Research article Special Issues

Solutions to the non-cutoff Boltzmann equation uniformly near a Maxwellian

  • Received: 30 November 2021 Revised: 11 May 2022 Accepted: 11 May 2022 Published: 19 May 2022
  • The purpose of this paper is to show how the combination of the well-known results for convergence to equilibrium and conditional regularity, in addition to a short-time existence result, lead to a quick proof of the existence of global smooth solutions for the non cutoff Boltzmann equation when the initial data is close to equilibrium. We include a short-time existence result for polynomially-weighted L initial data. From this, we deduce that if the initial data is sufficiently close to a Maxwellian in this norm, then a smooth solution exists globally in time.

    Citation: Luis Silvestre, Stanley Snelson. Solutions to the non-cutoff Boltzmann equation uniformly near a Maxwellian[J]. Mathematics in Engineering, 2023, 5(2): 1-36. doi: 10.3934/mine.2023034

    Related Papers:

    [1] Chentong Li, Jinyan Wang, Jinhu Xu, Yao Rong . The Global dynamics of a SIR model considering competitions among multiple strains in patchy environments. Mathematical Biosciences and Engineering, 2022, 19(5): 4690-4702. doi: 10.3934/mbe.2022218
    [2] Xue-Zhi Li, Ji-Xuan Liu, Maia Martcheva . An age-structured two-strain epidemic model with super-infection. Mathematical Biosciences and Engineering, 2010, 7(1): 123-147. doi: 10.3934/mbe.2010.7.123
    [3] Matthew D. Johnston, Bruce Pell, David A. Rubel . A two-strain model of infectious disease spread with asymmetric temporary immunity periods and partial cross-immunity. Mathematical Biosciences and Engineering, 2023, 20(9): 16083-16113. doi: 10.3934/mbe.2023718
    [4] Ali Mai, Guowei Sun, Lin Wang . The impacts of dispersal on the competition outcome of multi-patch competition models. Mathematical Biosciences and Engineering, 2019, 16(4): 2697-2716. doi: 10.3934/mbe.2019134
    [5] Abdelrazig K. Tarboush, Jing Ge, Zhigui Lin . Coexistence of a cross-diffusive West Nile virus model in a heterogenous environment. Mathematical Biosciences and Engineering, 2018, 15(6): 1479-1494. doi: 10.3934/mbe.2018068
    [6] Azmy S. Ackleh, Mark L. Delcambre, Karyn L. Sutton, Don G. Ennis . A structured model for the spread of Mycobacterium marinum: Foundations for a numerical approximation scheme. Mathematical Biosciences and Engineering, 2014, 11(4): 679-721. doi: 10.3934/mbe.2014.11.679
    [7] Nancy Azer, P. van den Driessche . Competition and Dispersal Delays in Patchy Environments. Mathematical Biosciences and Engineering, 2006, 3(2): 283-296. doi: 10.3934/mbe.2006.3.283
    [8] Junjing Xiong, Xiong Li, Hao Wang . The survival analysis of a stochastic Lotka-Volterra competition model with a coexistence equilibrium. Mathematical Biosciences and Engineering, 2019, 16(4): 2717-2737. doi: 10.3934/mbe.2019135
    [9] Yanxia Dang, Zhipeng Qiu, Xuezhi Li . Competitive exclusion in an infection-age structured vector-host epidemic model. Mathematical Biosciences and Engineering, 2017, 14(4): 901-931. doi: 10.3934/mbe.2017048
    [10] Azmy S. Ackleh, Shuhua Hu . Comparison between stochastic and deterministic selection-mutation models. Mathematical Biosciences and Engineering, 2007, 4(2): 133-157. doi: 10.3934/mbe.2007.4.133
  • The purpose of this paper is to show how the combination of the well-known results for convergence to equilibrium and conditional regularity, in addition to a short-time existence result, lead to a quick proof of the existence of global smooth solutions for the non cutoff Boltzmann equation when the initial data is close to equilibrium. We include a short-time existence result for polynomially-weighted L initial data. From this, we deduce that if the initial data is sufficiently close to a Maxwellian in this norm, then a smooth solution exists globally in time.





    [1] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, T. Yang, The Boltzmann equation without angular cutoff in the whole space: II, Global existence for hard potential, Anal. Appl., 9 (2011), 113–134. https://doi.org/10.1142/S0219530511001777 doi: 10.1142/S0219530511001777
    [2] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, T. Yang, The Boltzmann equation without angular cutoff in the whole space: qualitative properties of solutions, Arch. Rational Mech. Anal., 202 (2011), 599–661. https://doi.org/10.1007/s00205-011-0432-0 doi: 10.1007/s00205-011-0432-0
    [3] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, T. Yang, The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential, J. Funct. Anal., 262 (2012), 915–1010. https://doi.org/10.1016/j.jfa.2011.10.007 doi: 10.1016/j.jfa.2011.10.007
    [4] R. Alonso, Y. Morimoto, W. Sun, T. Yang, De Giorgi argument for weighted L2L solutions to the non-cutoff Boltzmann equation, 2020, arXiv: 2010.10065.
    [5] R. Alonso, Y. Morimoto, W. Sun, T. Yang, Non-cutoff Boltzmann equation with polynomial decay perturbations, Rev. Mat. Iberoam., 37 (2021), 189–292. https://doi.org/10.4171/rmi/1206 doi: 10.4171/rmi/1206
    [6] S. Cameron, S. Snelson, Velocity decay estimates for Boltzmann equation with hard potentials, Nonlinearity, 33 (2020), 2941–2958. https://doi.org/10.1088/1361-6544/ab7729 doi: 10.1088/1361-6544/ab7729
    [7] L. Desvillettes, C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Invent. Math., 159 (2005), 245–316. https://doi.org/10.1007/s00222-004-0389-9 doi: 10.1007/s00222-004-0389-9
    [8] R. Duan, S. Liu, S. Sakamoto, R. M. Strain, Global mild solutions of the Landau and non-cutoff Boltzmann equations, Commun. Pure Appl. Math., 74 (2021), 932–1020. https://doi.org/10.1002/cpa.21920 doi: 10.1002/cpa.21920
    [9] P. T. Gressman, R. M. Strain, Global classical solutions of the Boltzmann equation without angular cut-off, J. Amer. Math. Soc., 24 (2011), 771–847. https://doi.org/10.1090/S0894-0347-2011-00697-8 doi: 10.1090/S0894-0347-2011-00697-8
    [10] P. T. Gressman, R. M. Strain, Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production, Adv. Math., 227 (2011), 2349–2384. https://doi.org/10.1016/j.aim.2011.05.005 doi: 10.1016/j.aim.2011.05.005
    [11] L. He, Well-posedness of spatially homogeneous Boltzmann equation with full-range interaction, Commun. Math. Phys., 312 (2012), 447–476. https://doi.org/10.1007/s00220-012-1481-4 doi: 10.1007/s00220-012-1481-4
    [12] C. Henderson, S. Snelson, A. Tarfulea, Local well-posedness of the Boltzmann equation with polynomially decaying initial data, Kinet. Relat. Mod., 13 (2020), 837–867. https://doi.org/10.3934/krm.2020029 doi: 10.3934/krm.2020029
    [13] F. Hérau, D. Tonon, I. Tristani, Regularization estimates and Cauchy theory for inhomogeneous Boltzmann equation for hard potentials without cut-off, Commun. Math. Phys., 377 (2020), 697–771. https://doi.org/10.1007/s00220-020-03682-8 doi: 10.1007/s00220-020-03682-8
    [14] C. Imbert, C. Mouhot, L. Silvestre, Decay estimates for large velocities in the Boltzmann equation without cutoff, J. Éc. polytech. Math., 7 (2020), 143–184. https://doi.org/10.5802/jep.113
    [15] C. Imbert, C. Mouhot, L. Silvestre, Gaussian lower bounds for the Boltzmann equation without cutoff, SIAM J. Math. Anal., 52 (2020), 2930–2944. https://doi.org/10.1137/19M1252375 doi: 10.1137/19M1252375
    [16] C. Imbert, L. Silvestre, Regularity for the Boltzmann equation conditional to macroscopic bounds, EMS Surv. Math. Sci., 7 (2020), 117–172. https://doi.org/10.4171/emss/37 doi: 10.4171/emss/37
    [17] C. Imbert, L. Silvestre, The weak Harnack inequality for the Boltzmann equation without cut-off, J. Eur. Math. Soc., 22 (2020), 507–592. https://doi.org/10.4171/jems/928 doi: 10.4171/jems/928
    [18] C. Imbert, L. Silvestre, The Schauder estimate for kinetic integral equations, Anal. PDE, 14 (2021), 171–204. https://doi.org/10.2140/apde.2021.14.171 doi: 10.2140/apde.2021.14.171
    [19] C. Imbert, L. Silvestre, Global regularity estimates for the Boltzmann equation without cut-off, J. Amer. Math. Soc., in press.
    [20] J. Kim, Y. Guo, H. J. Hwang, An L2 to L framework for the Landau equation, Peking Math. J., 3 (2020), 131–202. https://doi.org/10.1007/s42543-019-00018-x doi: 10.1007/s42543-019-00018-x
    [21] Y. Morimoto, T. Yang, Local existence of polynomial decay solutions to the Boltzmann equation for soft potentials, Anal. Appl., 13 (2015), 663–683. https://doi.org/10.1142/S0219530514500079 doi: 10.1142/S0219530514500079
    [22] L. Silvestre, A new regularization mechanism for the Boltzmann equation without cut-off, Commun. Math. Phys., 348 (2016), 69–100. https://doi.org/10.1007/s00220-016-2757-x doi: 10.1007/s00220-016-2757-x
    [23] C. Villani, A review of mathematical topics in collisional kinetic theory, In: Handbook of mathematical fluid dynamics, Amsterdam: North-Holland, 2002, 71–305. https://doi.org/10.1016/S1874-5792(02)80004-0
    [24] H. Zhang, Global solutions in Wkζ,pLxLv2 for the Boltzmann equation without cutoff, 2020, arXiv: 2008.10269.
  • This article has been cited by:

    1. Yixiang Wu, Necibe Tuncer, Maia Martcheva, Coexistence and competitive exclusion in an SIS model with standard incidence and diffusion, 2017, 22, 1553-524X, 1167, 10.3934/dcdsb.2017057
    2. Junping Shi, Yixiang Wu, Xingfu Zou, Coexistence of Competing Species for Intermediate Dispersal Rates in a Reaction–Diffusion Chemostat Model, 2020, 32, 1040-7294, 1085, 10.1007/s10884-019-09763-0
    3. Yixiang Wu, Xingfu Zou, Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, 2016, 261, 00220396, 4424, 10.1016/j.jde.2016.06.028
    4. Lin Zhao, Zhi-Cheng Wang, Shigui Ruan, Dynamics of a time-periodic two-strain SIS epidemic model with diffusion and latent period, 2020, 51, 14681218, 102966, 10.1016/j.nonrwa.2019.102966
    5. Jing Ge, Ling Lin, Lai Zhang, A diffusive SIS epidemic model incorporating the media coverage impact in the heterogeneous environment, 2017, 22, 1553-524X, 2763, 10.3934/dcdsb.2017134
    6. Yuan Lou, Rachidi B. Salako, Control Strategies for a Multi-strain Epidemic Model, 2022, 84, 0092-8240, 10.1007/s11538-021-00957-6
    7. Jinsheng Guo, Shuang-Ming Wang, Threshold dynamics of a time-periodic two-strain SIRS epidemic model with distributed delay, 2022, 7, 2473-6988, 6331, 10.3934/math.2022352
    8. Rachidi B. Salako, Impact of population size and movement on the persistence of a two-strain infectious disease, 2023, 86, 0303-6812, 10.1007/s00285-022-01842-z
    9. Yuan Lou, Rachidi B. Salako, Mathematical analysis of the dynamics of some reaction-diffusion models for infectious diseases, 2023, 370, 00220396, 424, 10.1016/j.jde.2023.06.018
    10. Jonas T. Doumatè, Tahir B. Issa, Rachidi B. Salako, Competition-exclusion and coexistence in a two-strain SIS epidemic model in patchy environments, 2023, 0, 1531-3492, 0, 10.3934/dcdsb.2023213
    11. Azmy S. Ackleh, Nicolas Saintier, Aijun Zhang, A multiple-strain pathogen model with diffusion on the space of Radon measures, 2025, 140, 10075704, 108402, 10.1016/j.cnsns.2024.108402
    12. Jamal Adetola, Keoni G. Castellano, Rachidi B. Salako, Dynamics of classical solutions of a multi-strain diffusive epidemic model with mass-action transmission mechanism, 2025, 90, 0303-6812, 10.1007/s00285-024-02167-9
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2689) PDF downloads(230) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog