We extend the Virtual Element Method to a two-dimensional unsteady nonlinear convection-diffusion equation characterized by a fractional-order derivative with respect to the time variable. Our methodology is based on three fundamental technical components: a fractional version of the Grunwald-Letnikov approximation, discrete maximal regularity, and the regularity theory associated with non-linearity. We prove the method's well-posedness, i.e., the approximate solution's existence and uniqueness to the time-fractional convection-diffusion equation with a Lipschitz nonlinear source term. The fully discrete scheme inherently maintains stability and consistency by leveraging the discrete maximal regularity and the energy projection operator. The convergence in the $ L^2 $-norm and $ H^1 $-norm to various mesh configurations is validated by numerical results, underlining the practical effectiveness of the proposed method.
Citation: Zaffar Mehdi Dar, M. Arrutselvi, Chandru Muthusamy, Sundararajan Natarajan, Gianmarco Manzini. Virtual element approximations of the time-fractional nonlinear convection-diffusion equation on polygonal meshes[J]. Mathematics in Engineering, 2025, 7(2): 96-129. doi: 10.3934/mine.2025005
We extend the Virtual Element Method to a two-dimensional unsteady nonlinear convection-diffusion equation characterized by a fractional-order derivative with respect to the time variable. Our methodology is based on three fundamental technical components: a fractional version of the Grunwald-Letnikov approximation, discrete maximal regularity, and the regularity theory associated with non-linearity. We prove the method's well-posedness, i.e., the approximate solution's existence and uniqueness to the time-fractional convection-diffusion equation with a Lipschitz nonlinear source term. The fully discrete scheme inherently maintains stability and consistency by leveraging the discrete maximal regularity and the energy projection operator. The convergence in the $ L^2 $-norm and $ H^1 $-norm to various mesh configurations is validated by numerical results, underlining the practical effectiveness of the proposed method.
| [1] |
G. Acosta, F. Bersetche, J. Borthagaray, A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian, Comput. Math. Appl., 74 (2017), 784–816. https://doi.org/10.1016/j.camwa.2017.05.026 doi: 10.1016/j.camwa.2017.05.026
|
| [2] |
G. Acosta, J. P. Borthagaray, A fractional Laplace equation: regularity of solutions and finite element approximations, SIAM J. Numer. Anal., 55 (2017), 472–495. https://doi.org/10.1137/15M1033952 doi: 10.1137/15M1033952
|
| [3] |
D. Adak, S. Natarajan, Virtual Element Method for semilinear sine–Gordon equation over polygonal mesh using product approximation technique, Math. Comput. Simul., 172 (2020), 224–243. https://doi.org/10.1016/j.matcom.2019.12.007 doi: 10.1016/j.matcom.2019.12.007
|
| [4] |
D. Adak, S. Natarajan, E. Natarajan, Virtual Element Method for semilinear elliptic problems on polygonal meshes, Appl. Numer. Math., 145 (2019), 175–187. https://doi.org/10.1016/j.apnum.2019.05.021 doi: 10.1016/j.apnum.2019.05.021
|
| [5] |
R. Agarwal, S. Jain, R. P. Agarwal, Solution of fractional Volterra integral equation and non-homogeneous time fractional heat equation using integral transform of pathway type, Progr. Fract. Differ. Appl., 1 (2015), 145–155. https://doi.org//10.12785/pfda/010301 doi: 10.12785/pfda/010301
|
| [6] |
B. Ahmad, A. Alsaedi, F. Brezzi, L. D. Marini, A. Russo, Equivalent projectors for Virtual Element Methods, Comput. Math. Appl., 66 (2013), 376–391. https://doi.org/10.1016/j.camwa.2013.05.015 doi: 10.1016/j.camwa.2013.05.015
|
| [7] | P. Antonietti, L. Beirão da Veiga, G. Manzini, The Virtual Element Method and its applications, Vol. 31, Springer, 2022. https://doi.org/10.1007/978-3-030-95319-5 |
| [8] |
P. F. Antonietti, G. Manzini, M. Verani, The fully nonconforming Virtual Element method for biharmonic problems, Math. Models Methods Appl. Sci., 28 (2018), 387–407. https://doi.org/10.1142/S0218202518500100 doi: 10.1142/S0218202518500100
|
| [9] |
P. F. Antonietti, G. Manzini, M. Verani, The conforming Virtual Element method for polyharmonic problems, Comput. Math. Appl., 79 (2020), 2021–2034. https://doi.org/10.1016/j.camwa.2019.09.022 doi: 10.1016/j.camwa.2019.09.022
|
| [10] |
M. Arrutselvi, E. Natarajan, Virtual Element Method for nonlinear convection-diffusion-reaction equation on polygonal meshes, Int. J. Comput. Math., 98 (2020), 1852–1876. https://doi.org/10.1080/00207160.2020.1849637 doi: 10.1080/00207160.2020.1849637
|
| [11] | B. Baeumer, M. Kovács, H. Sankaranarayanan, Higher order Grünwald approximations of fractional derivatives and fractional powers of operators, Trans. Amer. Math. Soc., 367 (2014), 813–834. |
| [12] |
B. Bandrowski, A. Karczewska, P. Rozmej, Numerical solutions to integral equations equivalent to differential equations with fractional time, Int. J. Appl. Math. Comput. Sci., 20 (2010), 261–269. https://doi.org/10.2478/v10006-010-0019-1 doi: 10.2478/v10006-010-0019-1
|
| [13] |
L. Beirão da Veiga, F. Brezzi, L. D. Marini, A. Russo, Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes, ESAIM: Math. Modell. Numer. Anal., 50 (2016), 727–747. https://doi.org/10.1051/m2an/2015067 doi: 10.1051/m2an/2015067
|
| [14] |
L. Beirão da Veiga, F. Brezzi, L. D. Marini, A. Russo, Virtual Element Method for general second-order elliptic problems on polygonal meshes, Math. Models Methods Appl. Sci., 26 (2016), 729–750. https://doi.org/10.1142/S0218202516500160 doi: 10.1142/S0218202516500160
|
| [15] |
L. Beirão da Veiga, K. Lipnikov, G. Manzini, Arbitrary-order nodal mimetic discretizations of elliptic problems on polygonal meshes, SIAM J. Numer. Anal., 49 (2011), 1737–1760. https://doi.org/10.1137/100807764 doi: 10.1137/100807764
|
| [16] |
L. Beirão da Veiga, C. Lovadina, G. Vacca, Divergence free virtual elements for the Stokes problem on polygonal meshes, ESAIM: Math. Modell. Numer. Anal., 51 (2017), 509–535. https://doi.org/10.1051/m2an/2016032 doi: 10.1051/m2an/2016032
|
| [17] |
L. Beirão da Veiga, G. Manzini, M. Putti, Post processing of solution and flux for the nodal mimetic finite difference method, Numer. Methods Part. Differ. Equ., 31 (2015), 336–363. https://doi.org/10.1002/num.21907 doi: 10.1002/num.21907
|
| [18] |
L. Beirão da Veiga, C. Lovadina, A. Russo, Stability analysis for the Virtual Element Method, Math. Models Methods Appl. Sci., 27 (2017), 2557–2594. https://doi.org/10.1142/S021820251750052X doi: 10.1142/S021820251750052X
|
| [19] |
L. Beirao da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. Marini, A. Russo, Basic principles of Virtual Element Methods, Math. Models Methods Appl. Sci., 23 (2013), 199–214. https://doi.org/10.1142/S0218202512500492 doi: 10.1142/S0218202512500492
|
| [20] | L. Beirão da Veiga, K. Lipnikov, G. Manzini, The mimetic finite difference method for elliptic problems, Vol. 11, 1 Ed., Springer, 2014. https://doi.org/10.1007/978-3-319-02663-3 |
| [21] |
S. C. Brenner, L. Y. Sung, Virtual Element Methods on meshes with small edges or faces, Math. Models Methods Appl. Sci., 28 (2017), 1291–1336. https://doi.org/10.1142/S0218202518500355 doi: 10.1142/S0218202518500355
|
| [22] |
F. Brezzi, A. Buffa, K. Lipnikov, Mimetic finite differences for elliptic problems, ESAIM: Math. Modell. Numer. Anal., 43 (2009), 277–295. https://doi.org/10.1051/m2an:2008046 doi: 10.1051/m2an:2008046
|
| [23] |
A. Cangiani, V. Gyrya, G. Manzini, The non-conforming Virtual Element Method for the Stokes equations, SIAM J. Numer. Anal., 54 (2016), 3411–3435. https://doi.org/10.1137/15M1049531 doi: 10.1137/15M1049531
|
| [24] | A. Cangiani, O. J. Sutton, V. Gyrya, G. Manzini, Chapter 15: Virtual element methods for elliptic problems on polygonal meshes, In: K. Hormann, N. Sukumar, Generalized barycentric coordinates in computer graphics and computational mechanics, 1 Ed., CRC Press, 2017. |
| [25] |
A. Cangiani, G. Manzini, A. Russo, N. Sukumar, Hourglass stabilization and the Virtual Element Method, Int. J. Numer. Methods Eng., 102 (2015), 404–436. https://doi.org/10.1002/nme.4854 doi: 10.1002/nme.4854
|
| [26] |
A. Cangiani, G. Manzini, O. J. Sutton, Conforming and nonconforming Virtual Element Methods for elliptic problems, IMA J. Numer. Anal., 37 (2016), 1317–1354. https://doi.org/10.1093/imanum/drw036 doi: 10.1093/imanum/drw036
|
| [27] |
M. Caputo, Linear models of dissipation whose Q is almost frequency Ⅱ, Geophysi. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
|
| [28] |
L. Chen, J. Huang, Some error analysis on Virtual Element Methods, Calcolo, 55 (2017), 5. https://doi.org/10.1007/s10092-018-0249-4 doi: 10.1007/s10092-018-0249-4
|
| [29] |
B. A. De Dios, K. Lipnikov, G. Manzini, The nonconforming Virtual Element method, ESAIM: M2AN, 50 (2016), 879–904. https://doi.org/10.1051/m2an/2015090 doi: 10.1051/m2an/2015090
|
| [30] | Z. M. Dar, M. Arrutselvi, G. Manzini, S. Natarajan, Analytical and numerical methods for solving fractional-order partial differential equations and the virtual element method, submitted for publication. Available form: https://ssrn.com/abstract = 4913214. |
| [31] | Z. M. Dar, M. Chandru, A virtual element scheme for the time-fractional parabolic PDEs over distorted polygonal meshes, Alex. Eng. J., 106 (2024), 611–619. https://doi.org/10.1016/j.aej.2024.08.050 |
| [32] |
V. J. Ervin, J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Part. Differ. Equ., 22 (2006), 558–576. https://doi.org/10.1002/num.20112 doi: 10.1002/num.20112
|
| [33] |
A. Esen, Y. Ucar, N. Yagmurlu, O. Tasbozan, A Galerkin finite element method to solve fractional diffusion and fractional diffusion-wave equations, Math. Modell. Anal., 18 (2013), 260–273. https://doi.org/10.3846/13926292.2013.783884 doi: 10.3846/13926292.2013.783884
|
| [34] | R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler functions, related topics and applications, Springer Publishing Company, Inc., 2016. |
| [35] |
B. Jin, R. Lazarov, Z. Zhou, A Petrov-Galerkin finite element method for fractional convection-diffusion equations, SIAM J. Numer. Anal., 54 (2015), 481–503. https://doi.org/10.1137/140992278 doi: 10.1137/140992278
|
| [36] |
B. Jin, B. Li, Z. Zhou, Numerical analysis of nonlinear subdiffusion equations, SIAM J. Numer. Anal., 56 (2018), 1–23. https://doi.org/10.1137/16M1089320 doi: 10.1137/16M1089320
|
| [37] |
D. Kumar, S. Chaudhary, V. V. K. Srinivas Kumar, Fractional Crank-Nicolson-Galerkin finite element scheme for the time-fractional nonlinear diffusion equation, Numer. Methods Part. Differ. Equ., 35 (2019), 2056–2075. https://doi.org/10.1002/num.22399 doi: 10.1002/num.22399
|
| [38] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Vol. 204, Elsevier, 2006. |
| [39] |
D. Li, H. L. Liao, W. Sun, J. Wang, J. Zhang, Analysis of $L1$-Galerkin FEMs for time-fractional nonlinear parabolic problems, Commun. Comput. Phys., 24 (2018), 86–103. https://doi.org/10.4208/cicp.OA-2017-0080 doi: 10.4208/cicp.OA-2017-0080
|
| [40] | K. Lipnikov, G. Manzini, High-order mimetic methods for unstructured polyhedral meshes, J. Comput. Phys., 272 (2014), 360–385. |
| [41] |
K. Lipnikov, G. Manzini, M. Shashkov, Mimetic finite difference method, J. Comput. Phys., 257 (2014), 1163–1227. https://doi.org/10.1016/j.jcp.2013.07.031 doi: 10.1016/j.jcp.2013.07.031
|
| [42] |
G. Manzini, K. Lipnikov, J. D. Moulton, M. Shashkov, Convergence analysis of the mimetic finite difference method for elliptic problems with staggered discretizations of diffusion coefficients, SIAM J. Numer. Anal., 55 (2017), 2956–2981. https://doi.org/10.1137/16M1108479 doi: 10.1137/16M1108479
|
| [43] |
G. Manzini, A. Mazzia, Conforming virtual element approximations of the two-dimensional Stokes problem, Appl. Numer. Math., 181 (2022), 176–203. https://doi.org/10.1016/j.apnum.2022.06.002 doi: 10.1016/j.apnum.2022.06.002
|
| [44] |
G. Manzini, A. Mazzia, A virtual element generalization on polygonal meshes of the Scott-Vogelius finite element method for the 2-D Stokes problem, J. Comput. Dyn., 9 (2022), 207–238. https://doi.org/10.3934/jcd.2021020 doi: 10.3934/jcd.2021020
|
| [45] |
G. Manzini, A. Russo, N. Sukumar, New perspectives on polygonal and polyhedral finite element methods, Math. Models Methods Appl. Sci., 24 (2014), 1621–1663. https://doi.org/10.1142/S0218202514400065 doi: 10.1142/S0218202514400065
|
| [46] |
L. Mascotto, III–conditioning in the virtual element method: stabilizations and bases, Numer. Methods Part. Differ. Equ., 34 (2018), 1258–1281. https://doi.org/10.1002/num.22257 doi: 10.1002/num.22257
|
| [47] |
R. Metzler, J. H. Jeon, A. G. Cherstvy, E. Barkai, Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking, Phys. Chem. Chem. Phys., 16 (2014), 24128–24164. https://doi.org/10.1039/C4CP03465A doi: 10.1039/C4CP03465A
|
| [48] |
R. Metzler, W. Schick, H. G. Kilian, T. F. Nonnenmacher, Relaxation in filled polymers: a fractional calculus approachh, J. Chem. Phys., 103 (1995), 7180–7186. https://doi.org/10.1063/1.470346 doi: 10.1063/1.470346
|
| [49] | K. Nishimoto, Fractional calculus: integrations and differentiations of arbitrary order, Descartes Press, 1984. |
| [50] | K. Oldham, J. Spanier, Chapter 3: fractional derivatives and integrals: definitions and equivalences, In: The fractional calculus theory and applications of differentiation and integration to arbitrary order, Academic Press, 111 (1974), 45–60. |
| [51] | I. Podlubny, Fractional differential equations, An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications, Vol. 198. Elsevier, 1999. |
| [52] |
R. Scherer, S. L. Kalla, Y. Tang, J. Huang, The Grünwald-Letnikov method for fractional differential equations, Comput. Math. Appl., 62 (2011), 902–917. https://doi.org/10.1016/j.camwa.2011.03.054 doi: 10.1016/j.camwa.2011.03.054
|
| [53] | P. Sebah, X. Gourdon, Introduction to the gamma function, 2002. Available form: https://api.semanticscholar.org/CorpusID: 14758536. |
| [54] |
E. Sousa, Finite difference approximations for a fractional advection diffusion problem, J. Comput. Phys., 228 (2009), 4038–4054. https://doi.org/10.1016/j.jcp.2009.02.011 doi: 10.1016/j.jcp.2009.02.011
|
| [55] | V. Thomée, Galerkin finite element methods for parabolic problems, Vol. 25, Springer, 2006. https://doi.org/10.1007/3-540-33122-0 |
| [56] | A. M. Wazwaz, Linear and nonlinear integral equations, 1 Ed., Springer, 2011. https://doi.org/10.1007/978-3-642-21449-3 |
| [57] |
Y. Zhang, M. Feng, The virtual element method for the time fractional convection diffusion reaction equation with non-smooth data, Comput. Math. Appl., 110 (2022), 1–18. https://doi.org/10.1016/j.camwa.2022.01.033 doi: 10.1016/j.camwa.2022.01.033
|
| [58] |
Y. Zhang, M. Feng, A local projection stabilization virtual element method for the time-fractional Burgers equation with high Reynolds numbers, Appl. Math. Comput., 436 (2023), 127509. https://doi.org/10.1016/j.amc.2022.127509 doi: 10.1016/j.amc.2022.127509
|
| [59] |
J. Zhao, S. Chen, B. Zhang, The nonconforming virtual element method for plate bending problems, Math. Models Methods Appl. Sci., 26 (2016), 1671–1687. https://doi.org/10.1142/S021820251650041X doi: 10.1142/S021820251650041X
|