.1007/978-3-319-12316-5 |
| [28] | E. F. Mishchenko, Yu. S. Kolesov, A. Yu. Kolesov, N. Kh. Rozov, Asymptotic methods in singularly perturbed systems, 1994. |
| [29] | E. F. Mishchenko, N. Kh. Rozov, Differential equations with small parameters and relaxation oscillations, Mathematical Concepts and Methods in Science and Engineering, Vol. 13, New York: Springer, 1980. https://doi.org/10.1007/978-1-4615-9047-7 |
| [30] | M. P. Mortell, R. E. O'Malley, A. Pokrovskii, V. Sobolev, Singular perturbations and hysteresis, Philadelphia: Society for Industrial and Applied Mathematics, 2005. https://doi.org/10.1137/1.9780898717860 |
| [31] |
V. Petrov, S. K. Scott, K. Showalter, Mixed-mode oscillations in chemical systems, J. Chem. Phys., 97 (1924), 6191–6198. https://doi.org/10.1063/1.463727 doi: 10.1063/1.463727
|
| [32] |
B. W. Qin, K. W. Chung, A. Algaba, A. J. Rodríguez-Luis, High-order study of the canard explosion in an aircraft ground dynamics model, Nonlinear Dyn., 100 (2020), 1079–1090. https://doi.org/10.1007/s11071-020-05575-w doi: 10.1007/s11071-020-05575-w
|
| [33] |
J. Rankin, M. Desroches, B. Krauskopf, M. Lowenberg, Canard cycles in aircraft ground dynamics, Nonlinear Dyn., 66 (2011), 681–688. https://doi.org/10.1007/s11071-010-9940-y doi: 10.1007/s11071-010-9940-y
|
| [34] |
E. Shchepakina, Black swans and canards in self-ignition problem, Nonlinear Anal.: Real World Appl., 4 (2003), 45–50. https://doi.org/10.1016/S1468-1218(02)00012-3 doi: 10.1016/S1468-1218(02)00012-3
|
| [35] | E. Shchepakina, Critical conditions of self-ignition in dusty media, J. Adv. Chem. Phys., 20 (2001), 3–9. |
| [36] |
E. Shchepakina, Canards and black swans in a model of a 3-D autocatalator, J. Phys.: Conf. Ser., 22 (2005), 194. https://doi.org/10.1088/1742-6596/22/1/013 doi: 10.1088/1742-6596/22/1/013
|
| [37] |
E. Shchepakina, Critical phenomena in a model of fuel's heating in a porous medium, CEUR Workshop Proceedings, 1490 (2015), 179–189. https://doi.org/10.18287/1613-0073-2015-1490-179-189 doi: 10.18287/1613-0073-2015-1490-179-189
|
| [38] |
E. Shchepakina, Calculation of maximum safe temperature of fuel's heating in a porous medium, Procedia Eng., 201 (2017), 468–477. https://doi.org/10.1016/j.proeng.2017.09.606 doi: 10.1016/j.proeng.2017.09.606
|
| [39] |
E. Shchepakina, Self-ignition in porous media: critical phenomena, IOP Conf. Ser.: Mater. Sci. Eng., 302 (2018), 012013. https://doi.org/10.1088/1757-899X/302/1/012013 doi: 10.1088/1757-899X/302/1/012013
|
| [40] |
E. Shchepakina, O. Korotkova, Condition for canard explosion in a semiconductor optical amplifier, J. Opt. Soc. Amer. B, 28 (2011), 1988–1993. https://doi.org/10.1364/JOSAB.28.001988 doi: 10.1364/JOSAB.28.001988
|
| [41] |
E. Shchepakina, O. Korotkova, Canard explosion in chemical and optical systems, Discrete Cont. Dyn. Syst. B, 18 (2013), 495–512. https://doi.org/10.3934/dcdsb.2013.18.495 doi: 10.3934/dcdsb.2013.18.495
|
| [42] | E. Shchepakina, V. Sobolev, M. P. Mortell, Singular perturbations: introduction to system order reduction methods with applications, Lecture Notes in Mathematics, Vol. 2114, Springer, 2014. https://doi.org/10.1007/978-3-319-09570-7 |
| [43] | V. A. Sobolev, Integral manifolds and some optimal control problems, Period. Polytech. Mech. Eng., 31 (1987), 87–102. |
| [44] | V. A. Sobolev, E. A. Shchepakina, Duck trajectories in a problem of combustion theory, Differ. Equ., 32 (1996), 1177–1186. |
| [45] |
A. Steindl, J. Edelmann, M. Plöchl, Limit cycles at oversteer vehicle, Nonlinear Dyn., 99 (2020), 313–321. https://doi.org/10.1007/s11071-019-05081-8 doi: 10.1007/s11071-019-05081-8
|
| [46] |
O. Vidilina, E. Shchepakina, Calculation of critical conditions for the filtration combustion model, CEUR Workshop Proceedings, 1904 (2017), 151–157. https://doi.org/10.18287/1613-0073-2017-1904-151-157 doi: 10.18287/1613-0073-2017-1904-151-157
|
| [47] |
A. K. Zvonkin, M. A. Shubin, Non-standard analysis and singular perturbations of ordinary differential equations, Russ. Math. Surv., 39 (1984), 69–131. https://doi.org/10.1070/RM1984v039n02ABEH003091 doi: 10.1070/RM1984v039n02ABEH003091
|