Calcified lesions pose significant challenges in cardiovascular interventions due to their complex nature and associated risks. These challenges range from accurate diagnosis to the modification of calcified areas using various techniques. Failing to adequately treat calcification can lead to suboptimal outcomes in coronary angioplasty, increasing the risk of complications such as stent thrombosis and in-stent restenosis. While various calcium modification techniques are available, they come with inherent risks, including vessel perforations and dissections. In this review article, we explored the difficulties associated with calcified lesions, categorizing them into access site issues, acute complications, and long-term complications. Understanding these challenges is important in improving patient outcomes.
Citation: Sophia Khattak, Farhan Shahid, Sohail Q. Khan. Challenges and risks associated with coronary calcified lesions in cardiovascular interventions: What makes calcified lesions more challenging and dangerous?[J]. AIMS Medical Science, 2025, 12(1): 69-89. doi: 10.3934/medsci.2025006
[1] | Kailash C. Misra, Sutida Patlertsin, Suchada Pongprasert, Thitarie Rungratgasame . On derivations of Leibniz algebras. Electronic Research Archive, 2024, 32(7): 4715-4722. doi: 10.3934/era.2024214 |
[2] | Yizheng Li, Dingguo Wang . Lie algebras with differential operators of any weights. Electronic Research Archive, 2023, 31(3): 1195-1211. doi: 10.3934/era.2023061 |
[3] | Shanshan Liu, Abdenacer Makhlouf, Lina Song . The full cohomology, abelian extensions and formal deformations of Hom-pre-Lie algebras. Electronic Research Archive, 2022, 30(8): 2748-2773. doi: 10.3934/era.2022141 |
[4] | Xueru Wu, Yao Ma, Liangyun Chen . Abelian extensions of Lie triple systems with derivations. Electronic Research Archive, 2022, 30(3): 1087-1103. doi: 10.3934/era.2022058 |
[5] | Pengliang Xu, Xiaomin Tang . Graded post-Lie algebra structures and homogeneous Rota-Baxter operators on the Schrödinger-Virasoro algebra. Electronic Research Archive, 2021, 29(4): 2771-2789. doi: 10.3934/era.2021013 |
[6] | Neşet Deniz Turgay . On the mod p Steenrod algebra and the Leibniz-Hopf algebra. Electronic Research Archive, 2020, 28(2): 951-959. doi: 10.3934/era.2020050 |
[7] | Hongliang Chang, Yin Chen, Runxuan Zhang . A generalization on derivations of Lie algebras. Electronic Research Archive, 2021, 29(3): 2457-2473. doi: 10.3934/era.2020124 |
[8] | Margarida Camarinha . A natural 4th-order generalization of the geodesic problem. Electronic Research Archive, 2024, 32(5): 3396-3412. doi: 10.3934/era.2024157 |
[9] | Baoling Guan, Xinxin Tian, Lijun Tian . Induced 3-Hom-Lie superalgebras. Electronic Research Archive, 2023, 31(8): 4637-4651. doi: 10.3934/era.2023237 |
[10] | Jinguo Jiang . Algebraic Schouten solitons associated to the Bott connection on three-dimensional Lorentzian Lie groups. Electronic Research Archive, 2025, 33(1): 327-352. doi: 10.3934/era.2025017 |
Calcified lesions pose significant challenges in cardiovascular interventions due to their complex nature and associated risks. These challenges range from accurate diagnosis to the modification of calcified areas using various techniques. Failing to adequately treat calcification can lead to suboptimal outcomes in coronary angioplasty, increasing the risk of complications such as stent thrombosis and in-stent restenosis. While various calcium modification techniques are available, they come with inherent risks, including vessel perforations and dissections. In this review article, we explored the difficulties associated with calcified lesions, categorizing them into access site issues, acute complications, and long-term complications. Understanding these challenges is important in improving patient outcomes.
The concept of embedded tensors initially emerged in the research on gauged supergravity theory [1]. Using embedding tensors, the N=8 supersymmetric gauge theories as well as the Bagger-Lambert theory of multiple M2-branes were investigated in [2]. See [3,4,5] and the references therein for a great deal of literature on embedding tensors and related tensor hierarchies. In [6], the authors first observed the mathematical essence behind the embedding tensor and proved that the embedding tensor naturally produced Leibniz algebra. In the application of physics, they observed that in the construction of the corresponding gauge theory, they focused more on Leibniz algebra than on embedding tensor.
In [7], Sheng et al. considered cohomology, deformations, and homotopy theory for embedding tensors and Lie-Leibniz triples. Later on, the deformation and cohomology theory of embedding tensors on 3-Lie algebras were extensively elaborated in [8]. Tang and Sheng [9] first proposed the concept of a nonabelian embedding tensor on Lie algebras, which is a nonabelian generalization of the embedding tensors, and gave the algebraic structures behind the nonabelian embedding tensors as Leibniz-Lie algebras. This generalization for embedding tensors on associative algebras has been previously explored in [10,11], where they are referred to as average operators with any nonzero weights. Moreover, the nonabelian embedding tensor on Lie algebras has been extended to the Hom setting in [12].
On the other hand, Filippov [13] first introduced the concepts of 3-Lie algebras and, more generally, n-Lie algebras (also called Filippov algebras). Over recent years, the study and application of 3-Lie algebras have expanded significantly across the realms of mathematics and physics, including string theory, Nambu mechanics [14], and M2-branes [15,16]. Further research on 3-Lie algebras could be found in [17,18,19] and references cited therein.
Drawing inspiration from Tang and Sheng's [9] terminology of nonabelian embedding tensors and recognizing the significance of 3-Lie algebras, cohomology, and deformation theories, this paper primarily investigates the nonabelian embedding tensors on 3-Lie algebras, along with their fundamental algebraic structures, cohomology, and deformations.
This paper is organized as follows: Section 2 first recalls some basic notions of 3-Lie algebras and 3-Leibniz algebras. Then we introduce the coherent action of a 3-Lie algebra on another 3-Lie algebra and the notion of nonabelian embedding tensors on 3-Lie algebras with respect to a coherent action. In Section 3, the concept of 3-Leibniz-Lie algebra is presented as the fundamental algebraic structure for a nonabelian embedding tensor on the 3-Lie algebra. Naturally, a 3-Leibniz-Lie algebra induces a 3-Leibniz algebra. Subsequently, we study 3-Leibniz-Lie algebras induced by Leibniz-Lie algebras. In Section 4, the cohomology theory of nonabelian embedding tensors on 3-Lie algebras is introduced. As an application, we characterize the infinitesimal deformation using the first cohomology group.
All vector spaces and algebras considered in this paper are on the field K with the characteristic of 0.
This section recalls some basic notions of 3-Lie algebras and 3-Leibniz algebras. After that, we introduce the coherent action of a 3-Lie algebra on another 3-Lie algebra, and we introduce the concept of nonabelian embedding tensors on 3-Lie algebras by its coherent action as a nonabelian generalization of embedding tensors on 3-Lie algebras [8].
Definition 2.1. (see [13]) A 3-Lie algebra is a pair (L,[−,−,−]L) consisting of a vector space L and a skew-symmetric ternary operation [−,−,−]L:∧3L→L such that
[l1,l2,[l3,l4,l5]L]L=[[l1,l2,l3]L,l4,l5]L+[l3,[l1,l2,l4]L,l5]L+[l3,l4,[l1,l2,l5]L]L, | (2.1) |
for all li∈L,1≤i≤5.
A homomorphism between two 3-Lie algebras (L1,[−,−,−]L1) and (L2,[−,−,−]L2) is a linear map f:L1→L2 that satisfies f([l1,l2,l3]L1)=[f(l1),f(l2),f(l3)]L2, for all l1,l2,l3∈L1.
Definition 2.2. 1) (see [20]) A representation of a 3-Lie algebra (L,[−,−,−]L) on a vector space H is a skew-symmetric linear map ρ:∧2L→End(H), such that
ρ([l1,l2,l3]L,l4)=ρ(l2,l3)ρ(l1,l4)+ρ(l3,l1)ρ(l2,l4)+ρ(l1,l2)ρ(l3,l4), | (2.2) |
ρ(l1,l2)ρ(l3,l4)=ρ(l3,l4)ρ(l1,l2)+ρ([l1,l2,l3]L,l4)+ρ(l3,[l1,l2,l4]L), | (2.3) |
for all l1,l2,l3,l4∈L. We also denote a representation of L on H by (H;ρ).
2) A coherent action of a 3-Lie algebra (L,[−,−,−]L) on another 3-Lie algebra (H,[−,−,−]H) is defined by a skew-symmetric linear map ρ:∧2L→Der(H) that satisfies Eqs (2.2) and (2.3), along with the condition that
[ρ(l1,l2)h1,h2,h3]H=0, | (2.4) |
for all l1,l2∈L and h1,h2,h3∈H. We denote a coherent action of L on H by (H,[−,−,−]H;ρ†).
Note that Eq (2.4) and ρ(l1,l2)∈Der(H) imply that
ρ(l1,l2)[h1,h2,h3]H=0. | (2.5) |
Example 2.3. Let (H,[−,−,−]H) be a 3-Lie algebra. Define ad:∧2H→Der(H) by
ad(h1,h2)h:=[h1,h2,h]H, for all h1,h2,h∈H. |
Then (H;ad) is a representation of (H,[−,−,−]H), which is called the adjoint representation. Furthermore, if the ad satisfies
[ad(h1,h2)h′1,h′2,h′3]H=0, for allh′1,h′2,h′3∈H, |
then (H,[−,−,−]H;ad†) is a coherent adjoint action of (H,[−,−,−]H).
Definition 2.4. (see [21]) A 3-Leibniz algebra is a vector space L together with a ternary operation [−,−,−]L:L⊗L⊗L→L such that
[l1,l2,[l3,l4,l5]L]L=[[l1,l2,l3]L,l4,l5]L+[l3,[l1,l2,l4]L,l5]L+[l3,l4,[l1,l2,l5]L]L, |
for all li∈L,1≤i≤5.
Proposition 2.5. Let (L,[−,−,−]L) and (H,[−,−,−]H) be two 3-Lie algebras, and let ρ be a coherent action of L on H. Then, L⊕H is a 3-Leibniz algebra under the following map:
[l1+h1,l2+h2,l3+h3]ρ:=[l1,l2,l3]L+ρ(l1,l2)h3+[h1,h2,h3]H, |
for all l1,l2,l3∈L and h1,h2,h3∈H. This 3-Leibniz algebra (L⊕H,[−,−,−]ρ) is called the nonabelian hemisemidirect product 3-Leibniz algebra, which is denoted by L⋉ρH.
Proof. For any l1,l2,l3,l4,l5∈L and h1,h2,h3,h4,h5∈H, by Eqs (2.1)–(2.5), we have
[l1+h1,l2+h2,[l3+h3,l4+h4,l5+h5]ρ]ρ−[[l1+h1,l2+h2,l3+h3]ρ,l4+h4,l5+h5]ρ−[l3+h3,[l1+h1,l2+h2,l4+h4]ρ,l5+h5]ρ−[l3+h3,l4+h4,[l1+h1,l2+h2,l5+h5]ρ]ρ=[l1,l2,[l3,l4,l5]L]L+ρ(l1,l2)ρ(l3,l4)h5+ρ(l1,l2)[h3,h4,h5]H+[h1,h2,ρ(l3,l4)h5]H+[h1,h2,[h3,h4,h5]H]H−[[l1,l2,l3]L,l4,l5]L−ρ([l1,l2,l3]L,l4)h5−[ρ(l1,l2)h3,h4,h5]H−[[h1,h2,h3]H,h4,h5]H−[l3,[l1,l2,l4]L,l5]L−ρ(l3,[l1,l2,l4]L)h5−[h3,ρ(l1,l2)h4,h5]H−[h3,[h1,h2,h4]H,h5]H−[l3,l4,[l1,l2,l5]L]L−ρ(l3,l4)ρ(l1,l2)h5−ρ(l3,l4)[h1,h2,h5]H−[h3,h4,ρ(l1,l2)h5]H−[h3,h4,[h1,h2,h5]H]H=[h1,h2,ρ(l3,l4)h5]H−ρ(l3,l4)[h1,h2,h5]H=0. |
Thus, (L⊕H,[−,−,−]ρ) is a 3-Leibniz algebra.
Definition 2.6. 1) A nonabelian embedding tensor on a 3-algebra (L,[−,−,−]L) with respect to a coherent action (H,[−,−,−]H;ρ†) is a linear map Λ:H→L that satisfies the following equation:
[Λh1,Λh2,Λh3]L=Λ(ρ(Λh1,Λh2)h3+[h1,h2,h3]H), | (2.6) |
for all h1,h2,h3∈H.
2) A nonabelian embedding tensor 3-Lie algebra is a triple (H,L,Λ) consisting of a 3-Lie algebra (L,[−,−,−]L), a coherent action (H,[−,−,−]H;ρ†) of L and a nonabelian embedding tensor Λ:H→L. We denote a nonabelian embedding tensor 3-Lie algebra (H,L,Λ) by the notation HΛ⟶L.
3) Let HΛ1⟶L and HΛ2⟶L be two nonabelian embedding tensor 3-Lie algebras. Then, a homomorphism from HΛ1⟶L to HΛ2⟶L consists of two 3-Lie algebras homomorphisms fL:L→L and fH:H→H, which satisfy the following equations:
Λ2∘fH=fL∘Λ1, | (2.7) |
fH(ρ(l1,l2)h)=ρ(fL(l1),fL(l2))fH(h), | (2.8) |
for all l1,l2∈L and h∈H. Furthermore, if fL and fH are nondegenerate, (fL,fH) is called an isomorphism from HΛ1⟶L to HΛ2⟶L.
Remark 2.7. If (H,[−,−,−]H) is an abelian 3-Lie algebra, then we can get that Λ is an embedding tensor on 3-Lie algebra (see [8]). In addition, If ρ=0, then Λ is a 3-Lie algebra homomorphism from H to L.
Example 2.8. Let H be a 4-dimensional linear space spanned by α1,α2,α3 and α4. We define a skew-symmetric ternary operation [−,−,−]H:∧3H→H by
[α1,α2,α3]H=α4. |
Then (H,[−,−,−]H) is a 3-Lie algebra. It is obvious that (H,[−,−,−]H;ad†) is a coherent adjoint action of (H,[−,−,−]H). Moreover,
Λ=(1000010000000000) |
is a nonabelian embedding tensor on (H,[−,−,−]H).
Next, we use graphs to describe nonabelian embedding tensors on 3-Lie algebras.
Theorem 2.9. A linear map Λ:H→L is a nonabelian embedding tensor on a 3-Lie algebra (L,[−,−,−]L) with respect to the coherent action (H,[−,−,−]H;ρ†) if and only if the graph Gr(Λ)={Λh+h|h∈H} forms a subalgebra of the nonabelian hemisemidirect product 3-Leibniz algebra L⋉ρH.
Proof. Let Λ:H→L be a linear map. Then, for any h1,h2,h3∈H, we have
[Λh1+h1,Λh2+h2,Λh3+h3]ρ=[Λh1,Λh2,Λh3]L+ρ(Λh1,Λh2)h3+[h1,h2,h3]H, |
Thus, the graph Gr(Λ)={Λh+h|h∈H} is a subalgebra of the nonabelian hemisemidirect product 3-Leibniz algebra L⋉ρH if and only if Λ satisfies Eq (2.6), which implies that Λ is a nonabelian embedding tensor on L with respect to the coherent action (H,[−,−,−]H;ρ†).
Because H and Gr(Λ) are isomorphic as linear spaces, there is an induced 3-Leibniz algebra structure on H.
Corollary 2.10. Let HΛ⟶L be a nonabelian embedding tensor 3-Lie algebra. If a linear map [−,−,−]Λ:∧3H→H is given by
[h1,h2,h3]Λ=ρ(Λh1,Λh2)h3+[h1,h2,h3]H, | (2.9) |
for all h1,h2,h3∈H, then (H,[−,−,−]Λ) is a 3-Leibniz algebra. Moreover, Λ is a homomorphism from the 3-Leibniz algebra (H,[−,−,−]Λ) to the 3-Lie algebra (L,[−,−,−]L). This 3-Leibniz algebra (H,[−,−,−]Λ) is called the descendent 3-Leibniz algebra.
Proposition 2.11. Let (fL,fH) be a homomorphism from HΛ1⟶L to HΛ2⟶L. Then fH is a homomorphism of descendent 3-Leibniz algebra from (H,[−,−,−]Λ1) to (H,[−,−,−]Λ2).
Proof. For any h1,h2,h3∈H, by Eqs (2.7)–(2.9), we have
fH([h1,h2,h3]Λ1)=fH(ρ(Λ1h1,Λ1h2)h3+[h1,h2,h3]H)=ρ(fL(Λ1h1),fL(Λ1h2))fH(h3)+fH([h1,h2,h3]H)=ρ(Λ2fL(h1),Λ2fL(h2))fH(h3)+[fH(h1),fH(h2),fH(h3)]H=[fH(h1),fH(h2),fH(h3)]Λ2. |
The proof is finished.
In this section, we present the concept of the 3-Leibniz-Lie algebra, which serves as the fundamental algebraic framework for the nonabelian embedding tensor 3-Lie algebra. Then we study 3-Leibniz-Lie algebras induced by Leibniz-Lie algebras.
Definition 3.1. A 3-Leibniz-Lie algebra (H,[−,−,−]H,{−,−,−}H) encompasses a 3-Lie algebra (H,[−,−,−]H) and a ternary operation {−,−,−}H:∧3H→H, which satisfies the following equations:
{h1,h2,h3}H=−{h2,h1,h3}H, | (3.1) |
{h1,h2,{h3,h4,h5}H}H={{h1,h2,h3}H,h4,h5}H+{h3,{h1,h2,h4}H,h5}H+{h3,h4,{h1,h2,h5}H}H+{[h1,h2,h3]H,h4,h5}H+{h3,[h1,h2,h4]H,h5}H, | (3.2) |
{h1,h2,[h3,h4,h5]H}H=[{h1,h2,h3}H,h4,h5]H=0, | (3.3) |
for all h1,h2,h3,h4,h5∈H.
A homomorphism between two 3-Leibniz-Lie algebras (H1,[−,−,−]H1,{−,−,−}H1) and (H2,[−,−,−]H2,{−,−,−}H2) is a 3-Lie algebra homomorphism f:(H1,[−,−,−]H1)→(H2,[−,−,−]H2) such that f({h1,h2,h3}H1)={f(h1),f(h2),f(h3)}H2, for all h1,h2,h3∈H1.
Remark 3.2. A 3-Lie algebra (H,[−,−,−]H) naturally constitutes a 3-Leibniz-Lie algebra provided that the underlying ternary operation {h1,h2,h3}H=0, for all h1,h2,h3∈H.
Example 3.3. Let (H,[−,−,−]H) be a 4-dimensional 3-Lie algebra given in Example 2.8. We define a nonzero operation {−,−,−}H:∧3H→H by
{α1,α2,α3}H=−{α2,α1,α3}H=α4. |
Then (H,[−,−,−]H,{−,−,−}H) is a 3-Leibniz-Lie algebra.
The subsequent theorem demonstrates that a 3-Leibniz-Lie algebra inherently gives rise to a 3-Leibniz algebra.
Theorem 3.4. Let (H,[−,−,−]H,{−,−,−}H) be a 3-Leibniz-Lie algebra. Then the ternary operation ⟨−,−,−⟩H:∧3H→H, defined as
⟨h1,h2,h3⟩H:=[h1,h2,h3]H+{h1,h2,h3}H, | (3.4) |
for all h1,h2,h3∈H, establishes a 3-Leibniz algebra structure on H. This structure is denoted by (H,⟨−,−,−⟩H) and is referred to as the subadjacent 3-Leibniz algebra.
Proof. For any h1,h2,h3,h4,h5∈H, according to (H,[−,−,−]H) is a 3-Lie algebra and Eqs (3.2)–(3.4), we have
⟨h1,h2,⟨h3,h4,h5⟩H⟩H−⟨⟨h1,h2,h3⟩H,h4,h5⟩H−⟨h3,⟨h1,h2,h4⟩H,h5⟩H−⟨h3,h4,⟨h1,h2,h5⟩H⟩H=[h1,h2,[h3,h4,h5]H]H+[h1,h2,{h3,h4,h5}H]H+{h1,h2,[h3,h4,h5]H}H+{h1,h2,{h3,h4,h5}H}H−[[h1,h2,h3]H,h4,h5]H−[{h1,h2,h3}H,h4,h5]H−{[h1,h2,h3]H,h4,h5}H−{{h1,h2,h3}H,h4,h5}H−[h3,[h1,h2,h4]H,h5]H−[h3,{h1,h2,h4}H,h5]H−{h3,[h1,h2,h4]H,h5}H−{h3,{h1,h2,h4}H,h5}H−[h3,h4,[h1,h2,h5]H]H−[h3,h4,{h1,h2,h5}H]H−{h3,h4,[h1,h2,h5]H}H−{h3,h4,{h1,h2,h5}H}H={h1,h2,{h3,h4,h5}H}H−{[h1,h2,h3]H,h4,h5}H−{{h1,h2,h3}H,h4,h5}H−{h3,[h1,h2,h4]H,h5}H−{h3,{h1,h2,h4}H,h5}H−{h3,h4,{h1,h2,h5}H}H=0. |
Hence, (H,⟨−,−,−⟩H) is a 3-Leibniz algebra.
The following theorem shows that a nonabelian embedding tensor 3-Lie algebra induces a 3-Leibniz-Lie algebra.
Theorem 3.5. Let HΛ⟶L be a nonabelian embedding tensor 3-Lie algebra. Then (H,[−,−,−]H,{−,−,−}Λ) is a 3-Leibniz-Lie algebra, where
{h1,h2,h3}Λ:=ρ(Λh1,Λh2)h3, | (3.5) |
for all h1,h2,h3∈H.
Proof. For any h1,h2,h3,h4,h5∈H, by Eqs (2.3), (2.6), and (3.5), we have
{h1,h2,h3}Λ=ρ(Λh1,Λh2)h3=−ρ(Λh2,Λh1)h3=−{h2,h1,h3}Λ,{{h1,h2,h3}Λ,h4,h5}Λ+{h3,{h1,h2,h4}Λ,h5}Λ+{h3,h4,{h1,h2,h5}Λ}Λ+{[h1,h2,h3]H,h4,h5}Λ+{h3,[h1,h2,h4]H,h5}Λ−{h1,h2,{h3,h4,h5}Λ}Λ=ρ(Λρ(Λh1,Λh2)h3,Λh4)h5+ρ(Λh3,Λρ(Λh1,Λh2)h4)h5+ρ(Λh3,Λh4)ρ(Λh1,Λh2)h5+ρ(Λ[h1,h2,h3]H,Λh4)h5+ρ(Λh3,Λ[h1,h2,h4]H)h5−ρ(Λh1,Λh2)ρ(Λh3,Λh4)h5=ρ(Λρ(Λh1,Λh2)h3,Λh4)h5+ρ(Λh3,Λρ(Λh1,Λh2)h4)h5+ρ(Λh3,Λh4)ρ(Λh1,Λh2)h5+ρ([Λh1,Λh2,Λh3]L−Λρ(Λh1,Λh2)h3,Λh4)h5+ρ(Λh3,[Λh1,Λh2,Λh4]L−Λρ(Λh1,Λh2)h4)h5−ρ(Λh1,Λh2)ρ(Λh3,Λh4)h5=ρ(Λh3,Λh4)ρ(Λh1,Λh2)h5+ρ([Λh1,Λh2,Λh3]L,Λh4)h5+ρ(Λh3,[Λh1,Λh2,Λh4]L)h5−ρ(Λh1,Λh2)ρ(Λh3,Λh4)h5=0. |
Furthermore, by Eqs (2.4), (2.5), and (3.5), we have
[{h1,h2,h3}Λ,h4,h5]H=[ρ(Λh1,Λh2)h3,h4,h5]H=0,{h1,h2,[h3,h4,h5]H}Λ=ρ(Λh1,Λh2)[h3,h4,h5]H=0. |
Thus, (H,[−,−,−]H,{−,−,−}Λ) is a 3-Leibniz-Lie algebra.
Proposition 3.6. Let (fL,fH) be a homomorphism from HΛ1⟶L to HΛ2⟶L. Then fH is a homomorphism of 3-Leibniz-Lie algebras from (H,[−,−,−]H,{−,−,−}Λ1) to (H,[−,−,−]H,{−,−,−}Λ2).
Proof. For any h1,h2,h3∈H, by Eqs (2.7), (2.8), and (3.5), we have
fH({h1,h2,h3}Λ1)=fH(ρ(Λ1h1,Λ1h2)h3)=ρ(fL(Λ1h1),fL(Λ1h2))fH(h3)=ρ(Λ2fH(h1),Λ2fH(h2))fH(h3)={fH(h1),fH(h2),fH(h3)}Λ2. |
The proof is finished.
Motivated by the construction of 3-Lie algebras from Lie algebras [17], at the end of this section, we investigate 3-Leibniz-Lie algebras induced by Leibniz-Lie algebras.
Definition 3.7. (see [9]) A Leibniz-Lie algebra (H,[−,−]H,⊳) encompasses a Lie algebra (H,[−,−]H) and a binary operation ⊳:H⊗H→H, ensuring that
h1⊳(h2⊳h3)=(h1⊳h2)⊳h3+h2⊳(h1⊳h3)+[h1,h2]H⊳h3,h1⊳[h2,h3]H=[h1⊳h2,h3]H=0, |
for all h1,h2,h3∈H.
Theorem 3.8. Let (H,[−,−]H,⊳) be a Leibniz-Lie algebra, and let ς∈H∗ be a trace map, which is a linear map that satisfies the following conditions:
ς([h1,h2]H)=0,ς(h1⊳h2)=0,for allh1,h2∈H. |
Define two ternary operations by
[h1,h2,h3]Hς=ς(h1)[h2,h3]H+ς(h2)[h3,h1]H+ς(h3)[h1,h2]H,{h1,h2,h3}Hς=ς(h1)h2⊳h3−ς(h2)h1⊳h3,for allh1,h2,h3∈H. |
Then (H,[−,−,−]Hς,{−,−,−}Hς) is a 3-Leibniz-Lie algebra.
Proof. First, we know from [17] that (H,[−,−,−]Hς) is a 3-Lie algebra. Next, for any h1,h2,h3,h4,h5∈H, we have
{h1,h2,h3}Hς=ς(h1)h2⊳h3−ς(h2)h1⊳h3=−(ς(h2)h1⊳h3−ς(h1)h2⊳h3)=−{h2,h1,h3}Hς |
and
{{h1,h2,h3}Hς,h4,h5}Hς+{h3,{h1,h2,h4}Hς,h5}Hς+{h3,h4,{h1,h2,h5}Hς}Hς+{[h1,h2,h3]Hς,h4,h5}Hς+{h3,[h1,h2,h4]Hς,h5}Hς−{h1,h2,{h3,h4,h5}Hς}Hς=ς(h1)ς(h2⊳h3)h4⊳h5−ς(h4)ς(h1)(h2⊳h3)⊳h5−ς(h2)ς(h1⊳h3)h4⊳h5+ς(h4)ς(h2)(h1⊳h3)⊳h5+ς(h3)ς(h1)(h2⊳h4)⊳h5−ς(h1)ς(h2⊳h4)h3⊳h5−ς(h3)ς(h2)(h1⊳h4)⊳h5+ς(h2)ς(h1⊳h4)h3⊳h5+ς(h1)ς(h3)h4⊳(h2⊳h5)−ς(h1)ς(h4)h3⊳(h2⊳h5)−ς(h2)ς(h3)h4⊳(h1⊳h5)+ς(h2)ς(h4)h3⊳(h1⊳h5)+ς(h1)ς([h2,h3]H)h4⊳h5−ς(h4)ς(h1)[h2,h3]H⊳h5+ς(h2)ς([h3,h1]H)h4⊳h5−ς(h4)ς(h2)[h3,h1]H⊳h5+ς(h3)ς([h1,h2]H)h4⊳h5−ς(h4)ς(h3)[h1,h2]H⊳h5+ς(h3)ς(h1)[h2,h4]H⊳h5−ς(h1)ς([h2,h4]H)h3⊳h5+ς(h3)ς(h2)[h4,h1]H⊳h5−ς(h2)ς([h4,h1]H)h3⊳h5+ς(h3)ς(h4)[h1,h2]H⊳h5−ς(h4)ς([h1,h2]H)h3⊳h5−ς(h1)ς(h3)h2⊳(h4⊳h5)+ς(h2)ς(h3)h1⊳(h4⊳h5)+ς(h1)ς(h4)h2⊳(h3⊳h5)−ς(h2)ς(h4)h1⊳(h3⊳h5)=−ς(h4)ς(h1)(h2⊳h3)⊳h5+ς(h4)ς(h2)(h1⊳h3)⊳h5+ς(h3)ς(h1)(h2⊳h4)⊳h5−ς(h3)ς(h2)(h1⊳h4)⊳h5+ς(h1)ς(h3)h4⊳(h2⊳h5)−ς(h1)ς(h4)h3⊳(h2⊳h5)−ς(h2)ς(h3)h4⊳(h1⊳h5)+ς(h2)ς(h4)h3⊳(h1⊳h5)−ς(h4)ς(h1)[h2,h3]H⊳h5−ς(h4)ς(h2)[h3,h1]H⊳h5+ς(h3)ς(h1)[h2,h4]H⊳h5+ς(h3)ς(h2)[h4,h1]H⊳h5−ς(h1)ς(h3)h2⊳(h4⊳h5)+ς(h2)ς(h3)h1⊳(h4⊳h5)+ς(h1)ς(h4)h2⊳(h3⊳h5)−ς(h2)ς(h4)h1⊳(h3⊳h5)=0. |
Similarly, we obtain
{h1,h2,[h3,h4,h5]Hς}Hς=ς(h1)ς(h3)h2⊳[h4,h5]H−ς(h2)ς(h3)h1⊳[h4,h5]H+ς(h1)ς(h4)h2⊳[h5,h3]H−ς(h2)ς(h4)h1⊳[h5,h3]H+ς(h1)ς(h5)h2⊳[h3,h4]H−ς(h2)ς(h5)h1⊳[h3,h4]H=0 |
and
[{h1,h2,h3}Hς,h4,h5]Hς=ς(h1)ς(h2⊳h3)[h4,h5]H+ς(h4)ς(h1)[h5,h2⊳h3]H+ς(h5)ς(h1)[h2⊳h3,h4]H−ς(h2)ς(h1⊳h3)[h4,h5]H−ς(h4)ς(h2)[h5,h1⊳h3]H−ς(h5)ς(h2)[h1⊳h3,h4]H=0. |
Hence Eqs (3.1)–(3.3) hold and we complete the proof.
In this section, we revisit fundamental results pertaining to the representations and cohomologies of 3-Leibniz algebras. We construct a representation of the descendent 3-Leibniz algebra (H,[−,−,−]Λ) on the vector space L and define the cohomologies of a nonabelian embedding tensor on 3-Lie algebras. As an application, we characterize the infinitesimal deformation using the first cohomology group.
Definition 4.1. (see [22]) A representation of the 3-Leibniz algebra (H,[−,−,−]H) is a vector space V equipped with 3 actions
l:H⊗H⊗V→V,m:H⊗V⊗H→V,r:V⊗H⊗H→V, |
satisfying for any a1,a2,a3,a4,a5∈H and u∈V
l(a1,a2,l(a3,a4,u))=l([a1,a2,a3]H,a4,u)+l(a3,[a1,a2,a4]H,u)+l(a3,a4,l(a1,a2,u)), | (4.1) |
l(a1,a2,m(a3,u,a5))=m([a1,a2,a3]H,u,a5)+m(a3,l(a1,a2,u),a5)+m(a3,u,[a1,a2,a5]H), | (4.2) |
l(a1,a2,r(u,a4,a5))=r(l(a1,a2,u),a4,a5)+r(u,[a1,a2,a4]H,a5)+r(u,a4,[a1,a2,a5]H), | (4.3) |
m(a1,u,[a3,a4,a5]H)=r(m(a1,u,a3),a4,a5)+m(a3,m(a1,u,a4),a5)+l(a3,a4,m(a1,u,a5)), | (4.4) |
r(u,a2,[a3,a4,a5]H)=r(r(u,a2,a3),a4,a5)+m(a3,r(u,a2,a4),a5)+l(a3,a4,r(u,a2,a5)). | (4.5) |
For n≥1, denote the n-cochains of 3-Leibniz algebra (H,[−,−,−]H) with coefficients in a representation (V;l,m,r) by
Cn3Leib(H,V)=Hom(n−1⏞∧2H⊗⋯⊗∧2H⊗H,V). |
The coboundary map δ:Cn3Leib(H,V)→Cn+13Leib(H,V), for Ai=ai∧bi∈∧2H,1≤i≤n and c∈H, as
(δφ)(A1,A2,…,An,c)=∑1≤j<k≤n(−1)jφ(A1,…,^Aj,…,Ak−1,ak∧[aj,bj,bk]H+[aj,bj,ak]H∧bk,…,An,c)+n∑j=1(−1)jφ(A1,…,^Aj,…,An,[aj,bj,c]H)+n∑j=1(−1)j+1l(Aj,φ(A1,…,^Aj,…,An,c))+(−1)n+1(m(an,φ(A1,…,An−1,bn),c)+r(φ(A1,…,An−1,an),bn,c)). |
It was proved in [23,24] that δ2=0. Therefore, (⊕+∞n=1Cn3Leib(H,V),δ) is a cochain complex.
Let HΛ⟶L be a nonabelian embedding tensor 3-Lie algebra. By Corollary 2.10, (H,[−,−,−]Λ) is a 3-Leibniz algebra. Next we give a representation of (H,[−,−,−]Λ) on L.
Lemma 4.2. With the above notations. Define 3 actions
lΛ:H⊗H⊗L→L,mΛ:H⊗L⊗H→L,rΛ:L⊗H⊗H→L, |
by
lΛ(h1,h2,l)=[Λh1,Λh2,l]L,mΛ(h1,l,h2)=[Λh1,l,Λh2]L−Λρ(Λh1,l)h2,rΛ(l,h1,h2)=[l,Λh1,Λh2]L−Λρ(l,Λh1)h2, |
for all h1,h2∈H,l∈L. Then (L;lΛ,mΛ,rΛ) is a representation of the descendent 3-Leibniz algebra (H,[−,−,−]Λ).
Proof. For any h1,h2,h3,h4,h5∈H and l∈L, by Eqs (2.1), (2.3)–(2.6), and (2.9), we have
lΛ(h1,h2,lΛ(h3,h4,l))−lΛ([h1,h2,h3]Λ,h4,l)−lΛ(h3,[h1,h2,h4]Λ,l)−lΛ(h3,h4,lΛ(h1,h2,l))=[Λh1,Λh2,[Λh3,Λh4,l]L]L−[[Λh1,Λh2,Λh3]L,Λh4,l]L−[Λh3,[Λh1,Λh2,Λh4]L,l]L−[Λh3,Λh4,[Λh1,Λh2,l]L]L=0 |
and
lΛ(h1,h2,mΛ(h3,l,h5))−mΛ([h1,h2,h3]Λ,l,h5)−mΛ(h3,lΛ(h1,h2,l),h5)−mΛ(h3,l,[h1,h2,h5]Λ)=[Λh1,Λh2,[Λh3,l,Λh5]L]L−[Λh1,Λh2,Λρ(Λh3,l)h5]L−[[Λh1,Λh2,Λh3]L,l,Λh5]L+Λρ([Λh1,Λh2,Λh3]L,l)h5−[Λh3,[Λh1,Λh2,l]L,Λh5]L+Λρ(Λh3,[Λh1,Λh2,l]L)h5−[Λh3,l,[Λh1,Λh2,Λh5]L]L+Λρ(Λh3,l)ρ(Λh1,Λh2)h5+Λρ(Λh3,l)[h1,h2,h5]H=−[Λh1,Λh2,Λρ(Λh3,l)h5]L+Λρ([Λh1,Λh2,Λh3]L,l)h5+Λρ(Λh3,[Λh1,Λh2,l]L)h5+Λρ(Λh3,l)ρ(Λh1,Λh2)h5+Λρ(Λh3,l)[h1,h2,h5]H=−Λ(ρ(Λh1,Λh2)ρ(Λh3,l)h5+[h1,h2,ρ(Λh3,l)h5]H)+Λρ(Λh1,Λh2)ρ(Λh3,l)h5+Λρ(Λh3,l)[h1,h2,h5]H=−Λ[h1,h2,ρ(Λh3,l)h5]H+Λρ(Λh3,l)[h1,h2,h5]H=0, |
which imply that Eqs (4.1) and (4.2) hold. Similarly, we can prove that Eqs (4.3)–(4.5) are true. The proof is finished.
Proposition 4.3. Let HΛ1⟶L and HΛ2⟶L be two nonabelian embedding tensor 3-Lie algebras and (fL,fH) a homomorphism from HΛ1⟶L to HΛ2⟶L. Then the induced representation (L;lΛ1,mΛ1,rΛ1) of the descendent 3-Leibniz algebra (H,[−,−,−]Λ1) and the induced representation (L;lΛ2,mΛ2,rΛ2) of the descendent 3-Leibniz algebra (H,[−,−,−]Λ2) satisfying the following equations:
fL(lΛ1(h1,h2,l))=lΛ2(fH(h1),fH(h2),fL(l)), | (4.6) |
fL(mΛ1(h1,l,h2))=mΛ2(fH(h1),fL(l),fH(h2)), | (4.7) |
fL(rΛ1(l,h1,h2))=rΛ2(fL(l),fH(h1),fH(h2)), | (4.8) |
for all h1,h2∈H,l∈L. In other words, the following diagrams commute:
![]() |
Proof. For any h1,h2∈H,l∈L, by Eqs (2.7) and (2.8), we have
fL(lΛ1(h1,h2,l))=fL([Λ1h1,Λ1h2,l]L)=[fL(Λ1h1),fL(Λ1h2),fL(l)]L=[Λ2fH(h1),Λ2fH(h2),fL(l)]L=lΛ2(fH(h1),fH(h2),fL(l)),fL(mΛ1(h1,l,h2))=fL([Λ1h1,l,Λ1h2]L−Λ1ρ(Λ1h1,l)h2)=[fL(Λ1h1),fL(l),fL(Λ1h2)]L−fL(Λ1ρ(Λ1h1,l)h2)=[Λ2fH(h1),fL(l),Λ2fH(h2)]L−Λ2fH(ρ(Λ1h1,l)h2)=[Λ2fH(h1),fL(l),Λ2fH(h2)]L−Λ2ρ(Λ2fH(h1),fL(l))fH(h2)=mΛ2(fH(h1),fL(l),fH(h2)). |
And the other equation is similar to provable.
For n≥1, let δΛ:Cn3Leib(H,L)→Cn+13Leib(H,L) be the coboundary operator of the 3-Leibniz algebra (H,[−,−,−]Λ) with coefficients in the representation (L;lΛ,mΛ,rΛ). More precisely, for all ϕ∈Cn3Leib(H,L),Hi=ui∧vi∈∧2H,1≤i≤n and w∈H, we have
(δΛϕ)(H1,H2,…,Hn,w)=∑1≤j<k≤n(−1)jϕ(H1,…,^Hj,…,Hk−1,uk∧[uj,vj,vk]Λ+[uj,vj,uk]Λ∧vk,…,Hn,w)+n∑j=1(−1)jϕ(H1,…,^Hj,…,Hn,[uj,vj,w]Λ)+n∑j=1(−1)j+1lΛ(Hj,ϕ(H1,…,^Hj,…,Hn,w))+(−1)n+1(mΛ(un,ϕ(H1,…,Hn−1,vn),w)+rΛ(ϕ(H1,…,Hn−1,un),vn,w)). |
In particular, for ϕ∈C13Leib(H,L):=Hom(H,L) and u1,v1,w∈H, we have
(δΛϕ)(u1,v1,w)=−ϕ([u1,v1,w]Λ)+lΛ(u1,v1,ϕ(w))+mΛ(u1,ϕ(v1),w)+rΛ(ϕ(u1),v1,w)=−ϕ([u1,v1,w]Λ)+[Λu1,Λv1,ϕ(w)]L+[Λu1,ϕ(v1),Λw]L−Λρ(Λu1,ϕ(v1))w+[ϕ(u1),Λv1,Λw]L−Λρ(ϕ(u1),Λv1)w. |
For any (a1,a2)∈C03Leib(H,L):=∧2L, we define δΛ:C03Leib(H,L)→C13Leib(H,L),(a1,a2)↦δΛ(a1,a2) by
δΛ(a1,a2)u=Λρ(a1,a2)u−[a1,a2,Λu]L,∀u∈H. |
Proposition 4.4. Let HΛ⟶L be a nonabelian embedding tensor 3-Lie algebra. Then δΛ(δΛ(a1,a2))=0, that is, the composition C03Leib(H,L)δΛ⟶C13Leib(H,L)δΛ⟶C23Leib(H,L) is the zero map.
Proof. For any u1,v1,w∈V, by Eqs (2.1)–(2.6) and (2.9) we have
δΛ(δΛ(a1,a2))(u1,v1,w)=−δΛ(a1,a2)([u1,v1,w]Λ)+[Λu1,Λv1,δΛ(a1,a2)(w)]L+[Λu1,δΛ(a1,a2)(v1),Λw]L−Λρ(Λu1,δΛ(a1,a2)(v1))w+[δΛ(a1,a2)(u1),Λv1,Λw]L−Λρ(δΛ(a1,a2)(u1),Λv1)w=−Λρ(a1,a2)[u1,v1,w]Λ+[a1,a2,[Λu1,Λv1,Λw]L]L+[Λu1,Λv1,Λρ(a1,a2)w]L−[Λu1,Λv1,[a1,a2,Λw]L]L+[Λu1,Λρ(a1,a2)v1,Λw]L−[Λu1,[a1,a2,Λv1]L,Λw]L−Λρ(Λu1,Λρ(a1,a2)v1)w+Λρ(Λu1,[a1,a2,Λv1]L)w+[Λρ(a1,a2)u1,Λv1,Λw]L−[[a1,a2,Λu1]L,Λv1,Λw]L−Λρ(Λρ(a1,a2)u1,Λv1)w+Λρ([a1,a2,Λu1]L,Λv1)w=−Λρ(a1,a2)ρ(Λu1,Λv1)w−Λρ(a1,a2)[u1,v1,w]H+Λρ(Λu1,Λv1)ρ(a1,a2)w+Λ[u1,v1,ρ(a1,a2)w]H+Λρ(Λu1,Λρ(a1,a2)v1)w+Λ[u1,ρ(a1,a2)v1,w]H−Λρ(Λu1,Λρ(a1,a2)v1)w+Λρ(Λu1,[a1,a2,Λv1]L)w+Λ(Λρ(a1,a2)u1,Λv1)w+Λ[ρ(a1,a2)u1,v1,w]H−Λρ(Λρ(a1,a2)u1,Λv1)w+Λρ([a1,a2,Λu1]L,Λv1)w=−Λρ(a1,a2)ρ(Λu1,Λv1)w+Λρ(Λu1,Λv1)ρ(a1,a2)w+Λρ(Λu1,Λρ(a1,a2)v1)w−Λρ(Λu1,Λρ(a1,a2)v1)w+Λρ(Λu1,[a1,a2,Λv1]L)w+Λ(Λρ(a1,a2)u1,Λv1)w−Λρ(Λρ(a1,a2)u1,Λv1)w+Λρ([a1,a2,Λu1]L,Λv1)w=−Λρ(a1,a2)ρ(Λu1,Λv1)w+Λρ(Λu1,Λv1)ρ(a1,a2)w+Λρ(Λu1,[a1,a2,Λv1]L)w+Λρ([a1,a2,Λu1]L,Λv1)w=0. |
Therefore, we deduce that δΛ(δΛ(a1,a2))=0.
Now we develop the cohomology theory of a nonabelian embedding tensor Λ on the 3-Lie algebra (L,[−,−,−]L) with respect to the coherent action (H,[−,−,−]H;ρ†).
For n≥0, define the set of n-cochains of Λ by CnΛ(H,L):=Cn3Leib(H,L). Then (⊕∞n=0CnΛ(H,L),δΛ) is a cochain complex.
For n≥1, we denote the set of n-cocycles by ZnΛ(H,L), the set of n-coboundaries by BnΛ(H,L), and the n-th cohomology group of the nonabelian embedding tensor Λ by
HHnΛ(H,L)=ZnΛ(H,L)BnΛ(H,L). |
Proposition 4.5. Let HΛ1⟶L and HΛ2⟶L be two nonabelian embedding tensor 3-Lie algebras and let (fL,fH) be a homomorphism from HΛ1⟶L to HΛ2⟶L in which fH is invertible. We define a map Ψ:CnΛ1(H,L)→CnΛ2(H,L) by
Ψ(ϕ)(H1,H2,…,Hn−1,w)=fL(ϕ(f−1H(u1)∧f−1H(v1),…,f−1H(un−1)∧f−1H(vn−1),f−1H(w))), |
for all ϕ∈CnΛ1(H,L),Hi=ui∧vi∈∧2H,1≤i≤n−1, and w∈H. Then Ψ:(Cn+1Λ1(H,L),δΛ1)→(Cn+1Λ2(H,L),δΛ2) is a cochain map.
That is, the following diagram commutes:
![]() |
Consequently, it induces a homomorphism Ψ∗ from the cohomology group HHn+1Λ1(H,L) to HHn+1Λ2(H,L).
Proof. For any ϕ∈CnΛ1(H,L),Hi=ui∧vi∈∧2H,1≤i≤n, and w∈H, by Eqs (4.6)–(4.8) and Proposition 2.11, we have
(δΛ2Ψ(ϕ))(H1,H2,…,Hn,w)=∑1≤j<k≤n(−1)jΨ(ϕ)(H1,…,^Hj,…,Hk−1,uk∧[uj,vj,vk]Λ2+[uj,vj,uk]Λ2∧vk,…,Hn,w)+n∑j=1(−1)jΨ(ϕ)(H1,…,^Hj,…,Hn,[uj,vj,w]Λ2)+n∑j=1(−1)j+1lΛ2(Hj,Ψ(ϕ)(H1,…,^Hj,…,Hn,w))+(−1)n+1mΛ2(un,Ψ(ϕ)(H1,…,Hn−1,vn),w)+(−1)n+1rΛ2(Ψ(ϕ)(H1,…,Hn−1,un),vn,w)=∑1≤j<k≤n(−1)jfL(ϕ(f−1H(u1)∧f−1H(v1),…,^Hj,…,f−1H(uk−1)∧f−1H(vk−1),f−1H(uk)∧f−1H([uj,vj,vk]Λ2)+f−1H([uj,vj,uk]Λ2)∧f−1H(vk),…,f−1H(un)∧f−1H(vn),f−1H(w)))+n∑j=1(−1)jfL(ϕ(f−1H(u1)∧f−1H(v1),…,^Hj,…,f−1H(un)∧f−1H(vn),f−1H([uj,vj,w]Λ2)))+n∑j=1(−1)j+1lΛ2(Hj,fL(ϕ(f−1H(u1)∧f−1H(v1),…,^Hj,…,f−1H(un)∧f−1H(vn),f−1H(w))))+(−1)n+1mΛ2(un,fL(ϕ(f−1H(u1)∧f−1H(v1),…,f−1H(un−1)∧f−1H(vn−1),f−1H(vn))),w)+(−1)n+1rΛ2(fL(ϕ(f−1H(u1)∧f−1H(v1),…,f−1H(un−1)∧f−1H(vn−1),f−1H(un))),vn,w)=fL(∑1≤j<k≤n(−1)jϕ(f−1H(u1)∧f−1H(v1),…,^Hj,…,f−1H(uk−1)∧f−1H(vk−1),f−1H(uk)∧[f−1H(uj),f−1H(vj),f−1H(vk)]Λ1+[f−1H(uj),f−1H(vj),f−1H(uk)]Λ1∧f−1H(vk),…,f−1H(un)∧f−1H(vn),f−1H(w))+n∑j=1(−1)jϕ(f−1H(u1)∧f−1H(v1),…,^Hj,…,f−1H(un)∧f−1H(vn),[f−1H(uj),f−1H(vj),f−1H(w)]Λ1)+n∑j=1(−1)j+1lΛ1(f−1H(uj),f−1H(vj),ϕ(f−1H(u1)∧f−1H(v1),…,^Hj,…,f−1H(un)∧f−1H(vn),f−1H(w)))+(−1)n+1mΛ1(f−1H(un),ϕ(f−1H(u1),f−1H(v1),…,f−1H(un−1)∧f−1H(vn−1),f−1H(vn)),f−1H(w))+(−1)n+1rΛ1(ϕ(f−1H(u1)∧f−1H(v1),…,f−1H(un−1)∧f−1H(vn−1),f−1H(un)),f−1H(vn),f−1H(w)))=fL(δΛ1ϕ)(f−1H(u1)∧f−1H(v1),…,f−1H(un)∧f−1H(vn),f−1H(w))=Ψ(δΛ1ϕ)(H1,H2,…,Hn,w). |
Hence, Ψ is a cochain map and induces a cohomology group homomorphism Ψ∗:HHn+1Λ1(H,L) →HHn+1Λ2(H,L).
At the conclusion of this section, we employ the well-established cohomology theory to describe the infinitesimal deformations of nonabelian embedding tensors on 3-Lie algebras.
Definition 4.6. Let Λ:H→L be a nonabelian embedding tensor on a 3-Lie algebra (L,[−,−,−]L) with respect to a coherent action (H,[−,−,−]H;ρ†). An infinitesimal deformation of Λ is a nonabelian embedding tensor of the form Λt=Λ+tΛ1, where t is a parameter with t2=0.
Let Λt=Λ+tΛ1 be an infinitesimal deformation of Λ, then we have
[Λtu1,Λtu2,Λtu3]L=Λtρ(Λtu1,Λtu2)u3+Λt[u1,u2,u3]H, |
for all u1,u2,u3∈H. Therefore, we obtain the following equation:
[Λ1u1,Λu2,Λu3]L+[Λu1,Λ1u2,Λu3]L+[Λu1,Λu2,Λ1u3]L=Λ1ρ(Λu1,Λu2)u3+Λρ(Λ1u1,Λu2)u3+Λρ(Λu1,Λ1u2)u3+Λ1[u1,u2,u3]H. | (4.9) |
It follows from Eq (4.9) that Λ1∈C1Λ(H,L) is a 1-cocycle in the cohomology complex of Λ. Thus the cohomology class of Λ1 defines an element in HH1Λ(H,L).
Let Λt=Λ+tΛ1 and Λ′t=Λ+tΛ′1 be two infinitesimal deformations of Λ. They are said to be equivalent if there exists a1∧a2∈∧2L such that the pair (idL+tad(a1,a2),idH+tρ(a1,a2)) is a homomorphism from HΛt⟶L to HΛ′t⟶L. That is, the following conditions must hold:
1) The maps idL+tad(a1,a2):L→L and idH+tρ(a1,a2):H→H are two 3-Lie algebra homomorphisms,
2) The pair (idL+tad(a1,a2),idH+tρ(a1,a2)) satisfies:
(idH+tρ(a1,a2))(ρ(a,b)u)=ρ((idL+tad(a1,a2))a,(idL+tad(a1,a2))b)(idH+tρ(a1,a2))(u),(Λ+tΛ′1)(idH+tρ(a1,a2))(u)=(idL+tad(a1,a2))((Λ+tΛ1)u), | (4.10) |
for all a,b∈L,u∈H. It is easy to see that Eq (4.10) gives rise to
Λ1u−Λ′1u=Λρ(a1,a2)u−[a1,a2,Λu]=δΛ(a1,a2)u∈C1Λ(H,L). |
This shows that Λ1 and Λ′1 are cohomologous. Thus, their cohomology classes are the same in HH1Λ(H,L).
Conversely, any 1-cocycle Λ1 gives rise to the infinitesimal deformation Λ+tΛ1. Furthermore, we have arrived at the following result.
Theorem 4.7. Let Λ:H→L be a nonabelian embedding tensor on (L,[−,−,−]L) with respect to (H,[−,−,−]H;ρ†). Then, there exists a bijection between the set of all equivalence classes of infinitesimal deformations of Λ and the first cohomology group HH1Λ(H,L).
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This research is supported by the National Natural Science Foundation of China (Grant No. 12361005) and the Universities Key Laboratory of System Modeling and Data Mining in Guizhou Province (Grant No. 2023013).
The authors declare there is no conflicts of interest.
[1] |
Caiazzo G, Di Mario C, Kedhi E, et al. (2023) Current management of highly calcified coronary lesions: an overview of the current status. J Clin Med 12: 4844. https://doi.org/10.3390/jcm12144844 ![]() |
[2] |
Bourantas CV, Zhang YJ, Garg S, et al. (2014) Prognostic implications of coronary calcification in patients with obstructive coronary artery disease treated by percutaneous coronary intervention: a patient-level pooled analysis of 7 contemporary stent trials. Heart 100: 1158-1164. https://doi.org/10.1136/heartjnl-2013-305180 ![]() |
[3] |
Kedhi E, Berta B, Roleder T, et al. (2021) Thin-cap fibroatheroma predicts clinical events in diabetic patients with normal fractional flow reserve: the COMBINE OCT-FFR trial. Eur Heart J 42: 4671-4679. https://doi.org/10.1093/eurheartj/ehab433 ![]() |
[4] |
Protty M, Sharp ASP, Gallagher S, et al. (2022) Defining percutaneous coronary intervention complexity and risk: an analysis of the United Kingdom BCIS database 2006–2016. JACC Cardiovasc Interv 15: 39-49. https://doi.org/10.1016/j.jcin.2021.09.039 ![]() |
[5] |
Budoff MJ, Shaw LJ, Liu ST, et al. (2007) Long-term prognosis associated with coronary calcification. Observations from a registry of 25253 patients. J Am Coll Cardiol 49: 1860-1870. https://doi.org/10.1016/j.jacc.2006.10.079 ![]() |
[6] |
Folsom AR, Kronmal RA, Detrano RC, et al. (2008) Coronary artery calcification compared with carotid intima-media thickness in the prediction of cardiovascular disease incidence: the Multi-Ethnic Study of Atherosclerosis (MESA). Arch Intern Med 168: 1333-1339. https://doi.org/10.1001/archinte.168.12.1333 ![]() |
[7] |
Moussa I, Di Mario C, Moses J, et al. (1997) Coronary stenting after rotational atherectomy in calcified and complex lesions. Angiographic and clinical follow-up results. Circulation 96: 128-136. https://doi.org/10.1161/01.cir.96.1.128 ![]() |
[8] |
Alfonso F, Kastrati A (2021) Clinical burden and implications of coronary interventions for in-stent restenosis. EuroIntervention 17: e355-e357. https://doi.org/10.4244/EIJV17I5A60 ![]() |
[9] |
Giustino G, Mastoris I, Baber U, et al. (2016) Correlates and impact of coronary artery calcifications in women undergoing percutaneous coronary intervention with drug-eluting stents: from the Women in Innovation and Drug-Eluting Stents (WIN-DES) collaboration. JACC Cardiovasc Interv 9: 1890-1901. https://doi.org/10.1016/j.jcin.2016.06.022 ![]() |
[10] |
Cialdella P, Sergi SC, Zimbardo G, et al. (2023) Calcified coronary lesions. Eur Heart J Suppl 25: C68-C73. https://doi.org/10.1093/eurheartjsupp/suad009 ![]() |
[11] |
Guedeney P, Claessen BE, Mehran R, et al. (2020) Coronary calcification and long-term outcomes according to drug-eluting stent generation. JACC Cardiovasc Interv 13: 1417-1428. https://doi.org/10.1016/j.jcin.2020.03.053 ![]() |
[12] |
Ellis SG, Ajluni S, Arnold AZ, et al. (1994) Increased coronary perforation in the new device era: incidence, classification, management, and outcome. Circulation 90: 2725-2730. https://doi.org/10.1161/01.cir.90.6.2725 ![]() |
[13] |
Virmani R, Kolodgie FD, Burke AP, et al. (2005) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 25: 2054-2061. https://doi.org/10.1161/01.ATV.0000178991.71605.18 ![]() |
[14] |
Aikawa E, Nahrendorf M, Figueiredo JL, et al. (2007) Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation 116: 2841-2850. https://doi.org/10.1161/CIRCULATIONAHA.107.732867 ![]() |
[15] |
Jadhav KP, Kavalipatu KNR, Kuchulakanti PK, et al. (2021) Coronary artery calcification: from cell to stent—a review. Indian J Clin Cardiol 2: 97-109. https://doi.org/10.1177/26324636211013156 ![]() |
[16] |
Zaidan M, Alkhalil M, Alaswad K (2022) Calcium modification therapies in contemporary percutaneous coronary intervention. Curr Cardiol Rev 18: e281221199533. https://doi.org/10.2174/1573403X18666211228095457 ![]() |
[17] |
Mintz GS, Popma JJ, Pichard AD, et al. (1995) Patterns of calcification in coronary artery disease: a statistical analysis of intravascular ultrasound and coronary angiography in 1155 lesions. Circulation 91: 1959-1965. https://doi.org/10.1161/01.cir.91.7.1959 ![]() |
[18] |
Terashima M, Kaneda H, Suzuki T (2012) The role of optical coherence tomography in coronary intervention. Korean J Intern Med 27: 1-12. https://doi.org/10.3904/kjim.2012.27.1.1 ![]() |
[19] |
Fujino A, Mintz GS, Matsumura M, et al. (2018) A new optical coherence tomography-based calcium scoring system to predict stent underexpansion. EuroIntervention 13: e2182-e2189. https://doi.org/10.4244/EIJ-D-17-00962 ![]() |
[20] |
Zhang M, Matsumura M, Usui E, et al. (2021) Intravascular ultrasound-derived calcium score to predict stent expansion in severely calcified lesions. Circ Cardiovasc Interv 14: e010296. https://doi.org/10.1161/CIRCINTERVENTIONS.120.010296 ![]() |
[21] |
Watanabe Y, Sakakura K, Taniguchi Y, et al. (2020) Comparison of clinical outcomes of intravascular ultrasound-calcified nodule between percutaneous coronary intervention with versus without rotational atherectomy in a propensity-score matched analysis. PLoS One 15: e0241836. https://doi.org/10.1371/journal.pone.0241836 ![]() |
[22] |
Sato T, Matsumura M, Yamamoto K, et al. (2023) Impact of eruptive vs noneruptive calcified nodule morphology on acute and long-term outcomes after stenting. JACC Cardiovasc Interv 16: 1024-1035. https://doi.org/10.1016/j.jcin.2023.03.009 ![]() |
[23] |
Komaki S, Ishii M, Ikebe S, et al. (2021) Association between coronary artery calcium score and stent expansion in percutaneous coronary intervention. Int J Cardiol 334: 31-36. https://doi.org/10.1016/j.ijcard.2021.04.021 ![]() |
[24] | Kang SJ (2021) Intravascular ultrasound-derived criteria for optimal stent expansion and preprocedural prediction of stent underexpansion. Circ Cardiovasc Interv 14: e011374. https://doi.org/10.1161/CIRCINTERVENTIONS.121.011374 |
[25] |
Torngren K, Rylance R, Björk J, et al. (2020) Association of coronary calcium score with endothelial dysfunction and arterial stiffness. Atherosclerosis 313: 70-75. https://doi.org/10.1016/j.atherosclerosis.2020.09.022 ![]() |
[26] |
Byrne RA, Joner M, Kastrati A (2015) Stent thrombosis and restenosis: What have we learned and where are we going? the Andreas Grüntzig Lecture ESC 2014. Eur Heart J 36: 3320-3331. https://doi.org/10.1093/eurheartj/ehv511 ![]() |
[27] |
Mauri L, Bonan R, Weiner BH, et al. (2002) Cutting balloon angioplasty for the prevention of restenosis: results of the cutting balloon global randomized trial. Am J Cardiol 90: 1079-1083. https://doi.org/10.1016/s0002-9149(02)02773-x ![]() |
[28] |
Bonaventura K, Schwefer M, Yusof AKM, et al. (2020) Systematic scoring balloon lesion preparation for drug-coated balloon angioplasty in clinical routine: results of the PASSWORD observational study. Adv Ther 37: 2210-2223. https://doi.org/10.1007/s12325-020-01320-2 ![]() |
[29] | Leick J, Rheude T, Cassese S, et al. (2024) Comparison of angiographic result and long-term outcome in patients with in-stent restenosis treated with cutting balloon or with scoring balloon angioplasty. J Invasive Cardiol 36. https://doi.org/10.25270/jic/24.00070 |
[30] |
Angsubhakorn N, Kang N, Fearon C, et al. (2022) Contemporary management of severely calcified coronary lesions. J Pers Med 12: 1638. https://doi.org/10.3390/jpm12101638 ![]() |
[31] |
Secco GG, Ghione M, Mattesini A, et al. (2016) Very high-pressure dilatation for undilatable coronary lesions: indications and results with a new dedicated balloon. EuroIntervention 12: 359-365. https://doi.org/10.4244/EIJY15M06_04 ![]() |
[32] |
Secco GG, Buettner A, Parisi R, et al. (2019) Clinical experience with very high-pressure dilatation for resistant coronary lesions. Cardiovasc Revasc Med 20: 1083-1087. https://doi.org/10.1016/j.carrev.2019.02.026 ![]() |
[33] |
Hill JM, Kereiakes DJ, Shlofmitz RA, et al. (2020) Intravascular lithotripsy for treatment of severely calcified coronary artery disease. J Am Coll Cardiol 76: 2635-2646. https://doi.org/10.1016/j.jacc.2020.09.603 ![]() |
[34] |
Mastrangelo A, Monizzi G, Galli S, et al. (2022) Intravascular lithotripsy in calcified coronary lesions: a single-center experience in “real-world” patients. Front Cardiovasc Med 9: 829117. https://doi.org/10.3389/fcvm.2022.829117 ![]() |
[35] |
Ali ZA, Nef H, Escaned J, et al. (2019) Safety and effectiveness of coronary intravascular lithotripsy for treatment of severely calcified coronary stenoses: the disrupt CAD II study. Circ Cardiovasc Interv 12: e008434. https://doi.org/10.1161/CIRCINTERVENTIONS.119.008434 ![]() |
[36] | Riley RF, Patel MP, Abbott JD, et al. (2024) SCAI expert consensus statement on the management of calcified coronary lesions. J Soc Cardiovasc Angiogr Interv 3: 101259. https://doi.org/10.1016/j.jscai.2023.101259 |
[37] |
Khattak S, Sharma H, Khan SQ (2024) Atherectomy techniques: rotablation, orbital and laser. Interv Cardiol 19: e21. https://doi.org/10.15420/icr.2024.16 ![]() |
[38] |
Tomey MI, Kini AS, Sharma SK (2014) Current status of rotational atherectomy. JACC Cardiovasc Interv 7: 345-353. https://doi.org/10.1016/j.jcin.2013.12.196 ![]() |
[39] | Kobayashi N, Ito Y, Yamawaki M, et al. (2018) Distal embolization of coronary calcified nodule after rotational atherectomy. SAGE Open Med Case Rep 6. https://doi.org/10.1177/2050313X18799243 |
[40] |
Kinnaird T, Gallagher S, Sharp A, et al. (2021) Operator volumes and in-hospital outcomes: an analysis of 7740 rotational atherectomy procedures from the BCIS national database. JACC Cardiovasc Interv 14: 1423-1430. https://doi.org/10.1016/j.jcin.2021.04.034 ![]() |
[41] |
Jawad-Ul-Qamar M, Sharma H, Vetrugno V, et al. (2021) Contemporary use of excimer laser in percutaneous coronary intervention with indications, procedural characteristics, complications and outcomes in a university teaching hospital. Open Heart 8: e001522. https://doi.org/10.1136/openhrt-2020-001522 ![]() |
[42] |
Tsutsui RS, Sammour Y, Kalra A, et al. (2021) Excimer laser atherectomy in percutaneous coronary intervention: a contemporary review. Cardiovasc Revasc Med 25: 75-85. https://doi.org/10.1016/j.carrev.2020.10.016 ![]() |
[43] |
Egred M, Brilakis ES (2020) Excimer Laser Coronary Angioplasty (ELCA): fundamentals, mechanism of action, and clinical applications. J Invasive Cardiol 32: E27-E35. https://doi.org/10.25270/jic/19.00325 ![]() |
[44] | Ali ZA, Shin D, Barbato E (2024) Between a rock and a hard place: a consensus statement on the management of calcified coronary lesions. J Soc Cardiovasc Angiogr Interv 3: 101265. https://doi.org/10.1016/j.jscai.2023.101265 |
[45] |
Achenbach S, Ropers D, Pohle K, et al. (2002) Influence of lipid-lowering therapy on the progression of coronary artery calcification: a prospective evaluation. Circulation 106: 1077-1082. https://doi.org/10.1161/01.cir.0000027567.49283.ff ![]() |
[46] |
Schwartz GG, Steg PG, Szarek M, et al. (2018) Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med 379: 2097-2107. https://doi.org/10.1056/NEJMoa1801174 ![]() |
[47] |
Limpijankit T, Jongjirasiri S, Unwanatham N, et al. (2022) Causal relationship of coronary artery calcium on myocardial infarction and preventive effect of antiplatelet therapy. Front Cardiovasc Med 9: 871267. https://doi.org/10.3389/fcvm.2022.871267 ![]() |
[48] | Matheus ASDM, Tannus LRM, Cobas RA, et al. (2013) Impact of diabetes on cardiovascular disease: an update. Int J Hypertens 2013: 653789. https://doi.org/10.1155/2013/653789 |
[49] |
Allali A, Abdel-Wahab M, Elbasha K, et al. (2023) Rotational atherectomy of calcified coronary lesions: current practice and insights from two randomized trials. Clin Res Cardiol 112: 1143-1163. https://doi.org/10.1007/s00392-022-02013-2 ![]() |
[50] |
Achim A, Kákonyi K, Nagy F, et al. (2022) Radial artery calcification in predicting coronary calcification and atherosclerosis burden. Cardiol Res Pract 2022: 5108389. https://doi.org/10.1155/2022/5108389 ![]() |
[51] | Yin WH, Tseng CK, Tsao TP, et al. (2015) Transradial versus transfemoral rotablation for heavily calcified coronary lesions in contemporary drug-eluting stent era. J Geriatr Cardiol 12: 489-496. https://doi.org/10.11909/j.issn.1671-5411.2015.05.004 |
[52] |
Khan AA, Panchal HB, Zaidi SIM, et al. (2019) Safety and efficacy of radial versus femoral access for rotational atherectomy: a systematic review and meta-analysis. Cardiovasc Revasc Med 20: 241-247. https://doi.org/10.1016/j.carrev.2018.06.006 ![]() |
[53] | Saleem T, Baril DT (2023) Vascular Access Closure Devices. StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470233/?report=reader. [cited January 16, 2025]. |
[54] |
Mehta A, Bath A, Kalavakunta J (2020) Arteriovenous fistula: rare complication of radial artery access. BMJ Case Rep 13: e237278. https://doi.org/10.1136/bcr-2020-237278 ![]() |
[55] | Alomar ME, Michael TT, Patel VG, et al. (2013) Stent loss and retrieval during percutaneous coronary interventions: a systematic review and meta-analysis. J Invasive Cardiol 25: 637-641. |
[56] |
Khattak S, Upadhyaya S, Nolan J, et al. (2021) Manual extraction of a dislodged and migrated DES from radial artery puncture site. Eur Heart J Case Rep 5: ytab468. https://doi.org/10.1093/ehjcr/ytab468 ![]() |
[57] |
Eggebrecht H, Haude M, Von Birgelen C, et al. (2000) Nonsurgical retrieval of embolized coronary stents. Catheter Cardiovasc Interv 51: 432-440. https://doi.org/10.1002/1522-726x(200012)51:4<432::aid-ccd12>3.0.co;2-1 ![]() |
[58] |
Abdalwahab A, Farag M, Brilakis ES, et al. (2021) Management of coronary artery perforation. Cardiovasc Revasc Med 26: 55-60. https://doi.org/10.1016/j.carrev.2020.11.013 ![]() |
[59] |
Umar H, Sharma H, Osheiba M, et al. (2022) Changing trends in the incidence, management and outcomes of coronary artery perforation over an 11-year period: single-centre experience. Open Heart 9: e001916. https://doi.org/10.1136/openhrt-2021-001916 ![]() |
[60] |
Giannini F, Candilio L, Mitomo S, et al. (2018) A practical approach to the management of complications during percutaneous coronary intervention. JACC Cardiovasc Interv 11: 1797-1810. https://doi.org/10.1016/j.jcin.2018.05.052 ![]() |
[61] |
Xenogiannis I, Brilakis ES (2019) Advances in the treatment of coronary perforations. Catheter Cardiovasc Interv 93: 921-922. https://doi.org/10.1002/ccd.28205 ![]() |
[62] |
Muller O, Windecker S, Cuisset T, et al. (2008) Management of two major complications in the cardiac catheterisation laboratory: the no-reflow phenomenon and coronary perforations. EuroIntervention 4: 181-183. https://doi.org/10.4244/eijv4i2a32 ![]() |
[63] |
Anghel L, Tudurachi BS, Tudurachi A, et al. (2023) Patient-related factors predicting stent thrombosis in percutaneous coronary interventions. J Clin Med 12: 7367. https://doi.org/10.3390/jcm12237367 ![]() |
[64] | Grove ECL, Kristensen SD (2007) Stent thrombosis: definitions, mechanisms and prevention. E J Cardiol Practice 5. |
[65] |
Cutlip DE, Windecker S, Mehran R, et al. (2007) Clinical end points in coronary stent trials: a case for standardized definitions. Circulation 115: 2344-2351. https://doi.org/10.1161/CIRCULATIONAHA.106.685313 ![]() |
[66] |
Généreux P, Madhavan MV, Mintz GS, et al. (2014) Ischemic outcomes after coronary intervention of calcified vessels in acute coronary syndromes: pooled analysis from the HORIZONS-AMI (Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction) and ACUITY (Acute Catheterization and Urgent Intervention Triage Strategy) trials. J Am Coll Cardiol 63: 1845-1854. https://doi.org/10.1016/j.jacc.2014.01.034 ![]() |
[67] |
Abouelnour A, Gori T (2022) Intravascular imaging in coronary stent restenosis: prevention, characterization, and management. Front Cardiovasc Med 9: 843734. https://doi.org/10.3389/fcvm.2022.843734 ![]() |
[68] | Klein LW, Nathan S, Maehara A, et al. (2023) SCAI expert consensus statement on management of in-stent restenosis and stent thrombosis. J Soc Cardiovasc Angiogr Interv 2: 100971. https://doi.org/10.1016/j.jscai.2023.100971 |
[69] |
Généreux P, Stone GW, Harrington RA, et al. (2014) Impact of intraprocedural stent thrombosis during percutaneous coronary intervention: insights from the champion phoenix trial (clinical trial comparing Cangrelor to Clopidogrel standard of care therapy in subjects who require Percutaneous coronary intervention). J Am Coll Cardiol 63: 619-629. https://doi.org/10.1016/j.jacc.2013.10.022 ![]() |
[70] |
Dangas GD, Claessen BE, Mehran R, et al. (2013) Stent thrombosis after primary angioplasty for STEMI in relation to non-adherence to dual antiplatelet therapy over time: results of the HORIZONS-AMI trial. EuroIntervention 8: 1033-1039. https://doi.org/10.4244/EIJV8I9A159 ![]() |
[71] |
Husted S, Boersma E (2016) Case study: ticagrelor in PLATO and Prasugrel in TRITON-TIMI 38 and TRILOGY-ACS trials in patients with acute coronary syndromes. Am J Ther 23: e1876-e1889. https://doi.org/10.1097/MJT.0000000000000237 ![]() |
[72] |
Lee SY, Mintz GS, Kim JS, et al. (2020) Long-term clinical outcomes of drug-eluting stent malapposition. Korean Circ J 50: 880-889. https://doi.org/10.4070/kcj.2020.0198 ![]() |
[73] |
Alfonso F, Coughlan JJ, Giacoppo D, et al. (2022) Management of in-stent restenosis. EuroIntervention 18: e103-e123. https://doi.org/10.4244/EIJ-D-21-01034 ![]() |
[74] | Omeh DJ, Shlofmitz E (2023) Restenosis of Stented Coronary Arteries. Available from: https://www.ncbi.nlm.nih.gov/books/NBK545139/. (Updated Aug 8, 2023). |
[75] |
Halwani DO, Anderson PG, Brott BC, et al. (2012) The role of vascular calcification in inducing fatigue and fracture of coronary stents. J Biomed Mater Res B Appl Biomater 100: 292-304. https://doi.org/10.1002/jbm.b.31911 ![]() |