Research article

Linearization and computation for large-strain visco-elasticity

  • Received: 29 October 2021 Revised: 23 March 2022 Accepted: 28 March 2022 Published: 06 May 2022
  • Time-discrete numerical minimization schemes for simple visco-elastic materials in the Kelvin-Voigt rheology at high strains are not well posed because of the non-quasi-convexity of the dissipation functional. A possible solution is to resort to non-simple material models with higher-order gradients of deformations. However, this makes numerical computations much more involved. Here, we propose another approach that relies on local minimizers of the simple material model. Computational tests are provided that show a very good agreement between our model and the original.

    Citation: Patrick Dondl, Martin Jesenko, Martin Kružík, Jan Valdman. Linearization and computation for large-strain visco-elasticity[J]. Mathematics in Engineering, 2023, 5(2): 1-15. doi: 10.3934/mine.2023030

    Related Papers:

  • Time-discrete numerical minimization schemes for simple visco-elastic materials in the Kelvin-Voigt rheology at high strains are not well posed because of the non-quasi-convexity of the dissipation functional. A possible solution is to resort to non-simple material models with higher-order gradients of deformations. However, this makes numerical computations much more involved. Here, we propose another approach that relies on local minimizers of the simple material model. Computational tests are provided that show a very good agreement between our model and the original.



    加载中


    [1] S. S. Antman, Physically unacceptable viscous stresses, Z. Angew. Math. Phys., 49 (1998), 980–988. https://doi.org/10.1007/s000330050134 doi: 10.1007/s000330050134
    [2] S. S. Antman, Nonlinear problems of elasticity, 2 Eds., New York: Springer, 2005. https://doi.org/10.1007/0-387-27649-1
    [3] J. M. Ball, Y. Şengül, Quasistatic nonlinear viscoelasticity and gradient flows, J. Dyn. Diff. Equat., 27 (2015), 405–442. https://doi.org/10.1007/s10884-014-9410-1 doi: 10.1007/s10884-014-9410-1
    [4] F. K. Bogner, R. L. Fox, L. A. Schmit, The generation of interelement compatible stiffness and mass matrices by the use of interpolation formulas, In: Proc. Conf. Matrix Methods in Struct. Mech, AirForce Inst. of Tech, Wright Patterson AF Base, Ohio, 1965,397–444.
    [5] Y. Chen, T. A. Davis, W. W. Hager, S. Rajamanickam, Algorithm 887: CHOLMOD, Supernodal sparse Cholesky factorization and update/downdate, ACM Trans. Math. Software, 35 (2008), 22. https://doi.org/10.1145/1391989.1391995 doi: 10.1145/1391989.1391995
    [6] B. Dacorogna, Direct methods in the calculus of variations, 2 Eds., New York: Springer, 2008. https://doi.org/10.1007/978-0-387-55249-1
    [7] G. Dal Maso, M. Negri, D. Percivale, Linearized elasticity as $\Gamma$-limit of finite elasticity, Set-Valued Analysis, 10 (2002), 165–183. https://doi.org/10.1023/A:1016577431636 doi: 10.1023/A:1016577431636
    [8] M. Friedrich, M. Kružík, On the passage from nonlinear to linearized viscoelasticity, SIAM J. Math. Anal., 50 (2018), 4426–4456. https://doi.org/10.1137/17M1131428 doi: 10.1137/17M1131428
    [9] M. Friedrich, M. Kružík, J. Valdman, Numerical approximation of von Kármán viscoelastic plates, Discrete Cont. Dyn. Syst. S, 14 (2021), 299–319. https://doi.org/10.3934/dcdss.2020322 doi: 10.3934/dcdss.2020322
    [10] G. Friesecke, R. D. James, S. Müller, A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence, Arch. Rational Mech. Anal., 180 (2006), 183–236. https://doi.org/10.1007/s00205-005-0400-7 doi: 10.1007/s00205-005-0400-7
    [11] S. Krömer, T. Roubíček, Quasistatic viscoelasticity with self-contact at large strains, J. Elast., 142 (2020), 433–445. https://doi.org/10.1007/s10659-020-09801-9 doi: 10.1007/s10659-020-09801-9
    [12] A. Mielke, C. Ortner, Y. Şengül, An approach to nonlinear viscoelasticity via metric gradient flows, SIAM J. Math. Anal., 46 (2014), 1317–1347. https://doi.org/10.1137/130927632 doi: 10.1137/130927632
    [13] P. Neff, On Korn's first inequality with non-constant coefficients, Proc. Roy. Soc. Edinb. A, 132 (2002), 221–243. https://doi.org/10.1017/S0308210500001591 doi: 10.1017/S0308210500001591
    [14] J. Valdman, MATLAB implementation of {C1 finite elements: Bogner-Fox-Schmit rectangle, In: Parallel processing and applied mathematics. PPAM 2019, Cham: Springer, 2020,256–266. https://doi.org/10.1007/978-3-030-43222-5_22
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1310) PDF downloads(187) Cited by(0)

Article outline

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog