Review

Understanding plant-microorganism interactions: The key roles of soil, rhizosphere, and direct and indirect mechanisms

  • Published: 19 December 2025
  • Soil, the Earth's upper crust layer, is crucial for ecological processes, comprising mineral, organic, and biological components that determine fertility and multifuncionality. Human-induced degradation necessitates advancements in pedology and soil conservation. The rhizosphere, surrounding plant roots, houses a diverse microbial community, notably bacteria, which enhance plant growth and disease resistance. Root exudates fuel biological activity and nutrient cycling, supporting microbial growth, improving soil structure, and reducing plant stress. Plant-microorganism interactions in ecological and agricultural systems play a vital role for maintaining primary production and ecosystem sustainability. Moreover, arbuscular mycorrhizae and nitrogen-fixing bacteria are essential, influencing plant development, sustainability, and ecosystem health. Specific bacterial phyla populate the rhizosphere and endosphere, with Plant Growth-Promoting Rhizobacteria (PGPR), such as Pseudomonas spp. and Bacillus spp., playing a prominent role. PGPR employ direct and indirect mechanisms, including phytohormone production, mineral solubilization, systemic resistance induction, antibiosis, competition for resources, and ACC deaminase activity, The amalgamation of these traits underscores the conceptual foundation for comprehending the ecological and agricultural implications of employing microbes. This inquiry is particularly relevant to sustainable agriculture, where the use of microbes, including PGPR, plays a crucial role in biofertilization and mitigating environmental stressors. Thus, investigating the ecological and agricultural implications through multi-omics approaches such as genomics, transcriptomics, proteomics, and metabolomics offers valuable insights. The integration of these multi-omics data provides a comprehensive framework for understanding the complex interactions between plants, bacteria, and fungi. This holistic perspective not only deepens our understanding of soil ecology but also lays the groundwork for informed and sustainable agricultural practices, fostering resilience against environmental stresses.

    Citation: Mohamed Hnini, Karim Rabeh, Malika Oubohssaine. Understanding plant-microorganism interactions: The key roles of soil, rhizosphere, and direct and indirect mechanisms[J]. AIMS Microbiology, 2025, 11(4): 1035-1078. doi: 10.3934/microbiol.2025046

    Related Papers:

  • Soil, the Earth's upper crust layer, is crucial for ecological processes, comprising mineral, organic, and biological components that determine fertility and multifuncionality. Human-induced degradation necessitates advancements in pedology and soil conservation. The rhizosphere, surrounding plant roots, houses a diverse microbial community, notably bacteria, which enhance plant growth and disease resistance. Root exudates fuel biological activity and nutrient cycling, supporting microbial growth, improving soil structure, and reducing plant stress. Plant-microorganism interactions in ecological and agricultural systems play a vital role for maintaining primary production and ecosystem sustainability. Moreover, arbuscular mycorrhizae and nitrogen-fixing bacteria are essential, influencing plant development, sustainability, and ecosystem health. Specific bacterial phyla populate the rhizosphere and endosphere, with Plant Growth-Promoting Rhizobacteria (PGPR), such as Pseudomonas spp. and Bacillus spp., playing a prominent role. PGPR employ direct and indirect mechanisms, including phytohormone production, mineral solubilization, systemic resistance induction, antibiosis, competition for resources, and ACC deaminase activity, The amalgamation of these traits underscores the conceptual foundation for comprehending the ecological and agricultural implications of employing microbes. This inquiry is particularly relevant to sustainable agriculture, where the use of microbes, including PGPR, plays a crucial role in biofertilization and mitigating environmental stressors. Thus, investigating the ecological and agricultural implications through multi-omics approaches such as genomics, transcriptomics, proteomics, and metabolomics offers valuable insights. The integration of these multi-omics data provides a comprehensive framework for understanding the complex interactions between plants, bacteria, and fungi. This holistic perspective not only deepens our understanding of soil ecology but also lays the groundwork for informed and sustainable agricultural practices, fostering resilience against environmental stresses.



    加载中


    Conflicts of interest



    The authors declare that they have no known competing financial or non financial interests, nor personal relationships that could have influenced the work reported in this paper. The funders had no role in the design of the study; in the collection, analyses, or interpretation of the data; in the writing of the manuscript, or in the decision to publish the results.

    Authors' contributions



    Conceptualization, karim rabeh & malika oubohssaine; data curation, mohamed hnini; funding acquisition, karim rabeh & malika oubohssaine; investigation, mohamed hnini; methodology, mohamed hnini; project administration, karim rabeh & malika oubohssaine; resources, karim rabeh & malika oubohssaine; supervision, karim rabeh & malika oubohssaine; validation, mohamed hnini; writing – original draft, mohamed hnini; writing – review & editing, mohamed hnini and karim rabeh & malika oubohssaine.

    [1] Brownlie WJ, Sutton MA, Heal KV, et al. Our phosphorus future: towards global phosphorus sustainability (2022). Available from: https://seadragon-red-npk4.squarespace.com/home/#report
    [2] Pathak P, Rai VK, CAN H, et al. (2022) Plant-endophyte interaction during biotic stress management. Plants 11: 2203. https://doi.org/10.3390/plants11172203
    [3] Hou D, Bolan NS, Tsang DCW, et al. (2020) Sustainable soil use and management: An interdisciplinary and systematic approach. Sci Total Environ 729: 138961. https://doi.org/10.1016/j.scitotenv.2020.138961
    [4] Kuzyakov Y, Razavi BS (2019) Rhizosphere size and shape: temporal dynamics and spatial stationarity. Soil Biol Biochem 135: 343-360. https://doi.org/10.1016/j.soilbio.2019.05.011
    [5] Egamberdieva D, Wirth S, Bellingrath-Kimura SD, et al. (2019) Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Front Microbiol 10: 2791. https://doi.org/10.3389/fmicb.2019.02791
    [6] Shahbaz M, Ashraf M (2013) Improving salinity tolerance in cereals. Crit Rev Plant Sci 32: 237-249. https://doi.org/10.1080/07352689.2013.758544
    [7] Dordas C (2008) Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agron Sustain Dev 28: 33-46. https://doi.org/10.1051/agro:2007051
    [8] Tripathi S, Singh K, Chandra R (2021) 2-Adaptation of bacterial communities and plant strategies for amelioration and eco-restoration of an organometallic industrial waste polluted site. Microbes in Land Use Change Management . Elsevier 45-90. https://doi.org/10.1016/B978-0-12-824448-7.00005-X
    [9] Roldán-Cañas J, Moreno-Pérez MF (2021) Water and irrigation management in arid and semiarid zones. Water 13: 2446. https://doi.org/10.3390/w13172446
    [10] Kinzelbach W, Brunner P, Von Boetticher A, et al. (2010) Sustainable water management in arid and semi-arid regions. Groundwater Modelling in Arid and Semi-Arid Areas . Cambridge University Press 119-130. https://doi.org/10.1017/CBO9780511760280.009
    [11] Attenborough D (2020) A life on our planet: My witness statement and a vision for the future. Random House .
    [12] Šulyová D, Vodák J, Kubina M (2021) Effective management of scarce water resources: from antiquity to today and into the future. Water 13: 2734. https://doi.org/10.3390/w13192734
    [13] Bello SK, Alayafi AH, AL-Solaimani SG, et al. (2021) Mitigating soil salinity stress with gypsum and bio-organic amendments: A review. Agronomy 11: 1735. https://doi.org/10.3390/agronomy11091735
    [14] Elakhdar A, Solanki S, Kubo T, et al. (2022) Barley with improved drought tolerance: Challenges and perspectives. Environ Exp Bot 201: 104965. https://doi.org/10.1016/j.envexpbot.2022.104965
    [15] Desoky E-SM, Saad AM, El-Saadony MT, et al. (2020) Plant growth-promoting rhizobacteria: Potential improvement in antioxidant defense system and suppression of oxidative stress for alleviating salinity stress in Triticum aestivum (L.) plants. Biocatal Agric Biotechnol 30: 101878. https://doi.org/10.1016/j.bcab.2020.101878
    [16] Al-Munqedhi BM, El-Sheikh MA, Alfarhan AH, et al. (2022) Climate change and hydrological regime in arid lands: Impacts of dams on the plant diversity, vegetation structure and soil in Saudi Arabia. Saudi J Biol Sci 29: 3194-3206. https://doi.org/10.1016/j.sjbs.2022.01.043
    [17] Jeffries P, Barea JM (2012) 4 Arbuscular Mycorrhiza: A Key Component of Sustainable Plant–Soil Ecosystems. Fungal Associations . Berlin, Heidelberg: Springer Berlin Heidelberg 51-75. https://doi.org/10.1007/978-3-642-30826-0_4
    [18] Daryanto S, Wang L, Jacinthe PA (2015) Global synthesis of drought effects on food legume production. PloS One 10: e0127401. https://doi.org/10.1371/journal.pone.0127401
    [19] Araujo SS, Beebe S, Crespi M, et al. (2015) Abiotic stress responses in legumes: strategies used to cope with environmental challenges. Crit Rev Plant Sci 34: 237-280. https://doi.org/10.1080/07352689.2014.898450
    [20] Chandran H, Meena M, Swapnil P (2021) Plant growth-promoting rhizobacteria as a green alternative for sustainable agriculture. Sustainability 13: 10986. https://doi.org/10.3390/su131910986
    [21] Sanka Loganathachetti D, Poosakkannu A, Muthuraman S (2017) Fungal community assemblage of different soil compartments in mangrove ecosystem. Sci Rep 7: 1-9. https://doi.org/10.1038/s41598-017-09281-3
    [22] Johansen RB, Vestberg M, Burns BR, et al. (2015) A coastal sand dune in New Zealand reveals high arbuscular mycorrhizal fungal diversity. Symbiosis 66: 111-121. https://doi.org/10.1007/s13199-015-0355-x
    [23] Park M, Kim C, Yang J, et al. (2005) Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol Res 160: 127-133. https://doi.org/10.1016/j.micres.2004.10.003
    [24] Rajaniemi TK, Allison VJ (2009) Abiotic conditions and plant cover differentially affect microbial biomass and community composition on dune gradients. Soil Biol Biochem 41: 102-109. https://doi.org/10.1016/j.soilbio.2008.10.001
    [25] Kloepper JW, Leong J, Teintze M, et al. (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286: 885-886. https://doi.org/10.1038/286885a0
    [26] McCaig AE, Glover LA, Prosser JI (2001) Numerical analysis of grassland bacterial community structure under different land management regimens by using 16S ribosomal DNA sequence data and denaturing gradient gel electrophoresis banding patterns. Appl Environ Microbiol 67: 4554-4559. https://doi.org/10.1128/AEM.67.10.4554-4559.2001
    [27] Palková Z (2004) Multicellular microorganisms: laboratory versus nature. EMBO Rep 5: 470-476. https://doi.org/10.1038/sj.embor.7400145
    [28] Fujiwara F, Miyazawa K, Nihei N, et al. (2022) Agroecosystem engineering extended from plant-microbe interactions revealed by multi-omics data. Biosci Biotechnol Biochem 87: 21-27. https://doi.org/10.1093/bbb/zbac191
    [29] Qi S, Wang J, Zhang Y, et al. (2023) Omics approaches in invasion biology: understanding mechanisms and impacts on ecological health. Plants 12: 1860. https://doi.org/10.3390/plants12091860
    [30] Grubb PJ, Whittaker JB (1989) Toward a More Exact Ecology: 30th Symposium of the British Ecological Society. Cambridge University Press.
    [31] Gobat JM, Aragno M, Matthey W Le sol vivant: bases de pédologie, biologie des sols. PPUR Presses polytechniques (2010).
    [32] Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312: 7-14. https://doi.org/10.1007/s11104-007-9514-z
    [33] Osorio Vega NW (2007) A review on beneficial effects of rhizosphere bacteria on soil nutrient availability and plant nutrient uptake. Rev Fac Nac Agron Med 60: 3621-3643.
    [34] Konate ibrahimDiversité Phénotypique et Moléculaire du Caroubier (Ceratonia siliqua L.) et des Bactéries Endophytes qui lui sont Associées (2007). Available from: https://docplayer.fr/7715053-Universite-mohammed-v-agdal-faculte-des-sciences-rabat-these-de-doctorat-presentee-par-ibrahim-konate.html
    [35] Favre-Bonté S, Ranjard L, Colinon C, et al. (2005) Freshwater selenium-methylating bacterial thiopurine methyltransferases: diversity and molecular phylogeny. Environ Microbiol 7: 153-164. https://doi.org/10.1111/j.1462-2920.2004.00670.x
    [36] Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81: 537. https://doi.org/10.1023/A:1020501420831
    [37] Lynch JM (1990) Introduction: some consequences of microbial rhizosphere competence for plant and soil. Rhizosphere : 1-10.
    [38] Hakim S, Naqqash T, Nawaz M, et al. (2021) Rhizosphere engineering with plant growth-promoting microorganisms for agriculture and ecological sustainability. Front Sustainable Food Syst . https://doi.org/10.3389/fsufs.2021.617157
    [39] Shi J, Liu A, Li X, et al. (2011) Inhibitory mechanisms induced by the endophytic bacterium MGY2 in controlling anthracnose of papaya. Biol Control 56: 2-8. https://doi.org/10.1016/j.biocontrol.2010.09.012
    [40] Paul CL, Clark SJ (1996) Cytosine methylation: Quantitation by automated genomic sequencing and genescantm analysis. BioTechniques 21: 126-133. https://doi.org/10.2144/96211rr04
    [41] Geelhoed JS, Van Riemsdijk WH, Findenegg GR (1999) Simulation of the effect of citrate exudation from roots on the plant availability of phosphate adsorbed on goethite. Eur J Soil Sci 50: 379-390. https://doi.org/10.1046/j.1365-2389.1999.00251.x
    [42] Nehl DB, Allen SJ, Brown JF (1997) Deleterious rhizosphere bacteria: an integrating perspective. Appl Soil Ecol 5: 1-20. https://doi.org/10.1016/S0929-1393(96)00124-2
    [43] Abhilash PC, Singh N (2009) Seasonal variation of HCH isomers in open soil and plant-rhizospheric soil system of a contaminated environment. Environ Sci Pollut Res 16: 727-740. https://doi.org/10.1007/s11356-009-0133-5
    [44] Deveau A, Bonito G, Uehling J, et al. (2018) Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev 42: 335-352. https://doi.org/10.1093/femsre/fuy008
    [45] Mandolini E, Probst M, Peintner U (2021) Methods for studying bacterial–fungal interactions in the microenvironments of soil. Appl Sci 11: 9182. https://doi.org/10.3390/app11199182
    [46] Wagg C, Schlaeppi K, Banerjee S, et al. (2019) Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat Commun 10: 4841. https://doi.org/10.1038/s41467-019-12798-y
    [47] Hartmann M, Six J (2022) Soil structure and microbiome functions in agroecosystems. Nat Rev Earth Environ 4: 4-18. https://doi.org/10.1038/s43017-022-00366-w
    [48] Minz D, Ofek M, Hadar Y (2013) Plant rhizosphere microbial communities. The Prokaryotes . Berlin, Heidelberg: Springer Berlin Heidelberg 56-84. https://doi.org/10.1007/978-3-642-30123-0_38
    [49] Ma W, Tang S, Dengzeng Z, et al. (2022) Root exudates contribute to belowground ecosystem hotspots: A review. Front Microbiol 13. https://doi.org/10.3389/fmicb.2022.937940
    [50] Nunan N (2017) The microbial habitat in soil: Scale, heterogeneity and functional consequences. J Plant Nutr Soil Sci 180: 425-429. https://doi.org/10.1002/jpln.201700184
    [51] Yan Y, Klinkhamer PGL, Van Veen JA, et al. (2019) Environmental filtering: A case of bacterial community assembly in soil. Soil Biol Biochem 136: 107531. https://doi.org/10.1016/j.soilbio.2019.107531
    [52] Edwards KR, Bárta J, Mastný J, et al. (2023) Multiple environmental factors, but not nutrient addition, directly affect wet grassland soil microbial community structure: a mesocosm study. FEMS Microbiol Ecol 99: fiad070. https://doi.org/10.1093/femsec/fiad070
    [53] Schwalb SA, Li S, Hemkemeyer M, et al. (2023) Long-term differences in fertilisation type change the bacteria:archaea:fungi ratios and reveal a heterogeneous response of the soil microbial ionome in a Haplic Luvisol. Soil Biol Biochem 177: 108892. https://doi.org/10.1016/j.soilbio.2022.108892
    [54] Song B, Li Y, Yang L, et al. (2023) Soil acidification under long-term n addition decreases the diversity of soil bacteria and fungi and changes their community composition in a Semiarid Grassland. Microb Ecol 85: 221-231. https://doi.org/10.1007/s00248-021-01954-x
    [55] Banerjee S, Van Der Heijden MGA (2023) Soil microbiomes and one health. Nat Rev Microbiol 21: 6-20. https://doi.org/10.1038/s41579-022-00779-w
    [56] Philippot L, Chenu C, Kappler A, et al. (2023) The interplay between microbial communities and soil properties. Nat Rev Microbiol . https://doi.org/10.1038/s41579-023-00980-5
    [57] Liu Y, Ding C, Li X, et al. (2023) Biotic interactions contribute more than environmental factors and geographic distance to biogeographic patterns of soil prokaryotic and fungal communities. Front Microbiol 14: 1134440. https://doi.org/10.3389/fmicb.2023.1134440
    [58] Van Der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11: 296-310. https://doi.org/10.1111/j.1461-0248.2007.01139.x
    [59] Chepsergon J, Moleleki LN (2023) Rhizosphere bacterial interactions and impact on plant health. Curr Opin Microbiol 73: 102297. https://doi.org/10.1016/j.mib.2023.102297
    [60] Pantigoso HA, Newberger D, Vivanco JM (2022) The rhizosphere microbiome: Plant–microbial interactions for resource acquisition. J Appl Microbiol 133: 2864-2876. https://doi.org/10.1111/jam.15686
    [61] Moënne-Loccoz Y, Mavingui P, Combes C, et al. (2015) Microorganisms and biotic interactions. Environmental Microbiology: Fundamentals and Applications . Dordrecht: Springer Netherlands 395-444. https://doi.org/10.1007/978-94-017-9118-2_11
    [62] Zhukov VA, Shtark OY, Borisov AY, et al. (2013) Breeding to improve symbiotic effectiveness of legumes. Plant breeding from laboratories to fields Rijeka: Intech : 167-207.
    [63] Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28: 1327-1350. https://doi.org/10.1007/s11274-011-0979-9
    [64] Ohyama T Nitrogen as a major essential element of plants (2010) 1-18.
    [65] Adl S, Liu M, Xu X (2020) Mapping soil nitrogen fractionation. Rhizosphere 16: 100279. https://doi.org/10.1016/j.rhisph.2020.100279
    [66] Erisman JW, van Grinsven H, Leip A, et al. (2010) Nitrogen and biofuels; an overview of the current state of knowledge. Nutr Cycl Agroecosyst 86: 211-223. https://doi.org/10.1007/s10705-009-9285-4
    [67] Foyer CH, Lam HM, Nguyen HT, et al. (2016) Neglecting legumes has compromised human health and sustainable food production. Nat Plants 2: 1-10. https://doi.org/10.1038/nplants.2016.112
    [68] De Bary (1879) A Die erscheinung der symbiose: Vortrag gehalten auf der versammlung deutscher naturforscher und aerzte zu cassel. Trübner . https://doi.org/10.1515/9783111471839
    [69] Hawkins JP, Oresnik IJ (2022) The rhizobium-legume symbiosis: co-opting successful stress management. Front Plant Sci 12: 796045. https://doi.org/10.3389/fpls.2021.796045
    [70] Azani N, Babineau M, Bailey CD, et al. (2017) A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny–The Legume Phylogeny Working Group (LPWG). Taxon 66: 44-77. https://doi.org/10.12705/661.3
    [71] Pennington PT, Cronk QCB, Richardson JA, et al. (2004) South American palaeobotany and the origins of neotropical rainforests. Philos Trans R Soc B 359: 1595-1610. https://doi.org/10.1098/rstb.2004.1531
    [72] Guéguen J, Walrand S, Bourgeois O (2016) Les protéines végétales: contexte et potentiels en alimentation humaine. Cah Nutr Diét 51: 177-185. https://doi.org/10.1016/j.cnd.2016.02.001
    [73] Remond D, Walrand S (2017) Les graines de légumineuses: caractéristiques nutritionnelles et effets sur la santé. Innovations Agronomiques 60: np.
    [74] Handberg K, Stougaard J (1992) Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J 2: 487-496. https://doi.org/10.1111/j.1365-313X.1992.00487.x
    [75] Zhang J, Song Q, Cregan PB, et al. (2015) Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm. BMC Genomics 16: 217. https://doi.org/10.1186/s12864-015-1441-4
    [76] Lewis GP, Schrire B, Mackinder B (2005). Lock M Legumes of the World. Royal Botanic Gardens Kew
    [77] Bruneau A, Mercure M, Lewis GP, et al. (2008) Phylogenetic patterns and diversification in the caesalpinioid legumes. Botany 86: 697-718. https://doi.org/10.1139/B08-058
    [78] Cardoso HG, Arnholdt-Schmitt B (2013) Functional marker development across species in selected traits. Diagnostics in Plant Breeding . Dordrecht: Springer Netherlands 467-515. https://doi.org/10.1007/978-94-007-5687-8_21
    [79] Vadalà R, Di Bella G, Kosakowska O, et al. (2023) 2.20-Nutritional benefits of peanut by-products. Sustainable Food Science-A Comprehensive Approach . Oxford: Elsevier 289-301. https://doi.org/10.1016/B978-0-12-823960-5.00018-4
    [80] de Lajudie PM, Young JPW (2017) International committee on systematics of prokaryotes subcommittee for the taxonomy of rhizobium and agrobacterium minutes of the meeting, budapest, 25 august 2016. Int J Syst Evol Microbiol 67: 2485-2494. https://doi.org/10.1099/ijsem.0.002144
    [81] Somasegaran P, Hoben HJ (1994) Quantifying the growth of rhizobia. Handbook for rhizobia . Springer 47-57. https://doi.org/10.1007/978-1-4613-8375-8_5
    [82] De Lajudie PM, Andrews M, Ardley J, et al. (2019) Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Microbiol 69: 1852-1863. https://doi.org/10.1099/ijsem.0.003426
    [83] Andrews M, Andrews ME (2017) Specificity in legume-rhizobia symbioses. Int J Mole Sci 18: 705. https://doi.org/10.3390/ijms18040705
    [84] Mukhtar S, Hirsch AM, Khan N, et al. (2020) Impact of soil salinity on the cowpea nodule-microbiome and the isolation of halotolerant PGPR strains to promote plant growth under salinity stress. Phytobiomes J 4: 364-374. https://doi.org/10.1094/PBIOMES-09-19-0057-R
    [85] Martínez-Hidalgo P, Hirsch AM (2017) The nodule microbiome: N2-fixing rhizobia do not live alone. Phytobiomes J 1: 70-82. https://doi.org/10.1094/PBIOMES-12-16-0019-RVW
    [86] MarÃ3ti G, Kondorosi à (2014) Nitrogen-fixing Rhizobium-legume symbiosis: are polyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis?. Front Microbiol . https://doi.org/10.3389/fmicb.2014.00326
    [87] Wang Q, Liu J, Zhu H (2018) Genetic and molecular mechanisms underlying symbiotic specificity in legume-rhizobium interactions. Front Plant Sci 9. https://doi.org/10.3389/fpls.2018.00313
    [88] Buhian WP, Bensmihen S (2018) Mini-review: Nod factor regulation of phytohormone signaling and homeostasis during rhizobia-legume symbiosis. Front Plant Sci 9: 1247. https://doi.org/10.3389/fpls.2018.01247
    [89] Acosta-Jurado S, Fuentes-Romero F, Ruiz-Sainz JE, et al. (2021) Rhizobial exopolysaccharides: genetic regulation of their synthesis and relevance in symbiosis with legumes. IJMS 22: 6233. https://doi.org/10.3390/ijms22126233
    [90] Ding Y, Lesterps Z, Gasciolli V, et al. (2025) Several groups of LysM-RLKs are involved in symbiotic signal perception and arbuscular mycorrhiza establishment. Nat Commun 16: 5999. https://doi.org/10.1038/s41467-025-60717-1
    [91] Ding Y, Wang T, Gasciolli V, et al. (2024) The lysm receptor-like kinase sllyk10 controls lipochitooligosaccharide signaling in inner cell layers of tomato roots. Plant Cell Physiol 65: 1149-1159. https://doi.org/10.1093/pcp/pcae035
    [92] Rübsam H, Krönauer C, Abel NB, et al. (2023) Nanobody-driven signaling reveals the core receptor complex in root nodule symbiosis. Science 379: 272-277. https://doi.org/10.1126/science.ade9204
    [93] Luu TB, Carles N, Bouzou L, et al. (2023) Analysis of the structure and function of the LYK cluster of Medicago truncatula A17 and R108. Plant Sci 332: 111696. https://doi.org/10.1016/j.plantsci.2023.111696
    [94] T. Prates E, Demerdash O, Shah M, et al. (2025) Predicting receptor-ligand pairing preferences in plant-microbe interfaces via molecular dynamics and machine learning. Comput Struct Biotechnol J 27: 2782-2795. https://doi.org/10.1016/j.csbj.2025.06.029
    [95] Zhou N, Li X, Zheng Z, et al. (2024) RinRK1 enhances NF receptors accumulation in nanodomain-like structures at root-hair tip. Nat Commun 15: 3568. https://doi.org/10.1038/s41467-024-47794-4
    [96] Yuan S, Ke D, Liu B, et al. (2023) The Bax inhibitor GmBI-1α interacts with a Nod factor receptor and plays a dual role in the legume–rhizobia symbiosis. J Exp Bot 74: 5820-5839. https://doi.org/10.1093/jxb/erad276
    [97] Bao H, Wang Y, Li H, et al. (2024) The Rhizobial effector NopT targets Nod factor receptors to regulate symbiosis in Lotus japonicus. eLife 13: RP97196l. https://doi.org/10.7554/eLife.97196.1
    [98] Dávila-Delgado R, Flores-Canúl K, Juárez-Verdayes MA, et al. (2023) Rhizobia induce SYMRK endocytosis in Phaseolus vulgaris root hair cells. Planta 257: 83. https://doi.org/10.1007/s00425-023-04116-0
    [99] Ferrer-Orgaz S, Tiwari M, Isidra-Arellano MC, et al. (2024) Early Phosphorylated Protein 1 is required to activate the early rhizobial infection program. New Phytol 241: 962-968.
    [100] Chen W, Wang D, Ke S, et al. (2024) A soybean cyst nematode suppresses microbial plant symbionts using a lipochitooligosaccharide-hydrolysing enzyme. Nat Microbiol 9: 1993-2005. https://doi.org/10.1038/s41564-024-01727-5
    [101] Waring BG, Sulman BN, Reed S, et al. (2020) From pools to flow: The PROMISE framework for new insights on soil carbon cycling in a changing world. Global Change Biol 26: 6631-6643. https://doi.org/10.1111/gcb.15365
    [102] Hodge A (2006) Plastic plants and patchy soils. J Exp Bot 57: 401-411. https://doi.org/10.1093/jxb/eri280
    [103] Zhang D, Wang Y, Tang X, et al. (2019) Early priority effects of occupying a nutrient patch do not influence final maize growth in intensive cropping systems. Plant Soil 442: 285-298. https://doi.org/10.1007/s11104-019-04155-1
    [104] Awan SA, Ilyas N, Khan I, et al. (2020) Bacillus siamensis reduces cadmium accumulation and improves growth and antioxidant defense system in two wheat (Triticum aestivum L.) varieties. Plants 9: 878. https://doi.org/10.3390/plants9070878
    [105] Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62: 227-250. https://doi.org/10.1146/annurev-arplant-042110-103846
    [106] Manohar CVS, Sharma OP, Verma HP (2018) Nutrient status and yield of clusterbean [Cyamopsis tetragonoloba (L.) Taub] as influenced by fertility levels and liquid biofertilizers. J Pharmacogn Phytochem 7: 1840-1843.
    [107] El-Sawah AM, El-Keblawy A, Ali DFI, et al. (2021) Arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria enhance soil key enzymes, plant growth, seed yield, and qualitative attributes of guar. Agriculture 11: 194. https://doi.org/10.3390/agriculture11030194
    [108] Mondal M, Skalicky M, Garai S, et al. (2020) Supplementing nitrogen in combination with rhizobium inoculation and soil mulch in peanut (Arachis hypogaea L.) production system: Part II. Effect on phenology, growth, yield attributes, pod quality, profitability and nitrogen use efficiency. Agronomy 10: 1513. https://doi.org/10.3390/agronomy10101513
    [109] Loo WT, Chua KO, Mazumdar P, et al. (2022) Arbuscular mycorrhizal symbiosis: a strategy for mitigating the impacts of climate change on tropical legume crops. Plants (Basel) 11: 2875. https://doi.org/10.3390/plants11212875
    [110] Kozjek K, Kundel D, Kushwaha SK, et al. (2021) Long-term agricultural management impacts arbuscular mycorrhizal fungi more than short-term experimental drought. Appl Soil Ecol 168: 104140. https://doi.org/10.1016/j.apsoil.2021.104140
    [111] Glick BR, Gamalero E (2021) Recent developments in the study of plant microbiomes. Microorganisms 9: 1533. https://doi.org/10.3390/microorganisms9071533
    [112] Campbell R, Greaves MP (1990) Anatomy and community structure of the rhizosphere. Rhizosphere : 11-34.
    [113] Bodenhausen N, Horton MW, Bergelson J (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PloS One 8: e56329. https://doi.org/10.1371/journal.pone.0056329
    [114] Bulgarelli D, Garrido-Oter R, Münch PC, et al. (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17: 392-403. https://doi.org/10.1016/j.chom.2015.01.011
    [115] Oren A, Garrity GMY (2021) Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst Evol Microbiol 71: 005056. https://doi.org/10.1099/ijsem.0.005056
    [116] Glick BR (2012) Plant growth-promoting bacteria: Mechanisms and applications. Scientifica 2012: 1-15. https://doi.org/10.6064/2012/963401
    [117] Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. MPMI 19: 827-837. https://doi.org/10.1094/MPMI-19-0827
    [118] Takao T, Kitatani F, Watanabe N, et al. (1994) A simple screening method for antioxidants and isolation of several antioxidants produced by marine bacteria from fish and shellfish. Biosci Biotechnol Biochem 58: 1780-1783. https://doi.org/10.1271/bbb.58.1780
    [119] Palaniyandi SA, Damodharan K, Yang SH, et al. (2014) Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of ‘Micro Tom’ tomato plants. J Appl Microbiol 117: 766-773. https://doi.org/10.1111/jam.12563
    [120] Miller RL, Higgins VJ (1970) Association of cyanide with infection of birdsfoot trefoil by Stemphylium loti. Phytopathology 60: 104-110. https://doi.org/10.1094/Phyto-60-104
    [121] Goswami D, Dhandhukia P, Patel P, et al. (2014) Screening of PGPR from saline desert of Kutch: Growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res 169: 66-75. https://doi.org/10.1016/j.micres.2013.07.004
    [122] Liu J, Jia R, Zhou E, et al. (2018) Antimicrobial Cu-bearing 2205 duplex stainless steel against MIC by nitrate reducing Pseudomonas aeruginosa biofilm. Int Biodeterior Biodegrad 132: 132-138. https://doi.org/10.1016/j.ibiod.2018.03.002
    [123] Kumar K, Gupta SC, Baidoo SK, et al. (2005) Antibiotic uptake by plants from soil fertilized with animal manure. J Environ Qual 34: 2082-2085. https://doi.org/10.2134/jeq2005.0026
    [124] March-Rosselló GA (2017) Rapid methods for detection of bacterial resistance to antibiotics. Enfermedades infecciosas y microbiologia clinica (English ed) 35: 182-188. https://doi.org/10.1016/j.eimce.2017.02.007
    [125] Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160: 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
    [126] Rajawat MVS, Singh S, Tyagi SP, et al. (2016) A modified plate assay for rapid screening of potassium-solubilizing bacteria. Pedosphere 26: 768-773. https://doi.org/10.1016/S1002-0160(15)60080-7
    [127] Ehmann AK (1977) The van urk-Salkowski reagent–a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. J Chromatogr 2: 267-276. https://doi.org/10.1016/S0021-9673(00)89300-0
    [128] Pikovskaya RI, Pikovskaya RI Mobilization of phosphorus in soil in connection with the vital activity of some microbial species (1948).
    [129] Khoshru B, Mitra D, Khoshmanzar E, et al. (2020) Current scenario and future prospects of plant growth-promoting rhizobacteria: an economic valuable resource for the agriculture revival under stressful conditions. J Plant Nutr 43: 3062-3092. https://doi.org/10.1080/01904167.2020.1799004
    [130] Gaiero JR, McCall CA, Thompson KA, et al. (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100: 1738-1750. https://doi.org/10.3732/ajb.1200572
    [131] Parray JA, Jan S, Kamili AN, et al. (2016) Current perspectives on plant growth-promoting rhizobacteria. J Plant Growth Regul 35: 877-902. https://doi.org/10.1007/s00344-016-9583-4
    [132] Vejan P, Abdullah R, Khadiran T, et al. (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules 21: 573. https://doi.org/10.3390/molecules21050573
    [133] Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food Agric 2: 1127500. https://doi.org/10.1080/23311932.2015.1127500
    [134] Kalam S, Basu A, Podile AR (2020) Functional and molecular characterization of plant growth promoting Bacillus isolates from tomato rhizosphere. Heliyon 6: e04734. https://doi.org/10.1016/j.heliyon.2020.e04734
    [135] Upadhyay SK, Srivastava AK, Rajput VD, et al. (2022) Root exudates: Mechanistic insight of plant growth promoting rhizobacteria for sustainable crop production. Front Microbiol 13. https://doi.org/10.3389/fmicb.2022.916488
    [136] Feng H, Fu R, Luo J, et al. (2023) Listening to plant's Esperanto via root exudates: reprogramming the functional expression of plant growth-promoting rhizobacteria. New Phytol 239: 2307-2319. https://doi.org/10.1111/nph.19086
    [137] Anderson HM, Cagle GA, Majumder ELW, et al. (2024) Root exudation and rhizosphere microbial assembly are influenced by novel plant trait diversity in carrot genotypes. Soil Biol Biochem 197: 109516. https://doi.org/10.1016/j.soilbio.2024.109516
    [138] Yu P, He X, Baer M, et al. (2021) Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nat Plants 7: 481-499. https://doi.org/10.1038/s41477-021-00897-y
    [139] Lopes LD, Wang P, Futrell SL, et al. (2022) Sugars and Jasmonic Acid Concentration in Root Exudates Affect Maize Rhizosphere Bacterial Communities. Appl Environ Microbiol 88: e00971-22. https://doi.org/10.1128/aem.00971-22
    [140] Saleem M, Law AD, Sahib MR, et al. (2018) Impact of root system architecture on rhizosphere and root microbiome. Rhizosphere 6: 47-51. https://doi.org/10.1016/j.rhisph.2018.02.003
    [141] Galindo-Castañeda T, Lynch JP, Six J, et al. (2022) Improving soil resource uptake by plants through capitalizing on synergies between root architecture and anatomy and root-associated microorganisms. Front Plant Sci 13: 827369. https://doi.org/10.3389/fpls.2022.827369
    [142] Li Q, Li H, Yang Z, et al. (2022) Plant growth-promoting rhizobacterium Pseudomonas sp. CM11 specifically induces lateral roots. New Phytol 235: 1575-1588. https://doi.org/10.1111/nph.18199
    [143] Wintermans PCA, Bakker PAHM, Pieterse CMJ (2016) Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria. Plant Mol Biol 90: 623-634. https://doi.org/10.1007/s11103-016-0442-2
    [144] Wu G, Liu Y, Xu Y, et al. (2018) Exploring elicitors of the beneficial rhizobacterium bacillus amyloliquefaciens sqr9 to induce plant systemic resistance and their interactions with plant signaling pathways. MPMI 31: 560-567. https://doi.org/10.1094/MPMI-11-17-0273-R
    [145] Rabari A, Ruparelia J, Jha CK, et al. (2023) Articulating beneficial rhizobacteria-mediated plant defenses through induced systemic resistance: A review. Pedosphere 33: 556-566. https://doi.org/10.1016/j.pedsph.2022.10.003
    [146] Eichmann R, Richards L, Schäfer P (2021) Hormones as go-betweens in plant microbiome assembly. Plant J 105: 518-541. https://doi.org/10.1111/tpj.15135
    [147] Rolon-Cardenas G, Arvizu-Gomez J, Soria-Guerra R, et al. (2022) The role of auxins and auxin-producing bacteria in the tolerance and accumulation of cadmium by plants. Environ Geochem Health 44: 3743-3764. https://doi.org/10.1007/s10653-021-01179-4
    [148] Burdman S, Okon Y, Jurkevitch E (2000) Surface characteristics of Azospirillum brasilense in relation to cell aggregation and attachment to plant roots. Crit Rev Microbiol 26: 91-110. https://doi.org/10.1080/10408410091154200
    [149] Maheshwari DK, Dheeman S, Agarwal M (2015) Phytohormone-producing PGPR for sustainable agriculture. Bacterial metabolites in sustainable agroecosystem . Springer 159-182. https://doi.org/10.1007/978-3-319-24654-3_7
    [150] Spaepen S, Bossuyt S, Engelen K, et al. (2014) Phenotypical and molecular responses of A rabidopsis thaliana roots as a result of inoculation with the auxin-producing bacterium A zospirillum brasilense. New Phytol 201: 850-861. https://doi.org/10.1111/nph.12590
    [151] Berthelin J (1988) Microbial weathering processes in natural environments. Physical and Chemical Weathering in Geochemical Cycles . Dordrecht: Springer Netherlands 33-59. https://doi.org/10.1007/978-94-009-3071-1_3
    [152] Neilands JB (1995) Siderophores: Structure and function of microbial iron transport compounds (*). J Biol Chem 270: 26723-26726. https://doi.org/10.1074/jbc.270.45.26723
    [153] Guerinot ML (1994) Microbial iron transport. Annul Rev Microbiol 48: 743-773. https://doi.org/10.1146/annurev.mi.48.100194.003523
    [154] Lankford CE, Byers BR (1973) Bacterial Assimilation of iron. Crit Rev Microbiol 2: 273-331. https://doi.org/10.3109/10408417309108388
    [155] Rodrı́guez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17: 319-339. https://doi.org/10.1016/S0734-9750(99)00014-2
    [156] Sekhon GS, Black CA (1968) Uptake of phosphorus by plants in relation to carbon dioxide production and organic phosphorus mineralization in soils. Plant Soil 29: 299-304. https://doi.org/10.1007/BF01348948
    [157] Karpagam T, Nagalakshmi PK (2014) Isolation and characterization of phosphate solubilizing microbes from agricultural soil. Int J Curr Microbiol Appl Sci 3: 601-614.
    [158] Rifat H, Safdar A (2010) Contribution of water use efficiency of summer legumes for the production of rainfed wheat. Int J Agricul Biol 12: 655-660.
    [159] Del Campillo MC, Van der Zee S, Torrent J (1999) Modelling long-term phosphorus leaching and changes in phosphorus fertility in excessively fertilized acid sandy soils. Eur J Soil Sci 50: 391-399. https://doi.org/10.1046/j.1365-2389.1999.00244.x
    [160] Gilbert L, Jenkins AT, Browning S, et al. (2009) Development of an amperometric assay for phosphate ions in urine based on a chemically modified screen-printed carbon electrode. Anal Biochem 393: 242-247. https://doi.org/10.1016/j.ab.2009.06.038
    [161] Whitelaw MA (1999) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69: 99-151. https://doi.org/10.1016/S0065-2113(08)60948-7
    [162] Khatoon Z, Huang S, Rafique M, et al. (2020) Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. J Environ Manage 273: 111118. https://doi.org/10.1016/j.jenvman.2020.111118
    [163] Zahir ZA, Arshad M, Frankenberger WT (2004) Plant growth promoting. Adv Agron 8197.
    [164] Spaepen S, Vanderleyden J, Okon Y (2009) Chapter 7 Plant Growth-Promoting Actions of Rhizobacteria. Advances in Botanical Research . Academic Press 283-320. https://doi.org/10.1016/S0065-2296(09)51007-5
    [165] Mahdi S, Hassan GI, Hussain A, et al. (2011) P availabel issue, its fixation and role of PSBs in P solubilization. Res J Agricul Sci 2: 174-179.
    [166] Almeida HJ, Pancelli MA, Prado RM, et al. (2015) Effect of potassium on nutritional status and productivity of peanuts in succession with sugar cane. J Soil Sci Plant Nutr 15: 1-10. https://doi.org/10.4067/S0718-95162015005000001
    [167] Sahu SK, Singh AK, Gupta S (2021) Effect of K solubilizing bacteria isolates on performance of maize in Inceptisol of Chhattisgarh. Pharma Innov J 10: 1496-1498.
    [168] Etesami H, Emami S, Alikhani HA (2017) Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospectsA review. J Soil Sci Plant Nutr 17: 897-911. https://doi.org/10.4067/S0718-95162017000400005
    [169] Cabot C, Martos S, Llugany M, et al. (2019) A role for zinc in plant defense against pathogens and herbivores. Front Plant Sci 10: 1171. https://doi.org/10.3389/fpls.2019.01171
    [170] Havlin J, Tisdale SL, Nelson WL, et al. (2016) Soil fertility and fertilizers: an introduction to nutrient management. Tamil Nadu, India: Pearson.
    [171] Wu SC, Cheung KC, Luo YM, et al. (2006) Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140: 124-135. https://doi.org/10.1016/j.envpol.2005.06.023
    [172] Dhaked BS, Triveni S, Reddy RS, et al. (2017) Isolation and screening of potassium and zinc solubilizing bacteria from different rhizosphere soil. Int J Curr Microbiol App Sci 6: 1271-1281. https://doi.org/10.20546/ijcmas.2017.608.154
    [173] Heil J, Vereecken H, Brüggemann N (2016) A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil. Eur J Soil Sci 67: 23-39. https://doi.org/10.1111/ejss.12306
    [174] Shin W, Islam R, Benson A, et al. (2016) Role of diazotrophic bacteria in biological nitrogen fixation and plant growth improvement. Korean J Soil Sci Fert 49: 17-29. https://doi.org/10.7745/KJSSF.2016.49.1.017
    [175] Kuan KB, Othman R, Rahim KA, et al. (2016) Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLOS ONE 11: e0152478. https://doi.org/10.1371/journal.pone.0152478
    [176] Elliott G, Chen WM, Chou JH, et al. (2007) Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex planta. New Phytol 173: 168-80. https://doi.org/10.1111/j.1469-8137.2006.01894.x
    [177] Piromyou P, Buranabanyat B, Tantasawat P, et al. (2011) Effect of plant growth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand. Eur J Soil Biol 47: 44-54. https://doi.org/10.1016/j.ejsobi.2010.11.004
    [178] Gamalero E, Glick BR (2011) Mechanisms used by plant growth-promoting bacteria. Bacteria in Agrobiology: Plant Nutrient Management . Berlin, Heidelberg: Springer 17-46. https://doi.org/10.1007/978-3-642-21061-7_2
    [179] Hernández-Salmerón JE, Valencia-Cantero E, Santoyo G (2013) Genome-wide analysis of long, exact DNA repeats in rhizobia. Genes Genom 35: 441-449. https://doi.org/10.1007/s13258-012-0052-6
    [180] Ahmad I, Aqil F (2007) In vitro efficacy of bioactive extracts of 15 medicinal plants against ESβL-producing multidrug-resistant enteric bacteria. Microbiol Res 162: 264-275. https://doi.org/10.1016/j.micres.2006.06.010
    [181] Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3: 307-319. https://doi.org/10.1038/nrmicro1129
    [182] Simons M, van der Bij AJ, Brand I, et al. (1996) Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol Plant Microbe Interact 9: 600-607. https://doi.org/10.1094/MPMI-9-0600
    [183] Creamer RE, Barel JM, Bongiorno G, et al. (2022) The life of soils: Integrating the who and how of multifunctionality. Soil Biol Biochem 166: 108561. https://doi.org/10.1016/j.soilbio.2022.108561
    [184] Singh M, Nagar D, Kala DC (2021) Plant growth promoting rhizo-bacteria (pgpr) and its role in resistance against biotic stresses in plants. Curr Res Innov Plant Pathol 27: 3.
    [185] Abdelkhalek A, El-Gendi H, Al-Askar AA, et al. (2022) Enhancing systemic resistance in faba bean (Vicia faba L.) to Bean yellow mosaic virus via soil application and foliar spray of nitrogen-fixing Rhizobium leguminosarum bv. viciae strain 33504-Alex1. Front Plant Sci 13. https://doi.org/10.3389/fpls.2022.933498
    [186] Elbadry M, Taha RM, Eldougdoug KA, et al. (2006) Induction of systemic resistance in faba bean (Vicia faba L.) to bean yellow mosaic potyvirus (BYMV) via seed bacterization with plant growth promoting rhizobacteria/Induzierte systemische Resistenz gegenüber dem Bohnengelbmosaikvirus in der Dicken Bohne (Vicia faba L.) durch Saatgutbehandlung mit wachstumsfördernden Rhizobakterien. J Plant Dis Protection 113: 247-251. https://doi.org/10.1007/BF03356189
    [187] Weyens N, Beckers B, Schellingen K, et al. (2013) Plant-associated bacteria and their role in the success or failure of metal phytoextraction projects: first observations of a field-related experiment. Microb Biotechnol 6: 288-299. https://doi.org/10.1111/1751-7915.12038
    [188] Jha PN, Gupta G, Jha P, et al. (2013) Association of rhizospheric/endophytic bacteria with plants: a potential gateway to sustainable agriculture. Greener J Agric Sci 3: 73-84.
    [189] Sehrawat A, Sindhu SS, Glick BR (2022) Hydrogen cyanide production by soil bacteria: Biological control of pests and promotion of plant growth in sustainable agriculture. Pedosphere 32: 15-38. https://doi.org/10.1016/S1002-0160(21)60058-9
    [190] Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52: 487-511. https://doi.org/10.1093/jxb/52.suppl_1.487
    [191] Suresh P, Rekha M, Gomathinayagam S, et al. (2022) Characterization and assessment of 2, 4-Diacetylphloroglucinol (DAPG)-producing Pseudomonas fluorescens VSMKU3054 for the management of tomato bacterial wilt caused by Ralstonia solanacearum. Microorganisms 10: 1508. https://doi.org/10.3390/microorganisms10081508
    [192] Siegień I, Bogatek R (2006) Cyanide action in plants—from toxic to regulatory. Acta Physiol Plant 28: 483-497. https://doi.org/10.1007/BF02706632
    [193] Rijavec T, Lapanje A (2016) Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens, but rather regulating availability of phosphate. Front Microbiol . https://doi.org/10.3389/fmicb.2016.01785
    [194] Agbodjato NA, Noumavo PA, Baba-Moussa F, et al. (2015) Characterization of potential plant growth promoting rhizobacteria isolated from Maize (Zea mays L.) in Central and Northern Benin (West Africa). Appl Environ Soil Sci 2015: 1-9. https://doi.org/10.1155/2015/901656
    [195] Babalola OO, Emmanuel OC, Adeleke BS, et al. (2021) Rhizosphere microbiome cooperations: Strategies for sustainable crop production. Curr Microbiol 78: 1069-1085. https://doi.org/10.1007/s00284-021-02375-2
    [196] Maheshwari DK (2010) Plant growth and health promoting bacteria. Springer Science & Business Media . https://doi.org/10.1007/978-3-642-13612-2
    [197] Sadaghiani MH, Barin M The role of microbial activity on iron uptake of wheat genotypes different in fe-efficiency (2008).
    [198] Meziane H, Van Der Sluis I, Van Loon LC, et al. (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6: 177-185. https://doi.org/10.1111/j.1364-3703.2005.00276.x
    [199] Manoel da SJ, Carvalho dos STM, Santos de AL, et al. (2015) Potential of the endophytic bacteria (“Herbaspirillum” spp. and “Bacillus” spp.) to promote sugarcane growth. Aust J Crop Sci 9: 754-760.
    [200] Timmusk S, Paalme V, Pavlicek T, et al. (2011) Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLOS One 6: e17968. https://doi.org/10.1371/journal.pone.0017968
    [201] Ekimova GA, Fedorov DN, Tani A, et al. (2018) Distribution of 1-aminocyclopropane-1-carboxylate deaminase and d-cysteine desulfhydrase genes among type species of the genus Methylobacterium. Antonie Van Leeuwenhoek 111: 1723-1734. https://doi.org/10.1007/s10482-018-1061-5
    [202] Barnawal D, Bharti N, Maji D, et al. (2014) ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. J Plant Physiol 171: 884-894. https://doi.org/10.1016/j.jplph.2014.03.007
    [203] Nascimento FX, Rossi MJ, Soares CRFS, et al. (2014) New insights into 1-aminocyclopropane-1-carboxylate (acc) deaminase phylogeny, evolution and ecological significance. PLOS One 9: e99168. https://doi.org/10.1371/journal.pone.0099168
    [204] Ma W, Sebestianova SB, Sebestian J, et al. (2003) Prevalence of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobium spp. Antonie Van Leeuwenhoek 83: 285-291. https://doi.org/10.1023/A:1023360919140
    [205] Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58: 921-929. https://doi.org/10.1007/s00248-009-9531-y
    [206] Msimbira LA, Smith DL (2020) The roles of plant growth promoting microbes in enhancing plant tolerance to acidity and alkalinity stresses. Front Sustain Food Syst 4: 106. https://doi.org/10.3389/fsufs.2020.00106
    [207] Paungfoo-Lonhienne C, Redding M, Pratt C, et al. (2019) Plant growth promoting rhizobacteria increase the efficiency of fertilisers while reducing nitrogen loss. J Environm Manage 233: 337-341. https://doi.org/10.1016/j.jenvman.2018.12.052
    [208] Rubin RL, Van Groenigen KJ, Hungate BA (2017) Plant growth promoting rhizobacteria are more effective under drought: a meta-analysis. Plant Soil 416: 309-323. https://doi.org/10.1007/s11104-017-3199-8
    [209] Sandrini M, Nerva L, Sillo F, et al. (2022) Abiotic stress and belowground microbiome: The potential of omics approaches. IJMS 23: 1091. https://doi.org/10.3390/ijms23031091
    [210] Palazzotto E, Weber T (2018) Omics and multi-omics approaches to study the biosynthesis of secondary metabolites in microorganisms. Curr Opin Microbiol 45: 109-116. https://doi.org/10.1016/j.mib.2018.03.004
    [211] Arıkan M, Muth T (2023) Integrated multi-omics analyses of microbial communities: a review of the current state and future directions. Mol Omics 19: 607-623. https://doi.org/10.1039/D3MO00089C
    [212] Crandall SG, Gold KM, Jiménez-Gasco MDM, et al. (2020) A multi-omics approach to solving problems in plant disease ecology. PLoS One 15: e0237975. https://doi.org/10.1371/journal.pone.0237975
    [213] Gutleben J, Chaib De Mares M, Van Elsas JD, et al. (2018) The multi-omics promise in context: from sequence to microbial isolate. Crit Rev Microbiol 44: 212-229. https://doi.org/10.1080/1040841X.2017.1332003
    [214] Baião AR, Cai Z, Poulos RC, et al. (2025) A technical review of multi-omics data integration methods: from classical statistical to deep generative approaches. Briefings Bioinf 26: bbaf355. https://doi.org/10.1093/bib/bbaf355
    [215] Little A, Zhao N, Mikhaylova A, et al. (2025) General kernel machine methods for multi-omics integration and genome-wide association testing with related individuals. Genet Epidemiol 49: e22610. https://doi.org/10.1002/gepi.22610
    [216] Wang K, Abid MA, Rasheed A, et al. (2023) DNNGP, a deep neural network-based method for genomic prediction using multi-omics data in plants. Mol Plant 16: 279-293. https://doi.org/10.1016/j.molp.2022.11.004
    [217] Lhayani K, Rabeh K, Medraoui L (2025) Deep learning for Fabaceae identification by integrating molecular and morphological data and a solution for barcode selection. J Syst Evol 70021. https://doi.org/10.1111/jse.70021
    [218] Yoshioka H, Mary-Huard T, Aubert J, et al. Integration of Proxy Intermediate Omics traits into a Nonlinear Two-Step model for accurate phenotypic prediction (2025). https://doi.org/10.1101/2025.03.14.643213
    [219] Zampieri G, Campanaro S, Angione C, et al. (2023) Metatranscriptomics-guided genome-scale metabolic modeling of microbial communities. Cell Rep Methods 3: 100383. https://doi.org/10.1016/j.crmeth.2022.100383
    [220] Hsieh YE, Tandon K, Verbruggen H, et al. (2025) Integration of metatranscriptomics data improves the predictive capacity of microbial community metabolic models. ISME J 19: wraf109. https://doi.org/10.1093/ismejo/wraf109
    [221] Karlsen ST, Rau MH, Sánchez BJ, et al. (2023) From genotype to phenotype: computational approaches for inferring microbial traits relevant to the food industry. FEMS Microbiol Rev 47: fuad030. https://doi.org/10.1093/femsre/fuad030
    [222] Liu W, Pratte KA, Castaldi PJ, et al. (2025) A generalized higher-order correlation analysis framework for multi-omics network inference. PLoS Comput Biol 21: e1011842. https://doi.org/10.1371/journal.pcbi.1011842
    [223] Abdullah-Zawawi MR, Govender N, Harun S, et al. (2022) Multi-omics approaches and resources for systems-level gene function prediction in the plant kingdom. Plants 11: 2614. https://doi.org/10.3390/plants11192614
    [224] Bahram M, Netherway T, Frioux C, et al. (2021) Metagenomic assessment of the global diversity and distribution of bacteria and fungi. Environ Microbiol 23: 316-326. https://doi.org/10.1111/1462-2920.15314
    [225] Lamrabet M, Missbah El Idrissi M (2025) Comparative genomic analysis of native Bradyrhizobium spp. nodulating Retama dasycarpa in Moroccan semi-arid ecosystems: insights into symbiotic diversity and environmental adaptation. BMC Genom 26: 984. https://doi.org/10.1186/s12864-025-12176-7
    [226] Zouagui H, Zouagui R, Ibrahimi A, et al. (2025) Comparative genomics uncovers adaptive and biotechnological potential of Enterobacter xiangfangensis MDMC82 isolated from desert, and highlights putative core Enterobacteriaceae functions. Sci Rep 15: 41234. https://doi.org/10.1038/s41598-025-25044-x
    [227] Custer GF, Gans M, Van Diepen LTA, et al. (2023) Comparative analysis of core microbiome assignments: implications for ecological synthesis. mSystems 8: e01066-22. https://doi.org/10.1128/msystems.01066-22
    [228] Trivedi P, Batista BD, Bazany KE, et al. (2022) Plant–microbiome interactions under a changing world: responses, consequences and perspectives. New Phytol 234: 1951-1959. https://doi.org/10.1111/nph.18016
    [229] Niu B, Paulson JN, Zheng X, et al. (2017) Simplified and representative bacterial community of maize roots. Proc Natl Acad Sci USA . https://doi.org/10.1073/pnas.1616148114
    [230] Martínez-Toledo Á, Del Carmen Cuevas-Díaz M, Guzmán-López O, et al. (2022) Evaluation of in situ biosurfactant production by inoculum of P. putida and nutrient addition for the removal of polycyclic aromatic hydrocarbons from aged oil-polluted soil. Biodegradation 33: 135-155. https://doi.org/10.1007/s10532-022-09973-2
    [231] Foo JL, Ling H, Lee YS, et al. (2017) Microbiome engineering: Current applications and its future. Biotechnol J 12: 1600099. https://doi.org/10.1002/biot.201600099
    [232] Yang P, Lu L, Condrich A, et al. (2025) Innovative approaches for engineering the seed microbiome to enhance crop performance. Seeds 4: 24. https://doi.org/10.3390/seeds4020024
    [233] Toju H, Peay K, Yamamichi M, et al. (2018) Core microbiomes for sustainable agroecosystems. Nat Plants 4: 247-257. https://doi.org/10.1038/s41477-018-0139-4
    [234] Busby PE, Soman C, Wagner MR, et al. (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15: e2001793. https://doi.org/10.1371/journal.pbio.2001793
    [235] Wu Y, Xie L (2025) AI-driven multi-omics integration for multi-scale predictive modeling of genotype-environment-phenotype relationships. Comput Struct Biotechnol J 27: 265-277. https://doi.org/10.1016/j.csbj.2024.12.030
    [236] Rizwan M, Rani R, Rafi A, et al. (2025) Genotype × Environment Interaction: Molecular Basis and Environmental Adaptation of Demand-Led Crop Varieties. Plant Breeding 2050 . Singapore: Springer Nature Singapore 289-313. https://doi.org/10.1007/978-981-95-0583-8_8
    [237] Schoebitz M, López MD, Roldán A (2013) Bioencapsulation of microbial inoculants for better soil–plant fertilization. A review. Agron Sustain Dev 33: 751-765. https://doi.org/10.1007/s13593-013-0142-0
    [238] Rocha I, Ma Y, Souza-Alonso P, et al. (2019) Seed coating: A tool for delivering beneficial microbes to agricultural crops. Front Plant Sci 10: 1357. https://doi.org/10.3389/fpls.2019.01357
    [239] Rheem HB, Kim N, Nguyen DT, et al. (2025) Single-cell nanoencapsulation: chemical synthesis of artificial cell-in-shell spores. Chem Rev 125: 6366-6396. https://doi.org/10.1021/acs.chemrev.4c00984
    [240] Han SY, Jeong Y, Lee H, et al. (2025) Single-cell nanoencapsulation of Saccharomyces cerevisiae with metal–organic complex nanoshells of Fe3+ and benzenehexacarboxylic acid. Bulletin Korean Chem Soc 46: 1088-1092. https://doi.org/10.1002/bkcs.70044
  • microbiol-11-04-046-s001.pdf
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(270) PDF downloads(17) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog