From the point of view of perturbation theory, (perturbations of) near-resonant systems are plagued by small denominators. These do not affect (perturbations of) fully resonant systems; so it is in many ways convenient to approximate near resonant systems as fully resonant ones, which correspond to considering the "detuning" as a perturbation itself. This approach has proven very fruitful in Classical Mechanics, but it is also standard in (perturbations of) Quantum Mechanical systems. Actually, its origin may be traced back (at least) to the Rayleigh-Ritz method for computing eigenvalues and eigenvectors of perturbed matrix problems. We will discuss relations between these approaches, and consider some case study models in the different contexts.
Citation: G. Gaeta, G. Pucacco. Near-resonances and detuning in classical and quantum mechanics[J]. Mathematics in Engineering, 2023, 5(1): 1-44. doi: 10.3934/mine.2023005
[1] | Mustafa Mudhesh, Aftab Hussain, Muhammad Arshad, Hamed AL-Sulami, Amjad Ali . New techniques on fixed point theorems for symmetric contraction mappings with its application. AIMS Mathematics, 2023, 8(4): 9118-9145. doi: 10.3934/math.2023457 |
[2] | Pragati Gautam, Vishnu Narayan Mishra, Rifaqat Ali, Swapnil Verma . Interpolative Chatterjea and cyclic Chatterjea contraction on quasi-partial b-metric space. AIMS Mathematics, 2021, 6(2): 1727-1742. doi: 10.3934/math.2021103 |
[3] | Tahair Rasham, Muhammad Nazam, Hassen Aydi, Abdullah Shoaib, Choonkil Park, Jung Rye Lee . Hybrid pair of multivalued mappings in modular-like metric spaces and applications. AIMS Mathematics, 2022, 7(6): 10582-10595. doi: 10.3934/math.2022590 |
[4] | Muhammad Tariq, Mujahid Abbas, Aftab Hussain, Muhammad Arshad, Amjad Ali, Hamid Al-Sulami . Fixed points of non-linear set-valued (α∗,ϕM)-contraction mappings and related applications. AIMS Mathematics, 2022, 7(5): 8861-8878. doi: 10.3934/math.2022494 |
[5] | Haitham Qawaqneh, Mohd Salmi Md Noorani, Hassen Aydi . Some new characterizations and results for fuzzy contractions in fuzzy b-metric spaces and applications. AIMS Mathematics, 2023, 8(3): 6682-6696. doi: 10.3934/math.2023338 |
[6] | Afrah Ahmad Noman Abdou . Chatterjea type theorems for complex valued extended b-metric spaces with applications. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977 |
[7] | Monairah Alansari, Mohammed Shehu Shagari, Akbar Azam, Nawab Hussain . Admissible multivalued hybrid Z-contractions with applications. AIMS Mathematics, 2021, 6(1): 420-441. doi: 10.3934/math.2021026 |
[8] | Tahair Rasham, Abdullah Shoaib, Shaif Alshoraify, Choonkil Park, Jung Rye Lee . Study of multivalued fixed point problems for generalized contractions in double controlled dislocated quasi metric type spaces. AIMS Mathematics, 2022, 7(1): 1058-1073. doi: 10.3934/math.2022063 |
[9] | Muhammad Tariq, Muhammad Arshad, Mujahid Abbas, Eskandar Ameer, Saber Mansour, Hassen Aydi . A relation theoretic m-metric fixed point algorithm and related applications. AIMS Mathematics, 2023, 8(8): 19504-19525. doi: 10.3934/math.2023995 |
[10] | Hanadi Zahed, Zhenhua Ma, Jamshaid Ahmad . On fixed point results in F-metric spaces with applications. AIMS Mathematics, 2023, 8(7): 16887-16905. doi: 10.3934/math.2023863 |
From the point of view of perturbation theory, (perturbations of) near-resonant systems are plagued by small denominators. These do not affect (perturbations of) fully resonant systems; so it is in many ways convenient to approximate near resonant systems as fully resonant ones, which correspond to considering the "detuning" as a perturbation itself. This approach has proven very fruitful in Classical Mechanics, but it is also standard in (perturbations of) Quantum Mechanical systems. Actually, its origin may be traced back (at least) to the Rayleigh-Ritz method for computing eigenvalues and eigenvectors of perturbed matrix problems. We will discuss relations between these approaches, and consider some case study models in the different contexts.
Simon and Volkmann considered in [1] the following two equations which are connected with the absolute values of some additive function γ:G→R, that is,
η(x)+η(y)=max{η(x−y),η(x+y)},x,y∈G, | (1.1) |
|η(x)−η(y)|=min{η(x−y),η(x+y)},x,y∈G, | (1.2) |
for a real function η:G→R defined on an abelian group (G,+) and both functional equations are satisfied by η(x)=|γ(x)| where γ(x+y)=γ(x)+γ(y). Moreover, solution of the equation
η(x)η(y)=max{η(x+y),η(x−y)}, | (1.3) |
with supposition about G to be an abelian group was presented in the following theorem as:
Theorem 1. [1, Theorem 2] Let η:G→R, where every element of an abelian group G is divisible by 2 and 3. Then, η fulfills Eq (1.3) if and only if η(x)=0 or η(x)=e|γ(x)|, x∈G, where γ:G→R is an additive function.
The solutions of Eqs (1.1) and (1.2) presented by Jarczyk et al. [2] and are demonstrated as:
Theorem 2. Let η:G→R, where η is defined on an abelian group G. Then η fulfills Eq (1.1) if and only if functional Eq (1.2) holds and also satisfies η(2x)=2η(x) for x∈G.
Furthermore, the most comprehensive study of the equation
η(x)+η(y)=max{η(xy−1),η(xy)}x,y∈G, | (1.4) |
on groups has been presented in [3,4]. Volkmann has given the solution of Eq (1.4) with supposition that η fulfills the renowned condition called Kannappan condition [5], that is defined as, η(xgy)=η(xyg) for x,y,g∈G. Following that, Toborg [3] gave the characterization of such mappings exhibited in Eq (1.4) without taking into account the Kannappan condition and abelian group G. Their key findings are as follows:
Theorem 3 (For the special case, see [3,4] for the general case). Let η:G→R, where η is acting on any group G. Then, η fulfills Eq (1.4) if and only if η(x)=|γ(x)| for every x∈G, where γ:G→R is an additive function.
We suggest the readers consult the articles [2,6] and related cited references to get some inclusive results and solutions about the functional Eq (1.4). In addition, some stability results of Eqs (1.2) and (1.4) can be found in [7] and [6] respectively.
Recently, in [8], Eq (1.3) presented in a generalized form as
max{η(xy−1),η(xy)}=η(x)η(y),x,y∈G, | (1.5) |
with the exception of additional suppositions that every element of the abelian group is divisible by 2 and 3. Their main result is demonstrated as:
Theorem 4 (see [8]). Let η:G→R, where G is any group. Then a mapping η:G→R fulfills the Eq (1.5) if and only if η≡0 or there exists a normal subgroup Nη such that
Nη={x∈G∣η(x)=1} |
and
xy∈Nηorxy−1∈Nη,x,y∈G and x,y∉Nη; |
or η(x)=e|γ(x)|, x∈G, where γ:G→R is an additive function.
The main objective of this research article is to determine the solution to the generalized minimum functional equation
χ(x)χ(y)=min{χ(xy−1),χ(xy)},x,y∈G. | (1.6) |
With the exception of additional suppositions, we derive some results concerning Eq (1.6) that are appropriate for arbitrary group G rather than abelian group (G,+).
Redheffer and Volkmann [9] determined the solution of the Pexider functional equation
max{h(x+y),h(x−y)}=f(x)+g(x),x,y∈G, | (1.7) |
for three unknown functions h, f and g acting on abelian group (G,+), which is a generalization of Eq (1.1).
We will also examine the general solutions of the generalized Pexider-type functional equation
max{η(xy),η(xy−1)}=χ(x)η(y)+ψ(x),x,y∈G, | (1.8) |
where real functions η, χ, and ψ are defined on any group G. This Pexider functional Eq (1.8) is a common generalization of two previous Eqs (1.4) and (1.5). Readers can see renowned papers [10,11] and associated references cited therein to obtain comprehensive results and discussions concerning the Pexider version of some functional equations.
In this research paper, our group G will in general (G,⋅) not be abelian (G,+), therefore, the group operation will be described multiplicatively as xy for x,y∈G. Symbol e will be acknowledged as the neutral element.
Definition 1. Assume that G is any group. A mapping η:G→R fulfills the Kannappan condition [5] if
η(xzg)=η(xgz)for every g,x,z∈G. |
Remark 1. For every abelian group G, a mapping η:G→R fulfills the Kannappan condition but converse may not be true.
Lemma 1. Suppose that η:G→R, where G is an arbitrary group. Let η is a strictly positive solution of the functional Eq (1.6), then η(x)=e−|β(x)|, x∈G, where β:G→R is an additive function.
Proof. By given assumption, η(x)>0 for every x∈G. Since η satisfies Eq (1.6), as a result, 1η also satisfies the functional Eq (1.3), then by well-known theorem from [6], we can get that η(x)=e−|β(x)|, x∈G, where β:G→R is an additive function.
First, we are going to prove the following important lemma which will be utilized several times during computations especially to prove Theorem 5.
Lemma 2. Let η:G→R, where G is an arbitrary group and η is a non-zero solution of Eq (1.6), then the following results hold:
(1) η(e)=1;
(2) η(x−1)=η(x);
(3) η(x−1yx)=η(y);
(4) η is central.
Proof. (1). Putting y=e in (1.6), we can obtain that η(x)η(e)=η(x). By given condition, η is non-zero, therefore, we obtain η(e)=1.
(2). Using x=e in functional Eq (1.6), we can deduce
η(e)η(y−1)=min{η(e.y−1),η(e.y)}η(y−1)=min{η(y−1),η(y)}, | (2.1) |
replacing y−1 with y in Eq (2.1) provides that
η(y)=min{η(y),η(y−1)}. | (2.2) |
Eqs (2.1) and (2.2) give that η(y−1)=η(y). Since y is arbitrary, therefore, we have η(x−1)=η(x) for any x∈G.
(3). From functional Eq (1.6), the proof of property (3) can be obtained from the following simple calculation:
η(x)η(x−1yx)=min{η(x(x−1yx)),η(x(x−1yx)−1)}=min{η(yx),η(xx−1y−1x)}=min{η((yx)−1),η(y−1x)}=min{η(x−1y−1),η((y−1x)−1)}(by Lemma 2(2))=min{η(x−1y−1),η(x−1y)}η(x)η(x−1yx)=η(x−1)η(y)η(x)η(x−1yx)=η(x)η(y)η(x−1yx)=η(y). |
(4). By Lemma 2(3) and replacing y with xy, we can see that η(x−1(xy)x)=η(xy), which gives η(xy)=η(yx), therefore, η is central.
In addition, we concentrate on the main theorem of Section 2 to describe the solutions η of Eq (1.6).
Theorem 5. Let η:G→R, where G is an arbitrary group. A mapping η is a solution of Eq (1.6) if and only if η≡0 or there exists a normal subgroup Hη of G defined as
Hη={x∈G∣η(x)=1} |
and fulfills the condition that
xy−1∈Hη∨xy∈Hηfor every x,y∈G∖Hη; | (2.3) |
or there exists a normal subgroup Hη of G fulfills the condition that
xy−1∈Hη∧xy∈Hηfor every x,y∈G∖Hη; | (2.4) |
or η(x)=e−|β(x)|, x∈G, where β:G→R is some additive function.
Proof. The 'if' part obviously demonstrates that every mapping η determined in the statement of the theorem is a solution of Eq (1.6). Conversely, suppose that a function η:G→R is a solution of (1.6), then putting x=y=e in Eq (1.6), we get η(e)=η(e)η(e), which gives that either η(e)=1 or η(e)=0. First, let η(e)=0, and then put y=e in (1.6) to get η(x)=0 for every x∈G. Suppose that η(e)=1, then there are the following different cases.
Suppose that there exists z∘∈G such that η(z∘)≤0. Putting x=y in (1.6), we have min{η(x2),η(e)}=η(x)2, which gives that η(x)2≤1, so −1≤η(x)≤1 but η(z∘)≤0, therefore, −1≤η(z∘)≤0. Let −1<η(z∘)<0, then we can compute
min{η(z2∘),η(e)}=η(z∘)2min{η(z2∘),1}=η(z∘)2<1, |
which implies that η(z2∘)=η(z∘)2. Moreover,
η(z∘)≥min{η(z3∘),η(z∘)}=η(z2∘)η(z∘)=η(z∘)2η(z∘)=η(z∘)3η(z∘)>η(z∘), |
which gives a contradiction, consequently, either η(z∘)=0 or η(z∘)=−1. Additionally, it is not possible that η(x)=0 and η(y)=−1 for some x,y∈G. Since η(e)=1, therefore, either η(x)∈{0,1} or η(x)∈{−1,1}. Moreover, define Hη={x∈G∣η(x)=1}.
It is obvious that e∈Hη for the reason that η(e)=1. Suppose that h∈Hη; then from Lemma 2(2) we obtain η(h−1)=η(h)=1; therefore, h−1∈Hη. Let h1,h2∈Hη; then, η(h1)=η(h2)=1, and we can deduce from Eq (1.6) that
η(h1h2)=η(h1h2)η(h2)=min{η(h1h22),η(h1)}≤η(h1)η(h1h2)≤η(h1)η(h2). | (2.5) |
η(h1)η(h2)=min{η(h1h2),η(h1h−12)}≤η(h1h2)η(h1)η(h2)≤η(h1h2). | (2.6) |
By (2.5) and (2.6) we can get that η(h1h2)=η(h1)η(h2)=1, therefore, we have h1h2∈Hη. Consequently, Hη is a subgroup of G. Assume that h∈Hη; then Lemma 2(3) yields that η(x−1hx)=η(h) for any x∈G and h∈Hη; accordingly, Hη is a normal subgroup of G.
First, suppose that η(x)∈{0,1} and x,y∈G∖Hη; therefore, η(x)=η(y)=0, then, by functional Eq (1.6), we have min{η(xy),η(xy−1)}=η(x)η(y)=0. In a consequence, we can determine that xy−1∈Hη∨xy∈Hη for any x,y∈G∖Hη.
In addition, considering the second case, let η(x)∈{−1,1} and let x,y∈G∖Hη; thus, η(x)≠1 and η(y)≠1; then η(x)=η(y)=−1. Consequently, Eq (1.6) gives that min{η(xy),η(xy−1)}=η(x)η(y)=1. In either case, we can conclude that η(xy)=1 and η(xy−1)=1, which infers that xy−1∈Hη∧xy∈Hη for all x,y∈G∖Hη.
Furthermore, let η(x)>0 for all x∈G, then from Lemma 1, we can conclude that η(x)=e−|β(x)|, x∈G.
Corollary 1. Let η:G→R, where G is an arbitrary group. Assume that η is a non-zero solution of the functional Eq (1.6); then the commutator subgroup G′ is a normal subgroup of Hη.
Proof. Since η is a non-zero, then by the main theorem, we can derive the following cases:
Case 1. According to the main theorem, there exists a normal subgroup Hη defined as η(x)=1 for every x∈Hη and also satisfies the condition (2.4); consequently, by Lemma 2, we can compute that
(xy)−1∈Hη∧(xy−1)−1∈Hηy−1x−1∈Hη∧yx−1∈Hηx−1y−1∈Hη∧x−1y∈Hηxyx−1y−1∈Hη∧xy−1x−1y∈Hη[x,y]∈Hη∧(xy−1x−1y)−1∈Hη[x,y]∈Hη∧y−1xyx−1∈Hη[x,y]∈Hη∧xyx−1y−1∈Hη, |
which indicates that η([x,y])=1.
Case 2. There exists a normal subgroup Hη which satisfies the condition (2.3), that is xy−1∈Hη∨xy∈Hη for all x,y∈G∖Hη; accordingly, applying Lemma 2 and Case 1, we can deduce that η([x,y])=1.
Case 3. Assume that η(x)>0 for any x∈G; consequently by Theorem 5, we have η(x)=e−|β(x)| for any x∈G, where β:G→R is an additive function, thus, η([x,y])=1 for the reason that β([x,y])=0 for any x,y∈G.
Hence, in either case, the required proof is completed.
Corollary 2. Any solution η:G→R of Eq (1.6) on any group G fulfills the Kannappan condition.
Proof. The proof relies on the following cases:
Case 1. Assume that η≡0 on group G, then it is obvious that η fulfills the Kannappan condition.
Case 2. Let η(x)≤0 for all x∈G. Then from Theorem 5 and Corollary 1, there exists normal subgroup Hη such that G′⊆Hη, consequently, η(xyg)=1 if and only if xyg∈Hη if and only if [y−1,x−1]xyg=xgy∈Hη if and only if η(xgy)=1. It is sufficient to prove the Kannappan condition because η only takes the values 1, 0, and -1.
Case 3. Suppose that η(x)>0, x∈G, then η(x)=e−|β(x)|, therefore η(xyg)=η(xgy) for any x,g,y∈G because β is an additive function.
Corollary 3. If η is a strictly positive solution of (1.6), then max{η(xy−1),η(xy)}∈(0,1].
Theorem 6. Let η:G→R and η is a non-zero solution of (1.6), then:
(1) Assume that g∈G and η(gx−1)=η(gx) for some elements x∈G with the restriction that η(x2)≠1. Then η(g2)=1.
(2) Suppose that Gη={g∈G∣η(g2)=1}, then Gη is a normal subgroup of G.
(3) If η is strictly positive, then Gη=Hη.
Proof. Assume that x,y∈G, then by Eq (1.6) and Corollary 2, we have
η(gx)η(gx−1)=min{η(gxgx−1),η(gx(gx−1)−1)}=min{η(gxgx−1),η(gxxg−1)}=min{η(g2),η(gx2g−1)}η(gx)η(gx−1)=min{η(g2),η(x2)}. | (2.7) |
(1). By given condition η(gx)=η(gx−1) for some x∈G and by Eq (2.7), we can see that either η(x2)=1 or η(g2)=1, therefore, given condition η(x2)≠1 implies that η(g2)=1.
(2). Since η(e)=1, therefore e∈Gη. Let g∈Gη; then η(g2)=1. Moreover, η(x−1)=η(x) gives that η(g−2)=η(g2)=1, therefore g−1∈Gη. Let g,y∈Gη; then, η(y2)=1 and η(g2)=1, therefore, a simple calculation yields
η(y2g2)=η(y2g2)η(g2)=min{η(y2g4),η(y2)}≤η(y2)η(y2g2)≤η(y2)η(g2). | (2.8) |
η(y2)η(g2)=min{η(y2g2),η(y2g−2)}≤η(y2g2)η(y2)η(g2)≤η(y2g2), | (2.9) |
So, inequalities (2.8) and (2.9) implies that η(y2g2)=η(y2)η(g2)=1, which yields that yg∈Gη, consequently, Gη is a subgroup of G. Additionally, Lemma 2 provides that η(xg)=η(gx) for every x∈G and g∈Gη. As a result, Gη is a normal subgroup of a group G.
(3). As η(x)>0 for every x∈G, then the proof can be seen easily from Lemma 1 and Theorem 6 (2).
Definition 2. Suppose that group G is abelian. Then a mapping η:G→R is called a discrete norm if η(x)>γ, where γ>0 and x∈G∖{e}. Then (G,η,e) is said to be a discretely normed abelian group [12].
Theorem 7. Assume that (G,η,e) is a discretely normed abelian group. A mapping η:G→R is a solution of (1.6) if and only if η(x)=e−|β(x)|, x∈G∖{e}, where β:G→R is some additive function.
Proof. Since (G,η,e) is a discretely normed, then there exists a mapping η:G→R such that η(x)>γ, where γ>0 and x∈G∖{e}. Setting η(x)=logη(x), and using Lemma 1, we get
min{η(xy−1),η(xy)}=η(x)η(y) |
if and only if η(x)=e−|β(x)|, x∈G∖{e}, where β:G→R is some additive function.
Corollary 4. For free abelian group G, a mapping η is a solution of Eq (1.6) if and only if η(x)=e−|β(x)|, x∈G∖{e}, where β:G→R is some additive function.
Theorem 8. Let η:G→R fulfills the Kannappan condition, where G is an arbitrary group. Then η,χ,ψ are solutions of the functional Eq (1.8) if and only if
{η(x)=λ1,x∈G,λ1∈R,ψ is an arbitrary function,χ(x)=1−λ−11ψ(x); |
or
{η(x)=ξ(x)+λ1,x∈G,λ1∈R,χ(x)=1,ψ(x)=ξ(x), |
where ξ:G→R is a solution of Eq (1.4);
or
{η(x)=λ2ξ(x)+λ1,x∈G,λ1,λ2∈R,λ2>0,χ(x)=ξ(x),ψ(x)=λ1(1−ξ(x)), |
where ξ:G→R is a solution of Eq (1.5);
or
{η(x)=λ2ξ(x)+λ1,x∈G,λ1,λ2∈R,λ2<0,χ(x)=ξ(x),ψ(x)=λ1(1−ξ(x)), |
where ξ:G→R is a solution of Eq (1.6).
Proof. The 'if' part of the theorem can easily be seen that every function η, χ, and ξ presented in the statement is a solution of Eq (1.8). Conversely, suppose that η,χ,ψ are solutions of Eq (1.8), then we have the following cases:
(1). η is constant.
Assuming that η(x)=λ1 for x∈G and λ1∈R, we may deduce from Eq (1.8) that χ(x)=1−λ−11ψ(x) when ψ is an arbitrary function, which is required result described in the statement.
(2). η is not constant.
Setting y=e in Eq (1.8) gives that
max{η(x),η(x)}=χ(x)η(e)+ψ(x)η(x)=χ(x)η(e)+ψ(x)ψ(x)=η(x)−χ(x)η(e). | (3.1) |
Using Eq (3.1) in (1.8), we conclude that
max{η(xy),η(xy−1)}=χ(x)η(y)+η(x)−χ(x)η(e). | (3.2) |
Setting x=e, we can obtain
max{η(y),η(y−1)}=χ(e)η(y)+η(e)−χ(e)η(e). | (3.3) |
We are going to show that χ(e)=1, but on the contrary, assume that χ(e)≠1. Setting
H:={y∈G:η(y−1)≤η(y)},H′:=G∖H. |
If y∈H′ then y−1∈H. Also, if y∈H, then from Eq (3.3), we have
η(y)=χ(e)η(y)+η(e)−χ(e)η(e)(χ(e)−1)(η(e)−η(y))=0, |
which implies that η(y)=η(e) for all y∈H. Moreover, H′≠∅ because η is not constant. Assume that y′∈H′ then η(y′)<η(y′−1)=η(e), which implies that
η(y′)−η(e)<0. | (3.4) |
Writing y′ instead of y in Eq (3.3) and using (3.4) we can get that
η(e)=η(y′−1)=χ(e)η(y′)+η(e)−χ(e)η(e), |
which implies that (η(y′)−η(e))χ(e)=0, so χ(e)=0. Setting x=y′ and y=y′−1 in (3.2) we have
η(e)≤max{η(e),η(y′2)}=χ(y′)η(y′−1)+η(y′)−χ(y′)η(e)=χ(y′)η(e)+η(y′)−χ(y′)η(e)η(e)≤η(y′)<η(e), |
which is a contradiction, thus, we have χ(e)=1. Moreover, from Eq (3.3), we can see that
max{η(y),η(y−1)}=η(y), | (3.5) |
writting y−1 instead of y in (3.5) we have
max{η(y−1),η(y)}=η(y−1), | (3.6) |
from (3.5) and (3.6) we can get that η(y−1)=η(y).
Since η(x−1)=η(x) for every x∈G, then from Eq (3.2) and Kannappan condition we have
χ(x)η(y)+η(x)−χ(x)η(e)=max{η(xy),η(xy−1)}=max{η(y−1x−1),η(yx−1)}=max{η(ey−1x−1),η(eyx−1)}=max{η(x−1y−1),η(x−1y)}χ(x)η(y)+η(x)−χ(x)η(e)=χ(x−1)η(y)+η(x−1)−χ(x−1)η(e)(η(y)−η(e))(χ(x)−χ(x−1))=0, |
which infers that χ(x−1)−χ(x)=0 because η is not constant. Moreover, when η is not constant then η(x−1)=η(x) and χ(x−1)=χ(x) for every x∈G, consequently, by Eq (3.1) we can get that ψ(x−1)=ψ(x). Also, by Eq (3.2) and Kannappan condition we can see that
χ(x)η(y)+η(x)−χ(x)η(e)=max{η(xy),η(xy−1)}=max{η(exy),η(yx−1)}=max{η(yx),η(yx−1)}χ(x)η(y)+η(x)−χ(x)η(e)=χ(y)η(x)+η(y)−χ(y)η(e)χ(x)(η(y)−η(e))+η(x)=χ(y)(η(x)−η(e))+η(y)χ(x)(η(y)−η(e))−(η(y)−η(e))=χ(y)(η(x)−η(e))−(η(y)−η(e))(η(y)−η(e))(χ(x)−1)=(η(x)−η(e))(χ(y)−1). |
Suppose that η(y′)≠η(e) for y′∈G, then we can obtain that
χ(x)−1=χ(y′)−1η(y′)−η(e)(η(x)−η(e)). |
Moreover, assume that β:=χ(y′)−1η(y′)−η(e), then χ(x)−1=β(η(x)−η(e)), so we can write as χ1(x)=βη1(x), where
χ1(x):=χ(x)−1,x∈G, | (3.7) |
η1(x):=η(x)−η(e),x∈G. | (3.8) |
Also η1(e)=0. By functional Eq (3.2) and definition of η1, we have
max{η1(xy),η1(xy−1)}=max{η(xy),η(xy−1)}−η(e)=χ(x)η(y)+η(x)−χ(x)η(e)−η(e)=χ(x)(η(y)−η(e))+η(x)−η(e)=χ(x)η1(y)+η1(x)=(βη1(x)+1)η1(y)+η1(x)max{η1(xy),η1(xy−1)}=βη1(x)η1(y)+η1(x)+η1(y). | (3.9) |
According to the different values of β, we can discuss the following three different cases.
Case 1. β=0.
By Eq (3.7), we see that χ(x)=1, x∈G. Furthermore, by functional Eq (3.9), we have
max{η1(xy),η1(xy−1)}=η1(x)+η1(y), |
for all x,y∈G and also η1 satisfies the functional Eq (1.4), then from well-known theorem of Toborg [3], there exists some additive function g:G→R such that η1(x)=|g(x)| for all x∈G, then from Eqs (3.1), (3.7) and (3.8), we can deduce
{η(x)=λ1+ξ(x),χ(x)=1,ψ(x)=ξ(x), |
where λ1=η(e) and ξ:G→R is a solution of Eq (1.4) such that ξ(x)=|g(x)|.
Case 2. β>0.
Let η2:=βη1(x) for all x∈G, then multiplying functional Eq (3.9) by β, we conclude that
max{βη1(xy),βη1(xy−1)}=(βη1(x))(βη1(y))+βη1(x)+βη1(y)max{η2(xy),η2(xy−1)}=η2(x)η2(y)+η2(x)+η2(y)=(η2(x)+1)(η2(y)+1)−1max{η2(xy),η2(xy−1)}+1=(η2(x)+1)(η2(y)+1), |
then by setting ξ(x):=η2(x)+1 for x∈G, we get
max{ξ(xy),ξ(xy−1)}=ξ(x)ξ(y),x,y∈G. |
It is clear that ξ:G→R satisfies Eq (1.5), then from Eq (3.8) we get
ξ(x)=η2(x)+1=βη1(x)+1=β(η(x)−η(e))+1, |
which gives that η(x)=λ2ξ(x)+λ1 where λ2=β−1,λ1=η(e)−β−1.
Also, from Eqs (3.1), (3.7) and (3.8), we can see that
{η(x)=λ2ξ(x)+λ1,x∈G,λ2>0,χ(x)=ξ(x),ψ(x)=λ1(1−ξ(x)), |
where ξ:G→R is a solution of (1.5).
Case 3. β<0.
Assume that η2:=−βη1(x) for every x∈G, then multiplying functional Eq (3.9) by −β, we have
max{−βη1(xy),−βη1(xy−1)}=(−βη1(x))(βη1(y))−βη1(x)−βη1(y)max{η2(xy),η2(xy−1)}=−η2(x)η2(y)+η2(x)+η2(y)=−(η2(x)−1)(η2(y)−1)+1max{η2(xy),η2(xy−1)}−1=−(η2(x)−1)(η2(y)−1), |
for any x,y∈G, then by setting ξ1(x):=η2(x)−1 for x∈G, we have
max{ξ1(xy),ξ1(xy−1)}=−ξ1(x)ξ1(y),x,y∈G, |
then by setting ξ(x):=−ξ1(x), x∈G, we can see that ξ:G→R satisfies the Eq (1.6), then from Eqs (3.1), (3.7) and (3.8), we have
{η(x)=λ2ξ(x)+λ1,x∈G,λ2<0,χ(x)=ξ(x),ψ(x)=λ1(1−ξ(x)), |
which completes the proof.
The authors are grateful to the referees and the editors for valuable comments and suggestions, which have improved the original manuscript greatly. This work was supported by the National Natural Science Foundation of P. R. China (Grant number 11971493 and 12071491).
All authors declare no conflict of interest in this paper.
[1] |
M. K. Ali, The quantum normal form and its equivalents, J. Math. Phys., 26 (1985), 2565–2572. http://dx.doi.org/10.1063/1.526775 doi: 10.1063/1.526775
![]() |
[2] | V. I. Arnold, Mathematical methods of classical mechanics, New York, NY: Springer, 1989. http://dx.doi.org/10.1007/978-1-4757-2063-1 |
[3] | D. V. Anosov, S. Kh. Aranson, V. I. Arnold, I. U. Bronshtein, V. Z. Grines, Yu. S. Ilyashenko, Dynamical systems I: ordinary differential equations and smooth dynamical systems, Berlin Heidelberg: Springer, 1988. |
[4] | V. I. Arnold, Dynamical systems III: classical mechanics, Berlin, Heidelberg: Springer, 1988. http://dx.doi.org/10.1007/978-3-662-02535-2 |
[5] | V. I. Arnold, Dynamical systems V: bifurcation theory and catastrophe theory, Berlin, Heidelberg: Springer, 1994. http://dx.doi.org/10.1007/978-3-642-57884-7 |
[6] | D. Boccaletti, G. Pucacco, Theory of orbits, Berlin, Heidelberg: Springer, 1999. http://dx.doi.org/10.1007/978-3-662-09240-8 |
[7] | M. Born, P. Jordan, On quantum mechanics, Zeit. Phys., 34 (1925), 858–888. |
[8] | M. Born, W. Heisenberg, P. Jordan, On quantum mechanics Ⅱ, Zeit. Phys., 35 (1926), 557–615. |
[9] |
S. Buyukdagli, M. Joyeux, On the application of canonical perturbation theory up to the dissociation threshold, Chem. Phys. Lett., 412 (2005), 200–205. http://dx.doi.org/10.1016/j.cplett.2005.06.115 doi: 10.1016/j.cplett.2005.06.115
![]() |
[10] |
H. W. Broer, G. A. Lunter, G. Vegter, Equivariant singularity theory with distinguished parameters: Two case studies of resonant Hamiltonian systems, Physica D, 112 (1998), 64–80. http://dx.doi.org/10.1016/S0167-2789(97)00202-9 doi: 10.1016/S0167-2789(97)00202-9
![]() |
[11] |
M. Cargo, A. Gracia-Saz, R. G. Littlejohn, M. W. Reinsch, P. de M Rios, Quantum normal forms, Moyal star product and Bohr-Sommerfeld approximation, J. Phys. A: Math. Gen., 38 (2005), 1977–2004. http://dx.doi.org/10.1088/0305-4470/38/9/010 doi: 10.1088/0305-4470/38/9/010
![]() |
[12] |
B. V. Chirikov, A universal instability of many-dimensional oscillator systems, Phys. Rep., 52 (1979), 263–379. http://dx.doi.org/10.1016/0370-1573(79)90023-1 doi: 10.1016/0370-1573(79)90023-1
![]() |
[13] | G. Cicogna, G. Gaeta, Symmetry and perturbation theory in nonlinear dynamics, Berlin, Heidelberg: Springer. 1999. http://dx.doi.org/10.1007/3-540-48874-X |
[14] | G. Contopoulos, Order and chaos in dynamical astronomy, Berlin, Heidelberg: Springer, 2002. http://dx.doi.org/10.1007/978-3-662-04917-4 |
[15] | R. H. Cushman, L. M. Bates, Global aspects of classical integrable systems, Basel: Birkhauser, 1997. http://dx.doi.org/10.1007/978-3-0348-8891-2 |
[16] |
R. H. Cushman, H. R. Dullin, A. Giacobbe, D. D. Holm, M. Joyeux, P. Lynch, et al., CO2 molecule as a quantum realization of the 1:1:2 resonant swing-spring with monodromy, Phys. Rev. Lett., 93 (2004), 024302. http://dx.doi.org/10.1103/physrevlett.93.024302 doi: 10.1103/physrevlett.93.024302
![]() |
[17] | A. S. Davydov, Quantum mechanics, Pergamon, 1965. |
[18] |
P. A. M. Dirac, The fundamental equations of quantum mechanics, Proc. R. Soc. Lond. A, 109 (1925), 642–653. http://dx.doi.org/10.1098/rspa.1925.0150 doi: 10.1098/rspa.1925.0150
![]() |
[19] |
B. Eckhardt, Birkhoff-Gustavson normal form in classical and quantum mechanics, J. Phys. A: Math. Gen., 19 (1986), 2961. http://dx.doi.org/10.1088/0305-4470/19/15/020 doi: 10.1088/0305-4470/19/15/020
![]() |
[20] | K. Efstathiou, Metamorphoses of Hamiltonian systems with symmetries, Berlin, Heidelberg: Springer, 2005. http://dx.doi.org/10.1007/b105138 |
[21] |
K. Efstathiou, D. A. Sadovskii, B. I. Zhilinskii, Classification of perturbations of the hydrogen atom by small static electric and magnetic fields, Proc. R. Soc. A, 463 (2007), 1771–1790. http://dx.doi.org/10.1098/rspa.2007.1843 doi: 10.1098/rspa.2007.1843
![]() |
[22] |
S. C. Farantos, R. Schinke, H. Guo, M. Joyeux, Energy localization in molecules, bifurcation phenomena, and their spectroscopic signatures: the global view, Chem. Rev., 109 (2009), 4248–4271. http://dx.doi.org/10.1021/cr900069m doi: 10.1021/cr900069m
![]() |
[23] |
F. Faure, B. I. Zhilinskii, Qualitative features of intra-molecular dynamics. What can be learned from symmetry and topology?, Acta Appl. Math., 70 (2002), 265–282. http://dx.doi.org/10.1023/A:1013986518747 doi: 10.1023/A:1013986518747
![]() |
[24] |
G. Gaeta, Lie-Poincaré transformations and a reduction criterion in Landau theory, Ann. Phys., 312 (2004), 511–540. http://dx.doi.org/10.1016/j.aop.2004.04.001 doi: 10.1016/j.aop.2004.04.001
![]() |
[25] |
G. Gaeta, Poincaré-like approach to Landau theory. Ⅰ. General theory, J. Math. Phys., 56 (2015), 083504. http://dx.doi.org/10.1063/1.4927425 doi: 10.1063/1.4927425
![]() |
[26] |
G. Gaeta, Poincaré-like approach to Landau theory. Ⅱ. Simplifying the Landau-deGennes potential for nematic liquid crystals, J. Math. Phys., 56 (2015), 083505. http://dx.doi.org/10.1063/1.4927426 doi: 10.1063/1.4927426
![]() |
[27] |
G. Gaeta, On the isotropic-biaxial phase transition in nematic liquid crystals, EPL-Europhys. Lett., 112 (2015), 46002. http://dx.doi.org/10.1209/0295-5075/112/46002 doi: 10.1209/0295-5075/112/46002
![]() |
[28] | A. Giorgilli, Notes on Hamiltonian Dynamical Systems, Cambridge University Press, 2022. |
[29] | M. Golubitsky, D. G. Schaeffer, Singularities and groups in bifurcation theory, New York, NY: Springer, 1985. http://dx.doi.org/10.1007/978-1-4612-5034-0 |
[30] |
S. Graffi, Th. Paul, Convergence of a quantum normal form and an exact quantization formula, J. Funct. Anal., 262 (2012), 3340–3393. http://dx.doi.org/10.1016/j.jfa.2012.01.010 doi: 10.1016/j.jfa.2012.01.010
![]() |
[31] |
V. Guillemin, Th. Paul, Some remarks about semiclassical trace invariants and quantum normal forms, Commun. Math. Phys., 294 (2010), 1. http://dx.doi.org/10.1007/s00220-009-0920-3 doi: 10.1007/s00220-009-0920-3
![]() |
[32] | H. Hanßmann, Local and semi-local bifurcations in Hamiltonian dynamical systems, Berlin, Heidelberg: Springer, 2007. http://dx.doi.org/10.1007/3-540-38894-X |
[33] | M. Hénon, C. Heiles, The applicability of the third integral of motion: some numerical experiments, Astron. J. 69 (1964), 73–79. |
[34] |
M. Herman, D. S. Perry, Molecular spectroscopy and dynamics: a polyad-based perspective, Phys. Chem. Chem. Phys., 15 (2013), 9970–9993. http://dx.doi.org/10.1039/C3CP50463H doi: 10.1039/C3CP50463H
![]() |
[35] |
J. Henrard, Periodic orbits emanating from a resonant equilibrium, Celestial Mechanics, 1 (1970), 437–466. http://dx.doi.org/10.1007/BF01231143 doi: 10.1007/BF01231143
![]() |
[36] | D. Hilbert, Theory of algebraic invariants, Cambridge: Cambridge University Press, 1993. |
[37] |
T. Iwai, B. I. Zhilinskii, Local description of band rearrangements, Acta Appl. Math., 137 (2015), 97–121. http://dx.doi.org/10.1007/s10440-014-9992-y doi: 10.1007/s10440-014-9992-y
![]() |
[38] |
M. P. Jacobson, R. W. Field, Acetylene at the threshold of isomerization, J. Phys. Chem. A, 104 (2000), 3073–3086. http://dx.doi.org/10.1021/jp992428u doi: 10.1021/jp992428u
![]() |
[39] |
M. Joyeux, Gustavson's procedure and the dynamics of highly excited vibrational states, J. Chem. Phys., 109 (1998), 2111–2122. http://dx.doi.org/10.1063/1.476724 doi: 10.1063/1.476724
![]() |
[40] |
M. Joyeux, D. Sugny, M. Lombardi, Vibrational dynamics up to the dissociation threshold: A case study of two-dimensional HOCI, J. Chem. Phys., 113 (2000), 9610–9621. http://dx.doi.org/10.1063/1.1321031 doi: 10.1063/1.1321031
![]() |
[41] |
M. Joyeux, D. Sugny, Canonical perturbation theory for highly excited dynamics, Can. J. Phys., 80 (2002), 1459–1480. http://dx.doi.org/10.1139/p02-075 doi: 10.1139/p02-075
![]() |
[42] |
S. V. Krasnoshchekov, N. F. Stepanov, Polyad quantum numbers and multiple resonances in anharmonic vibrational studies of polyatomic molecules, J. Chem. Phys., 139 (2013), 184101. http://dx.doi.org/10.1063/1.4829143 doi: 10.1063/1.4829143
![]() |
[43] |
M. Kummer, On resonant non linearly coupled oscillators with two equal frequencies, Commun. Math. Phys., 48 (1976), 53–79. http://dx.doi.org/10.1007/BF01609411 doi: 10.1007/BF01609411
![]() |
[44] | L. D. Landau, E. M. Lifshitz, Quantum mechanics, Pergamon Press, 1958. |
[45] |
A. Marchesiello, G. Pucacco, Equivariant singularity analysis of the 2:2 resonance, Nonlinearity, 27 (2014), 43–66. http://dx.doi.org/10.1088/0951-7715/27/1/43 doi: 10.1088/0951-7715/27/1/43
![]() |
[46] |
A. B. McCoy, E. L. Sibert, Perturbative calculations of vibrational (J = 0) energy levels of linear molecules in normal coordinate representations, J. Chem. Phys., 95 (1991), 3476–3487. http://dx.doi.org/10.1063/1.460850 doi: 10.1063/1.460850
![]() |
[47] |
A. B. McCoy, D. C. Burleigh, E. L. Sibert, Rotation-vibration interactions in highly excited states of SO2 and H2CO, J. Chem. Phys., 95 (1991), 7449–7465. http://dx.doi.org/10.1063/1.461371 doi: 10.1063/1.461371
![]() |
[48] |
A. B. McCoy, E. L. Sibert, The bending dynamics of acetylene, J. Chem. Phys., 105 (1996), 459–468. http://dx.doi.org/10.1063/1.471899 doi: 10.1063/1.471899
![]() |
[49] | A. Messiah, Quantum mechanics, Wiley, 1958. |
[50] | K. R. Meyer, G. R. Hall, D. C. Offin, Introduction to Hamiltonian dynamical systems and the N-body problem, Berlin: Springer, 2009. |
[51] |
J. Montaldi, M. Roberts, I. Stewart, Existence of nonlinear normal modes of symmetric Hamiltonian systems, Nonlinearity, 3 (1990), 695–730. http://dx.doi.org/10.1088/0951-7715/3/3/009 doi: 10.1088/0951-7715/3/3/009
![]() |
[52] |
J. Montaldi, M. Roberts, I. Stewart, Stability of nonlinear normal modes of symmetric Hamiltonian systems, Nonlinearity, 3 (1990), 731–772. http://dx.doi.org/10.1088/0951-7715/3/3/010 doi: 10.1088/0951-7715/3/3/010
![]() |
[53] |
J. Moser, Regularization of Kepler's problem and the averaging method on a manifold, Commun. Pure Appl. Math., 23 (1970), 609–636. http://dx.doi.org/10.1002/cpa.3160230406 doi: 10.1002/cpa.3160230406
![]() |
[54] | A. I. Neishtadt, Averaging and passage through resonance, In: Proceedings of the International Congress of Mathematicians, Kyoto, Japan, 1990, 1271–1283. |
[55] |
A. I. Neishtadt, Averaging, passage through resonances, and capture into resonance in two-frequency systems, Russ. Math. Surv., 69 (2014), 771. http://dx.doi.org/10.1070/RM2014v069n05ABEH004917 doi: 10.1070/RM2014v069n05ABEH004917
![]() |
[56] |
S. V. Ngoc, Quantum Birkhoff normal forms and semiclassical analysis, Adv. Stud. Pure Math., 55 (2009), 99–116. http://dx.doi.org/10.2969/aspm/05510099 doi: 10.2969/aspm/05510099
![]() |
[57] |
I. M. Pavlichenkov, Bifurcations in quantum rotational spectra, Phys. Rep., 226 (1993), 173–279. http://dx.doi.org/10.1016/0370-1573(93)90083-P doi: 10.1016/0370-1573(93)90083-P
![]() |
[58] |
I. M. Pavlichenkov, B. I. Zhilinskii, Critical phenomena in rotational spectra, Ann. Phys., 184 (1988), 1–32. http://dx.doi.org/10.1016/0003-4916(88)90268-0 doi: 10.1016/0003-4916(88)90268-0
![]() |
[59] | L. E. Picasso, Lectures in quantum mechanics, Cham: Springer, 2016. http://dx.doi.org/10.1007/978-3-319-22632-3 |
[60] |
G. Pierre, D. A. Sadovskii, B. I. Zhilinskii, Organization of quantum bifurcations: crossover of rovibrational bands in spherical top molecules, EPL-Europhys. Lett., 10 (1989), 409–414. http://dx.doi.org/10.1209/0295-5075/10/5/004 doi: 10.1209/0295-5075/10/5/004
![]() |
[61] | H. Poincaré, Les méthodes nouvelles de la méchanique céleste, Paris: Gauthier-Villars, 1892. |
[62] |
G. Pucacco, A. Marchesiello, An energy-momentum map for the time-reversal symmetric 1:1 resonance with Z2×Z2 symmetry, Physica D, 271 (2014), 10–18. http://dx.doi.org/10.1016/j.physd.2013.12.009 doi: 10.1016/j.physd.2013.12.009
![]() |
[63] |
J. P. Rose, M. E. Kellman, Bending dynamics from acetylene spectra: Normal, local, and precessional modes, J. Chem. Phys., 105 (1996), 10743–10754. http://dx.doi.org/10.1063/1.472882 doi: 10.1063/1.472882
![]() |
[64] | S. Sachdev, Quantum phase transitions, Cambridge: Cambridge University Press, 1999. http://dx.doi.org/10.1017/CBO9780511622540 |
[65] |
D. A. Sadovskii, B. I. Zhilinskii, Counting levels within vibrational polyads: Generating function approach, J. Chem. Phys., 103 (1995), 10520. http://dx.doi.org/10.1063/1.469836 doi: 10.1063/1.469836
![]() |
[66] |
D. A. Sadovskii, B. I. Zhilinskii, Quantum monodromy, its generalizations and molecular manifestations, Mol. Phys., 104 (2006), 2595–2615. http://dx.doi.org/10.1080/00268970600673363 doi: 10.1080/00268970600673363
![]() |
[67] |
D. A. Sadovskii, B. I. Zhilinskii, Hamiltonian systems with detuned 1:1:2 resonance: Manifestations of bidromy, Ann. Phys., 322 (2007), 164–200. http://dx.doi.org/10.1016/j.aop.2006.09.011 doi: 10.1016/j.aop.2006.09.011
![]() |
[68] | J. A. Sanders, F. Verhulst, J. Murdock, Averaging methods in nonlinear dynamical systems, Berlin: Springer, 2007. http://dx.doi.org/10.1007/978-0-387-48918-6 |
[69] |
M. Sanrey, M. Joyeux, Quantum mechanical and quasiclassical investigations of the time domain nonadiabatic dynamics of NO2 close to the bottom of the X2A1−A2B2 conical intersection, J. Chem. Phys., 125 (2006), 014304. http://dx.doi.org/10.1063/1.2211609 doi: 10.1063/1.2211609
![]() |
[70] |
M. Sanrey, M. Joyeux, Slow periodic oscillations in time domain dynamics of NO2, J. Chem. Phys., 126 (2007), 074301. http://dx.doi.org/10.1063/1.2446920 doi: 10.1063/1.2446920
![]() |
[71] |
D. S. Schmidt, Periodic solutions near a resonant equilibrium of a Hamiltonian system, Celestial Mechanics, 9 (1974), 81–103. http://dx.doi.org/10.1007/BF01236166 doi: 10.1007/BF01236166
![]() |
[72] |
S. Schmidt, H. R. Dullin, Dynamics near the p:−q resonance, Physica D, 239 (2010), 1884–1891. http://dx.doi.org/10.1016/j.physd.2010.06.012 doi: 10.1016/j.physd.2010.06.012
![]() |
[73] |
I. Shavitt, L. T. Redmon, Quasidegenerate perturbation theories. A canonical van Vleck formalism and its relationship to other approaches, J. Chem. Phys., 73 (1980), 5711–5717. http://dx.doi.org/10.1063/1.440050 doi: 10.1063/1.440050
![]() |
[74] |
E. L. Sibert, Theoretical studies of vibrationally excited polyatomic molecules using canonical Van Vleck perturbation theory, J. Chem. Phys., 88 (1988), 4378–4390. http://dx.doi.org/10.1063/1.453797 doi: 10.1063/1.453797
![]() |
[75] |
E. L. Sibert, A. B. McCoy, Quantum, semiclassical and classical dynamics of the bending modes of acetylene, J. Chem. Phys., 105 (1996), 469–478. http://dx.doi.org/10.1063/1.471900 doi: 10.1063/1.471900
![]() |
[76] |
J. F. Svitak, V. Tyng, M. E. Kellman, Bifurcation analysis of higher m:n resonance spectroscopic Hamiltonian, J. Phys. Chem. A, 106 (2002), 10797–10805. http://dx.doi.org/10.1021/jp0263976 doi: 10.1021/jp0263976
![]() |
[77] |
J. M. Tuwankotta, F. Verhulst, Symmetry and resonance in Hamiltonian systems, SIAM J. Appl. Math., 61 (2000), 1369–1385. http://dx.doi.org/10.1137/S0036139900365323 doi: 10.1137/S0036139900365323
![]() |
[78] |
F. Verhulst, Discrete symmetric dynamical systems at the main resonances with applications to axi-symmetric galaxies, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 290 (1979), 435–465. http://dx.doi.org/10.1098/rsta.1979.0006 doi: 10.1098/rsta.1979.0006
![]() |
[79] |
A. Weinstein, Normal modes for nonlinear Hamiltonian systems, Invent. Math., 20 (1973), 47–57. http://dx.doi.org/10.1007/BF01405263 doi: 10.1007/BF01405263
![]() |
[80] |
B. I. Zhilinskii, Symmetry, invariants, and topology in molecular models, Phys. Rep., 341 (2001), 85–171. http://dx.doi.org/10.1016/S0370-1573(00)00089-2 doi: 10.1016/S0370-1573(00)00089-2
![]() |
[81] |
B. I. Zhilinskii, Rearrangement of energy bands: topological aspects, J. Math. Chem., 44 (2008), 1009–1022. http://dx.doi.org/10.1007/s10910-008-9359-6 doi: 10.1007/s10910-008-9359-6
![]() |
[82] | B. I. Zhilinskii, Quantum bifurcations, New York: Springer, 2009. http://dx.doi.org/10.1007/978-0-387-30440-3 |
[83] | B. I. Zhilinskii, G. Dhont, D. A. Sadovskii, New Qualitative Phenomena in Classical (Intramolecular) Dynamics and their Quantum Analogs, 2007. Available from: https://kb.osu.edu/handle/1811/31349. |
1. | Muhammad Tariq, Eskandar Ameer, Amjad Ali, Hasanen A. Hammad, Fahd Jarad, Applying fixed point techniques for obtaining a positive definite solution to nonlinear matrix equations, 2023, 8, 2473-6988, 3842, 10.3934/math.2023191 | |
2. | Mustafa Mudhesh, Aftab Hussain, Muhammad Arshad, Hamed AL-Sulami, Amjad Ali, New techniques on fixed point theorems for symmetric contraction mappings with its application, 2023, 8, 2473-6988, 9118, 10.3934/math.2023457 | |
3. | Mustafa Mudhesh, Muhammad Arshad, Aftab Hussain, Amer Hassan Albargi, Eskandar Ameer, Seppo Hassi, The Solvability of Fourth‐Order Differential Equations under Almost Hardy–Rogers (ψ, ϕ)‐Type Multivalued Contractions in M℘‐Metric Space, 2024, 2024, 0161-1712, 10.1155/2024/6620429 |