Cervical cancer (CC) poses a substantial burden in low-and middle-income countries (LMICs), where challenges in implementing effective screening programs and achieving high participation rates persist.
This study sought to compare different strategies for recruiting women for CC screening in Albania, Montenegro, and Morocco, and compared usual care (ongoing invitation method) with an alternative approach (intervention strategy).
Within each country, the following comparisons were made: face-to-face (FF) invitations versus phone calls (PCs) in Albania, PCs versus letter invitations in Montenegro, and FF invitations to women attending healthcare centers versus a combined approach termed “Invitation made in Morocco” (utilizing PC and FF for hard-to-reach women) in Morocco. Questionnaires that assessed facilitators and barriers to participation were administered to women who either attended or refused screening.
In Albania, significant differences in the examination coverage were observed between the invitation methods (PC: 46.1% vs. FF: 87.1%, p < 0.01) and between the rural and urban settings (rural: 89.1% vs. urban: 76.3%, p < 0.01). In Montenegro, the coverage varied based on the recruitment method (PC: 17.7% vs. letter invitation: 7.6%; p < 0.01), the setting (urban: 28.3% vs. rural: 13.2%; p < 0.01), and age (<34 years: 10.9% vs. 34+: 9.6%, p < 0.01). In Morocco, no significant differences were observed. Common screening facilitators included awareness of CC prevention and understanding the benefits of early diagnosis, while key barriers included a limited perception of personal CC risk and the fear of testing positive.
FF appeared to be effective in promoting participation, but its broader implementation raised sustainability concerns. PC invitations proved feasible, albeit necessitating updates to population registries. Restricting FF contacts for hard-to-reach communities may enhance the affordability and equity.
Citation: Elisa Camussi, Lina Jaramillo, Roberta Castagno, Marta Dotti, Gianluigi Ferrante, Latifa Belakhel, Youssef Chami Khazraji, Alban Ylli, Kozeta Filipi, Đjurđjica Ostojić, Milica Stanisic, Luigi Bisanti, Livia Giordano. Recruitment strategies for cervical cancer screening in three Mediterranean low and middle-income countries: Albania, Montenegro, and Morocco[J]. AIMS Medical Science, 2024, 11(2): 99-112. doi: 10.3934/medsci.2024009
[1] | Jingye Zhao, Zonghua Wei, Jiahui Liu, Yongqiang Fan . Vanishing magnetic field limits of solutions to the non-isentropic Chaplygin gas magnetogasdynamics equations. AIMS Mathematics, 2025, 10(1): 1675-1703. doi: 10.3934/math.2025077 |
[2] | Noufe H. Aljahdaly . Study tsunamis through approximate solution of damped geophysical Korteweg-de Vries equation. AIMS Mathematics, 2024, 9(5): 10926-10934. doi: 10.3934/math.2024534 |
[3] | Shang Mengmeng . Large time behavior framework for the time-increasing weak solutions of bipolar hydrodynamic model of semiconductors. AIMS Mathematics, 2017, 2(1): 102-110. doi: 10.3934/Math.2017.1.102 |
[4] | Aidi Yao . Two-dimensional pseudo-steady supersonic flow around a sharp corner for the generalized Chaplygin gas. AIMS Mathematics, 2022, 7(7): 11732-11758. doi: 10.3934/math.2022654 |
[5] | Changdev P. Jadhav, Tanisha B. Dale, Vaijanath L. Chinchane, Asha B. Nale, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On solutions of fractional differential equations for the mechanical oscillations by using the Laplace transform. AIMS Mathematics, 2024, 9(11): 32629-32645. doi: 10.3934/math.20241562 |
[6] | Lining Tong, Li Chen, Simone Göttlich, Shu Wang . The global classical solution to compressible Euler system with velocity alignment. AIMS Mathematics, 2020, 5(6): 6673-6692. doi: 10.3934/math.2020429 |
[7] | Shaomin Wang, Cunji Yang, Guozhi Cha . On the variational principle and applications for a class of damped vibration systems with a small forcing term. AIMS Mathematics, 2023, 8(9): 22162-22177. doi: 10.3934/math.20231129 |
[8] | Ahmed E. Abouelregal, Khalil M. Khalil, Wael W. Mohammed, Doaa Atta . Thermal vibration in rotating nanobeams with temperature-dependent due to exposure to laser irradiation. AIMS Mathematics, 2022, 7(4): 6128-6152. doi: 10.3934/math.2022341 |
[9] | Waleed Hamali, Abdulah A. Alghamdi . Exact solutions to the fractional nonlinear phenomena in fluid dynamics via the Riccati-Bernoulli sub-ODE method. AIMS Mathematics, 2024, 9(11): 31142-31162. doi: 10.3934/math.20241501 |
[10] | Kunquan Li . Analytical solutions and asymptotic behaviors to the vacuum free boundary problem for 2D Navier-Stokes equations with degenerate viscosity. AIMS Mathematics, 2024, 9(5): 12412-12432. doi: 10.3934/math.2024607 |
Cervical cancer (CC) poses a substantial burden in low-and middle-income countries (LMICs), where challenges in implementing effective screening programs and achieving high participation rates persist.
This study sought to compare different strategies for recruiting women for CC screening in Albania, Montenegro, and Morocco, and compared usual care (ongoing invitation method) with an alternative approach (intervention strategy).
Within each country, the following comparisons were made: face-to-face (FF) invitations versus phone calls (PCs) in Albania, PCs versus letter invitations in Montenegro, and FF invitations to women attending healthcare centers versus a combined approach termed “Invitation made in Morocco” (utilizing PC and FF for hard-to-reach women) in Morocco. Questionnaires that assessed facilitators and barriers to participation were administered to women who either attended or refused screening.
In Albania, significant differences in the examination coverage were observed between the invitation methods (PC: 46.1% vs. FF: 87.1%, p < 0.01) and between the rural and urban settings (rural: 89.1% vs. urban: 76.3%, p < 0.01). In Montenegro, the coverage varied based on the recruitment method (PC: 17.7% vs. letter invitation: 7.6%; p < 0.01), the setting (urban: 28.3% vs. rural: 13.2%; p < 0.01), and age (<34 years: 10.9% vs. 34+: 9.6%, p < 0.01). In Morocco, no significant differences were observed. Common screening facilitators included awareness of CC prevention and understanding the benefits of early diagnosis, while key barriers included a limited perception of personal CC risk and the fear of testing positive.
FF appeared to be effective in promoting participation, but its broader implementation raised sustainability concerns. PC invitations proved feasible, albeit necessitating updates to population registries. Restricting FF contacts for hard-to-reach communities may enhance the affordability and equity.
Cervical cancer;
European Mediterranean Cancer Network;
Face-to-face;
High-income countries;
Human Papilloma Virus;
Invitation made in Morocco;
Low-and middle-income countries;
Phone call;
World Health Organization
The non-isentropic Euler equations in RN in fluid dynamics with a time-dependent linear damping and Coriolis force can be expressed as follows:
ρt+div(ρu)=0, | (1.1) |
(ρu)t+div(ρu⊗u)+ρJu+α(t)ρu+▽p=0, | (1.2) |
St+u⋅▽S=0, | (1.3) |
where u=(u1,u2,⋯,uN)T is an N-dimensional velocity field, ρ(x,t) and p(x,t)=eSργ represent density and the pressure function respectively, JT=−J representing Corilis force is an anti-symmetric matrix. The damping term α(t)ρu with α(t)≥0 as a coefficient of friction is proportional to the momentum.
For the special case when α(t)=0, the equations are reduced to Euler equations extended and governed by Coriolis rotational force [1,2,3,4]. The theoretical global existence of the Euler equations with rotational forces can be referred to [5,6,7]. Further studies on stability and tropical cyclones driven by this model can be referred to [8,9,10,11,12,13].
If J=0, (1.1)–(1.3) are reduced to non-isentropic linear-damped Euler equations, which provide an important model regarding to its physical behaviours. The system can also be used to describe compressible gas dynamics through a porous material driven by a friction force [14,15,16]. Weak solutions of the damped Euler equations are shown with asymptotic and large-time behavious in [16,17,18,19]. Chow, Fan, and Yuen, in 2017, constructed the solutions of Cartesian form with J=0 in [20], which can be regarded as a special case in this article, while taking the parameter γ and 2α in [20] to be γ+1 and α respectively. For time-dependent damping, Dong and Li studied a class of analytical solutions with free-boundary [21] in 2022.
For the case with J=0 and α(t)=0, the system (1.1)–(1.3) is reduced to the Euler equations
ρt+div(ρu)=0, | (1.4) |
(ρu)t+div(ρu⊗u)+▽p=0, | (1.5) |
St+u⋅▽S=0. | (1.6) |
There are lots of researches on Euler equations, for example, see [22,23,24,25,26]. Among all the topics, constructing analytical and exact solutions are crucial [27,28,29,30,31,32,33,34] with a common pattern of the velocity function u in linear form in many previous studies. For non-isentropic Euler equations, Barna and Mátyás presented the analytic solutions for one-dimensional Euler equations and three-dimensional Navier-Stokes equations with polytropic equation of state [34,35], which can be referred to by taking n≠γ and the viscosities to be zero respectively. Based on the linear form of velocity, An, Fan, and Yuen contributed with Cartesian rotational solutions to the N-dimension isentropic compressible Euler equations (1.4)–(1.6) [36] in 2015:
u=b(t)+A(t)x, | (1.7) |
where b(t) and A(t) are vector and matrix respectively. Further studies have shown the existence of general solutions in Cartesian form to isentropic Euler equations with damping and rotational forces in [20] and [37], respectively.
Referring to the many blowup pheonomena studies [38,39,40], the global solution is still complicated to look for.
In this article, the existence of a form of Cartesian solutions to non-isentropic Euler equations with rational force and linear damping (1.1)–(1.3) is proven by adopting mainly techniques on matrices, vectors, and curve integration. Enforcing eS=ρ and regarding velocity field u as an linear transformation of x∈RN, the problem is equivalent to finding the pressure function p, which leads us to a quadratic form and requirments on the matrix A and vector b. With this finding, we can construct some special exact solutions, which could be utilized in benchmarks for testings, simulations of computing flows.
In the following sections, we will prove the existence of the non-isentropic damped Euler equations with Coriolis forces, which admit Cartesian solutions by using appropriate requirements on matrix A and vector b. We will give examples on this first cartesian form solutions to non-isentropic Euler equations based on our finding.
In this section, we consider the non-isentropic Euler equations. Suppose that the density ρ and pressure p satisfy the relation
p(ρ)=eSργ, | (3.1) |
where the constant γ=cp/cu≥1, and cp and cu are the specific heats per unit mass under constant pressure and constant volume, respectively. Then we have the following theorem.
Theorem 3.1. If matrices A with tr(A)=0 and B=(At+A2+JA+α(t)A)/2 satisfy the matrix differential equations
BT=B, | (3.2) |
Bt+BA+ATB=0, | (3.3) |
then the compressible Euler equations with a time-dependent linear damping and Coriolis force (1.1)–(1.3) have explicit solutions in the form
u=b(t)+Ax, | (3.4) |
ρ=μ[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)]1γ, | (3.5) |
S=lnμ+1γln[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)], | (3.6) |
where μ=(γγ+1)1γ; the vector function b(t) and scalar function c(t) satisfy the ordinary differential equations:
(bt+Ab+Jb+α(t)b)t+AT(bt+Ab+Jb+α(t)b)+2Bb=0, | (3.7) |
ct−bT(bt+Ab+Jb+α(t)b)=0. | (3.8) |
Proof. By (3.65), (3.5) and (3.6), ρ>0, S=lnρ. Let
ˉp=γ+1γργ, | (3.9) |
▽pρ=1ρ▽(esργ)=1ρ▽(ργ+1)=(γ+1)ργ−1▽ρ=▽(γ+1γργ)=▽ˉp. | (3.10) |
With (3.9), the compressible Euler equations (1.2) and (1.3) can then be written as
ρt+div(ρu)=0, | (3.11) |
ut+(u⋅▽)u+Ju+α(t)u+▽ˉp=0, | (3.12) |
St+u⋅▽S=0. | (3.13) |
Owing to the equivalent relation (3.9) between ˉp and ρ, we mainly deal with ˉp when solving Eqs (3.11) and (3.12). Substituting Eq (3.4) into Eq (3.12), we have
ut+(u⋅▽)u+Ju+α(t)u+▽ˉp | (3.14) |
=bt+Atx+[(b+Ax)⋅▽](b+Ax)+JAx+α(t)Ax+Jb+α(t)b+▽ˉp | (3.15) |
=bt+Jb+α(t)b+Atx+(b⋅▽)Ax+(Ax⋅▽)Ax+JAx+α(t)Ax+▽ˉp | (3.16) |
=bt+(A+J+α(t))b+(At+A2+JA+α(t)A)x+▽ˉp=0. | (3.17) |
Let
B=(bij)N×N=12(At+A2+JA+α(t)A), J=(gij)N×N. | (3.18) |
Then the above equation can be written into a component form
Qi(x1,⋯,xN)≡−bit−α(t)bi−N∑k=1(aikbk+gikbk+2bikxk)=∂ˉp∂xi, i=1,2,⋯,N. | (3.19) |
Then, the following sufficient and necessary compatible conditions of these N equations,
∂Qj(x1,⋯,xN)∂xi=∂Qi(x1,⋯,xN)∂xj, i,j=1,2,⋯,N, | (3.20) |
lead to
bji=bij, i,j=1,2,⋯,N, | (3.21) |
which implies that B=12(At+A2+JA+α(t)A) is a symmetric matrix. Under the condition (3.20), ˉp(x) is a complete differential function,
dˉp(x)=N∑i=1∂ˉp(x)∂xidxi=N∑i=1Qi(x1,⋯,xN)dxi. | (3.22) |
Therefore we can choose a special integration route to obtain
ˉp(x,t)=N∑i=1∫(x1,x2,⋯,xN)(0,0,⋯,0)Qi(x1,x2,⋯,xN)dxi | (3.23) |
=∫x10Q1(x1,0,⋯,0)dx1,+∫x20Q2(x1,x2,0,⋯,0)dx2+⋯+∫xN0QN(x1,x2,⋯,xN)dxN | (3.24) |
=−N∑i=1[bi,t+N∑k=1(aikbk+gikbk)+α(t)bi]xi−N∑i=1biix2i−2N∑i,k=1, i<kbikxixk+c(t) | (3.25) |
=−xT(bt+Jb+Ab+α(t)b)−xTBx+c(t). | (3.26) |
Next, we show that functions (3.4)–(3.6) satisfy (3.11). By (3.9), we have
ρt=(μˉp1γ)t=μγˉp1γ−1ˉpt, | (3.27) |
ρtr(A)=μˉp1γtr(A)=μγˉp1γ−1γtr(A)ˉp, | (3.28) |
▽ρ=▽(μˉp1γ)=μγˉp1γ−1▽ˉp, | (3.29) |
u⋅▽ρ=μγˉp1γ−1uT▽ˉp. | (3.30) |
From Eqs (3.27)–(3.30), we have
ρt+div(ρu)=ρt+ρtr(A)+u⋅▽ρ=−μγˉp1γ−1{xT(bt+Ab+Jb+α(t)b)t+xTBtx−ct(t)+γtr(A)[xT(bt+Ab+Jb+α(t)b)+xTBx−c(t)]+(b+Ax)T(bt+Ab+Jb+α(t)b+2Bx)} | (3.31) |
=−μγˉp1γ−1{xT(Bt+γtr(A)B+2ATB)x+xT[(bt+Ab+Jb+α(t)b)t+(γtr(A)I+AT)(bt+Ab+Jb+α(t)b)+2Bb]−[ct+γtr(A)c−bT(bt+Ab+Jb+α(t)b)]} | (3.32) |
=−μγˉp1γ−1{xT[Bt+2ATB]x+xT[(bt+Ab+Jb+α(t)b)t+AT(bt+Ab+Jb+α(t)b)+2Bb]−[ct−bT(bt+Ab+Jb+α(t)b)]}=0, | (3.33) |
where we use the condition of the first term
xT(Bt+2ATB)x=0, | (3.34) |
which is equivalent to
(Bt+2ATB)T=−(Bt+2ATB), | (3.35) |
that is,
Bt+BA+ATB=0, | (3.36) |
which is (3.3). The second and third terms are controlled to be 0 with (3.7) and (3.8). By (3.6), we have
S=lnμ+1γln[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)]=lnρ. | (3.37) |
From (3.9), (3.37) is equivalent to
S=ln(μˉpγ)=lnμ+1γlnˉp, | (3.38) |
St=(lnˉp)tγ=1γˉp−1ˉpt, | (3.39) |
▽S=1γ▽lnˉp=1γˉp−1▽ˉp. | (3.40) |
Substituting (3.4)–(3.6) and (3.38)–(3.40) to (3.13) and using (3.3), (3.7), and (3.8), we obtain by a similar argument used in obtaining Eq (3.33) that
St+u⋅▽S=1γˉp−1(ˉpt+uT▽ˉp) | (3.41) |
=1γˉp−1[−xT(bt+Ab+Jb+α(t)b)t−xTBtx+ct(t)−(xTAT+bT)(bt+Ab+Jb+α(t)b+2Bx)] | (3.42) |
=1γˉp{−xT[(bt+Ab+Jb+α(t)b)t+AT(bt+Ab+Jb+α(t)b)+2Bb]−xT[Bt+2ATB]x+ct(t)−bT(bt+Ab+Jb+α(t)b)}=0. | (3.43) |
We observe that Eq (3.3) is a N2 matrix differential equation, which demands us to apply special reduction conditions to acquire solutions.
Corollary 3.1. If A is an anti-symmetric matrix, that is
AT=−A, | (3.44) |
and the following conditions are satisfied:
At+α(t)A=0, | (3.45) |
AJ=JA, | (3.46) |
Bt=0, | (3.47) |
btt+2Atb+(Jb+α(t)b)t=0, | (3.48) |
ct−bT(bt+Ab+Jb+α(t)b)=0, | (3.49) |
then the compressible Euler equations (3.11)–(3.13) admit a general solution
u=b(t)+Ax, | (3.50) |
ρ=μ[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)]1γ, | (3.51) |
S=lnμ+1γln[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)]. | (3.52) |
Proof. By (3.45) and (3.46),
BT=12(At+A2+JA+α(t)A)T | (3.53) |
=12[(−A)(−A)+(−A)(−J)] | (3.54) |
=12(A2+JA)=B. | (3.55) |
We can then simplify (3.3), (3.7), and (3.8) into (3.47), (3.48), and (3.49). Since matrix A is anti-symmetric, we have
BA+ATB=0. | (3.56) |
By (3.47), we have
Bt=0, | (3.57) |
Bt+BA+ATB=0. | (3.58) |
Thus, Eq (3.3) is ensured.
Since
BT=B, | (3.59) |
AJ=JA, | (3.60) |
AT+A=0, | (3.61) |
we have
(bt+Ab+Jb+α(t)b)t+AT(bt+Ab+Jb+α(t)b)+2Bb | (3.62) |
=btt+Atb+Abt−Abt−A(Ab+Jb+α(t)b)+(At+A2+JA+α(t)A)b+(Jb+α(t)b)t | (3.63) |
=btt+2Atb+(Jb+α(t)b)t=0. | (3.64) |
Thus, Eq (3.64) is simplified to (3.48).
Next, we give the following examples in 2 to N-dimension to demonstrate special cases of this corollary.
Remark 3.1. As (3.5) and (3.6) demand
−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)>0 | (3.65) |
for the positivity of the argument of the logarithm and density, the solutions exist locally.
Example 3.1. When α=0, we have the following examples:
2-dimensional Case: We take constant matrix
A=J=k1[01−10], b=k2[cos(k1t)sin(k1t)], c(t)=0, | (3.66) |
where k1 and k2 are arbitrary constants.
By (3.18),
B=12(At+A2+JA+α(t)A)=12(2A2)=A2 | (3.67) |
=k12[−100−1]. | (3.68) |
Since A is a constant matrix, At=0, taking α(t)=0,
Bt=d(At+A2+JA+α(t)A)2dt=0, | (3.69) |
Eqs (3.45) and (3.47) are satisfied. As J=A, Eq (3.46) is guaranteed. Equation (3.48) is satisfied by
btt+2Atb+(Jb+α(t)b)t | (3.70) |
=−k12b+0+Jbt+0 | (3.71) |
=−k12k2[cos(k1t)sin(k1t)]+k12k2[01−10][−sin(k1t)cos(k1t)]=0, | (3.72) |
Eq (3.49) is satisfied by
ct−bT(bt+Ab+Jb+α(t)b) | (3.73) |
=0−k2[cos(k1t)sin(k1t)]T(k1k2[−sin(k1t)cos(k1t)]+2k1k2[01−10][cos(k1t)sin(k1t)]) | (3.74) |
=−k1k22[cos(k1t)sin(k1t)]T[sin(k1t)−cos(k1t)]=0. | (3.75) |
we obtain the following solution:
u(t)=[k2cos(k1t)+k1x2k2sin(k1t)−k1x1], | (3.76) |
ρ=μ[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)]1γ | (3.77) |
=μ[−xT(bt+2Ab)−xTA2x]1γ | (3.78) |
=μ[−xT(k1k2[−sin(k1t)cos(k1t)]+2k1k2[−sin(k1t)cos(k1t)])−xTk12[−100−1]x]1γ | (3.79) |
=μ[k12(x12+x22)+k1k2(−sin(k1t)x1+cos(k1t)x2)]1γ, | (3.80) |
S=lnμ+1γln[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)] | (3.81) |
=lnμ+1γln[k12(x12+x22)+k1k2(−sin(k1t)x1+cos(k1t)x2)]. | (3.82) |
3-dimensional Case: We take constant matrix
A=J=k1[01−1−1011−10], b=k2t[111], c(t)=3k222t2, | (3.83) |
where k1 and k2 are arbitrary constants.
Since matrix A is a constant matrix, (3.45)–(3.47) are satisfied. By using of (3.83), (3.48) and (3.49) are ensured. By (3.18),
B=12(At+A2+JA+α(t)A)=12(2A2)=A2 | (3.84) |
=k12[−2111−2111−2]. | (3.85) |
Since A is a constant matrix, At=0, taking α(t)=0,
Bt=d(At+A2+JA+α(t)A)2dt=0, | (3.86) |
Eqs (3.45) and (3.47) are satisfied. As J=A, Eq (3.46) is guaranteed. Equation (3.48) is satisfied by
btt+2Atb+(Jb+α(t)b)t | (3.87) |
=0+0+Jbt+0 | (3.88) |
=k1k2[01−1−1011−10][111]=0, | (3.89) |
Eq (3.49) is satisfied by
ct−bT(bt+Ab+Jb+α(t)b) | (3.90) |
=3k22t−k2[ttt]T(k2[111]+2k1k2[01−1−1011−10][ttt]) | (3.91) |
=3k22t−3k22t+0=0. | (3.92) |
Therefore we obtain the solution:
u(t)=[k2t+k1(x2−x3)k2t+k1(x3−x1)k2t+k1(x1−x2)], | (3.93) |
ρ=μ[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)]1γ | (3.94) |
=μ[−xT(bt+2Ab)−xTA2x+3k222t2]1γ | (3.95) |
=μ[−xT(k2[111]+0)−xTk12[−2111−2111−2]x+3k222t2]1γ | (3.96) |
=μ[2k12(x12+x22+x32−x1x2−x1x3−x2x3)−k2(x1+x2+x3)+3k222t2]1γ, | (3.97) |
S=lnμ+1γln[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)] | (3.98) |
=lnμ+1γln[2k12(x12+x22+x32−x1x2−x1x3−x2x3)−k2(x1+x2+x3)+3k222t2]. | (3.99) |
Remark 3.2. The 3-dimensional example has the same setting with Example 5 in [37], which admits the same u solution but has different entropy and density.
4-dimensional Case: We take
A=J=k1[0−211201−3−1−102−13−20], | (3.100) |
b=k2t[1111], c(t)=2k22t2, | (3.101) |
where k1 and k2 are arbitrary constants. By (3.18),
B=12(At+A2+JA+α(t)A)=12(2A2)=A2 | (3.102) |
=k12[−62−482−1484−48−62842−14]. | (3.103) |
Since A is a constant matrix, At=0, taking α(t)=0,
Bt=d(At+A2+JA+α(t)A)2dt=0, | (3.104) |
Eqs (3.45) and (3.47) are satisfied. As J=A, Eq (3.46) is guaranteed. Equation (3.48) is satisfied by
btt+2Atb+(Jb+α(t)b)t | (3.105) |
=0+0+Jbt+0 | (3.106) |
=k1k2[0−211201−3−1−102−13−20][1111]=0, | (3.107) |
Eq (3.49) is satisfied by
ct−bT(bt+Ab+Jb+α(t)b) | (3.108) |
=4k22t−k2[tttt]T(k2[1111]+2k1k2[0−211201−3−1−102−13−20][tttt]) | (3.109) |
=4k22t−4k22t+0=0. | (3.110) |
We have the following solutions:
u=k2t[1111]+k1[−2x2+x3+x42x1+x3−3x4−x1−x2+2x4−x1+3x2−2x3], | (3.111) |
ρ=μ[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)]1γ | (3.112) |
=μ[−xT(bt+2Ab)−xTA2x+2k22t2]1γ | (3.113) |
=μ[−xT(k2[1111]+0)−xTk12[−62−482−1484−48−62842−14]x+2k22t2]1γ | (3.114) |
=μ[−k2(x1+x2+x3+x4)+k21(6x12+14x22+6x32+14x42−4x1x2+8x1x3−16x1x4−16x2x3−8x2x4−4x3x4)+2k22t2]1γ, | (3.115) |
S=lnμ+1γln[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)] | (3.116) |
=lnμ+1γln[−k2(x1+x2+x3+x4)+k21(6x12+10x22+6x32+14x42−4x1x2+8x1x3−16x1x4−16x2x3−8x2x4−4x3x4)+2k22t2]. | (3.117) |
Example 3.2. When α is a constant, we have the following examples.
2-dimensional Case: We take
A=−J=k1e−αt[01−10], b=k2e−αt[11], | (3.118) |
c(t)=m>0, where k1, k2, and m are arbitrary constants. Then we get a solution
u(t)=e−αt[k1x2+k2−k1x1+k2], | (3.119) |
ρ=μm1γ, | (3.120) |
S=lnμ+1γlnm. | (3.121) |
3-dimensional Case: We take
A=−J=k1e−αt[011−101−1−10], b=k2e−αt[111], | (3.122) |
c(t)=m>0, where k1, k2, and m are arbitrary constants. Then we get a solution
u(t)=e−αt[k1(x2+x3)+k2k1(x3−x1)+k2−k1(x1+x2)+k2], | (3.123) |
ρ=μm1γ, | (3.124) |
S=lnμ+1γlnm. | (3.125) |
4-dimensional Case: We take
A=−J=k1e−αt[0111−1011−1−101−1−1−10], b=k2e−αt[1111], | (3.126) |
c(t)=m>0, where k1, k2, and m are arbitrary constants. Then we get a solution
u(t)=e−αt[k1(x2+x3+x4)+k2k1(x3+x4−x1)+k2k1(x4−x1−x2)+k2−k1(x1+x2+x3)+k2], | (3.127) |
ρ=μm1γ, | (3.128) |
S=lnμ+1γlnm. | (3.129) |
N-dimensional Case: We take
A=k1e−αt[011⋯1−101⋯1−1−1⋱1⋮⋮⋱1−1−1−1⋯0], b=k2e−αt[11⋮1], | (3.130) |
J=−A, c(t)=m>0, | (3.131) |
where k1, k2, and m are arbitrary constants. Then we get a solution
ui=e−αt[k1(N∑k=i+1xk−i−1∑k=1xk)+k2], | (3.132) |
ρ=μm1γ, | (3.133) |
S=lnμ+1γlnm. | (3.134) |
Proof. Since N-dimensional case covers 2 to 4-dimensional cases, here gives the verification of N-dimensional case. (3.46) is guaranteed by J=−A, with
At=−αk1e−αt=−αA, | (3.135) |
(3.45) is satisfied. Therefore,
B=12(At+A2+JA+αA)=0, Bt=0, | (3.136) |
(3.47) is ensured. Substituting (3.130) and (3.131) into (3.48) and (3.49) produces
btt+2Atb+(Jb+α(t)b)t | (3.137) |
=α2b+2αAb+(αb−Ab)t | (3.138) |
=α2b+2αAb−α2b−2αAb=0, | (3.139) |
and
ct−bT(bt+αb+Ab+Jb) | (3.140) |
=0−bT(−αb+αb−Jb+Jb)=0. | (3.141) |
Example 3.3. (2-dimensional case) We take
A=tk1[01−10], J=(tk1−k2tk1)[0−110], b=tk1[11], c(t)=β, α(t)=−k1t, | (3.142) |
where k1<0, k2, and β are arbitrary constants. As
AJ=JA=(t2k1−k2)[1001], | (3.143) |
(3.46) is satisfied.
Denoting
Q=(qij)N×N=[01−10], w=[11], | (3.144) |
it is easy to see
At=k1tk1−1Q=−α(t)A, | (3.145) |
and,
B=A2+JA2=(A+J)A2=k22tk1QA=−k22I=BT, | (3.146) |
Bt=(−k22I)t=0, | (3.147) |
therefore, (3.47) is satisfied. Since
bt=−α(t)b,J=k2tk1Q−A, | (3.148) |
(3.48) is satisfied by
btt+2Atb+(Jb+α(t)b)t | (3.149) |
=−(α(t)b)t−2α(t)Ab+[(k2tk1Q−A)tk1w]t+(α(t)b)t | (3.150) |
=−2α(t)Ab−(Ab)t | (3.151) |
=−2α(t)Ab−Abt−Atb | (3.152) |
=−2α(t)Ab+α(t)Ab+α(t)Ab=0, | (3.153) |
(3.49) is satisfied by
ct−bT(bt+Ab+Jb+α(t)b) | (3.154) |
=0−tk1wT[k1tk1−1w+tk1Qtk1w+(k2tk1−tk1)Qtk1w−k1tk1−1w] | (3.155) |
=0−tk1wT(k2tk1Qtk1w) | (3.156) |
=−k2tk1wTQw | (3.157) |
=−k2tk1N∑i=1,j=1qij=0. | (3.158) |
Then we get a solution
u(t)=tk1[1+x21−x1], | (3.159) |
ρ=μ[k2(x12+x222−x1−x2)+β]1γ, | (3.160) |
S=lnμ+1γln[k2(x12+x222−x1−x2)+β]. | (3.161) |
Example 3.4 (3-dimensional case). We take
A=tk1[011−101−1−10], J=(tk1−k2tk1)[0−1−110−1110], b=tk1[111], c(t)=β, α(t)=−k1t, | (3.162) |
where k1<0, k2, and β are arbitrary constants. As
AJ=JA=(t2k1−k2)[21−1121−112], | (3.163) |
(3.46) is satisfied.
Denoting
Q=(qij)N×N=[011−101−1−10], w=[111], | (3.164) |
it is easy to see
At=−α(t)A, | (3.165) |
B=A2+JA2=(A+J)A2=k22tk1QA=k22Q2=BT, | (3.166) |
B=A2+JA2=k22[−2−11−1−2−11−1−2], | (3.167) |
therefore
BT=B, Bt=0, | (3.168) |
(3.47) is satisfied.
Since
bt=−α(t)b, J=k2tk1Q−A, | (3.169) |
(3.48) is satisfied by
btt+2Atb+(Jb+α(t)b)t | (3.170) |
=−(α(t)b)t−2α(t)Ab+[(k2tk1Q−A)tk1w]t+(α(t)b)t | (3.171) |
=−2α(t)Ab−(Ab)t | (3.172) |
=−2α(t)Ab−Abt−Atb | (3.173) |
=−2α(t)Ab+α(t)Ab+α(t)Ab=0, | (3.174) |
(3.49) is satisfied by
ct−bT(bt+Ab+Jb+α(t)b) | (3.175) |
=0−tk1wT[k1tk1−1w+tk1Qtk1w+(k2tk1−tk1)Qtk1w−k1tk1−1w] | (3.176) |
=0−tk1wT(k2tk1Qtk1w) | (3.177) |
=−k2tk1wTQw | (3.178) |
=−k2tk1N∑i=1,j=1qij=0. | (3.179) |
We then get a solution
u(t)=tk1[x2+x3+1x3−x1+1−x1−x2+1], | (3.180) |
ρ=μ[k2(x12+x22+x32+x1x2+x2x3−x1x3−2x1+2x3)+β]1γ, | (3.181) |
S=lnμ+1γln[k2(x12+x22+x32+x1x2+x2x3−x1x3−2x1+2x3)+β]. | (3.182) |
Remark 3.3 (N-dimensional case). We can abtain N-dimensional solutions denoting
Q=(qij)N×N=[011⋯1−101⋯1−1−1⋱1⋮⋮⋱1−1−1−1⋯0], w=[11⋮1], | (3.183) |
and taking
A=f(t)Q, J=(k1f(t)−f(t))Q, b=f(t)w, α(t)=−˙f(t)f(t), c(t)=β, | (3.184) |
where ˙f(t)f(t)≤0, k1 and β are arbitrary constants. As
AJ=JA=(k1−f(t)2)Q2, | (3.185) |
(3.46) is satisfied. It is easy to see
At=−α(t)A, | (3.186) |
B=A2+JA2=(A+J)A2=k12f(t)Qf(t)Q=k12Q2, | (3.187) |
therefore
BT=B, Bt=0, | (3.188) |
(3.47) are satisfied. Since
bt=−α(t)b, J=k1f(t)Q−A, | (3.189) |
(3.48) is satisfied by
btt+2Atb+(Jb+α(t)b)t | (3.190) |
=−(α(t)b)t−2α(t)Ab+[(k1f(t)−f(t))Qf(t)w]t+(α(t)b)t | (3.191) |
=−2α(t)Ab+(k1Qw−Ab)t | (3.192) |
=−2α(t)Ab−(Ab)t | (3.193) |
=−2α(t)Ab−Abt−Atb | (3.194) |
=−2α(t)Ab+α(t)Ab+α(t)Ab=0, | (3.195) |
(3.49) is satisfied by
ct−bT(bt+Ab+Jb+α(t)b) | (3.196) |
=0−f(t)wT[˙f(t)w+f(t)Qf(t)w+(k1f(t)−f(t))Qf(t)w−˙f(t)w] | (3.197) |
=0−f(t)wT(k1f(t)Qf(t)w) | (3.198) |
=−k1f(t)wTQw | (3.199) |
=−k1f(t)N∑i=1,j=1qij=0. | (3.200) |
In this paper, we construct the Cartesian solutions
u=b(t)+A(t)x |
for the non-isentropic Euler equations with a time-dependent linear damping and a rotational force. By constructing appropriate matices A(t) and vectors b(t), we obtain new theoretical new exact solutions, which are obtained under the requirement of entropy S=lnρ. We then invite the scientific community to provide solutions with other forms of or more general form of entropy. The global existence of the solutions remains open, while the blowup phenomena are complicated to higher dimensional cases due to the existence of many temporal variables and the multiple requirements imposed on them.
The author declares there is no interest in relation to this article.
Verification of examples on Euler equations
For simplicity, we use the same ˉp defined in (3.9), solutions of ρ and S in all dimensions are equivalent to
ρ=μˉp1γ, | (4.1) |
S=lnμ+1γlnˉp. | (4.2) |
It is clear that from the theorem (3.5) and (3.6) and can be easily verified from substitution that all solutions satisfy S=lnρ. Dividing ρ from both sides of (1.2), we rewrite the Euler equations (1.1)–(1.3) as
ρt+N∑k=1∂∂xkρuk=0, | (4.3) |
∂ui∂t+N∑k=1uk(∂ui∂xk+jik)+αui+γ+1γ∂∂xiργ=0, | (4.4) |
St+N∑k=1uk∂∂xkS=0. | (4.5) |
Example 1
For 2-dimension case: Substituting (3.76)–(3.82) and (4.1) into (4.3) produces
ρt+∂∂x1(ρu1)+∂∂x2(ρu2) | (4.6) |
=μ(ˉp1γ)t+∂∂x1(μˉp1γu1)+∂∂x2(μˉp1γu2) | (4.7) |
=μγˉp1−γγˉpt+(k2cos(k1t)+k1x2)∂∂x1μˉp1γ+(k2cos(k1t)−k1x1)∂∂x2μˉp1γ | (4.8) |
=μγˉp1−γγ[−k21k2cos(k1t)x1−k21k2sin(k1t)x2]+μγˉp1−γγ∂∂x1[ˉp(k2cos(k1t)+k1x2)]+μγˉp1−γγ∂∂x2[ˉp(k2cos(k1t)−k1x1)] | (4.9) |
=μγˉp1−γγ{−k21k2cos(k1t)x1−k21k2sin(k1t)x2+∂∂x1[k12(x12+x22)+k1k2(−sin(k1t)x1+cos(k1t)x2)](k2cos(k1t)+k1x2)+∂∂x2[k12(x12+x22)+k1k2(−sin(k1t)x1+cos(k1t)x2)](k2sin(k1t)−k1x1)} | (4.10) |
=μγˉp1−γγ[−k21k2cos(k1t)x1−k21k2sin(k1t)x2+(2k21x1−k1k2sin(k1t))(k2cos(k1t)+k1x2)+(2k21x2+k1k2cos(k1t))(k2sin(k1t)−k1x1)]=0. | (4.11) |
Substituting (3.76)–(3.82) into (4.4), the first momentum gives
∂u1∂t+u1(∂u1∂x1+j11)+u2(∂u1∂x2+j12)+αu1+γ+1γ∂∂x1ργ | (4.12) |
=−k1k2sin(k1t)+u1(0+0)+(k2sin(k1t)−k1x1)(k1+k1)+2k21x1−k1k2sin(k1t) | (4.13) |
=0, | (4.14) |
the second momentum gives
∂u2∂t+u1(∂u2∂x1+j11)+u2(∂u2∂x2+j12)+αu2+γ+1γ∂∂x2ργ | (4.15) |
=k1k2sin(k1t)+(k2cos(k1t)−k1x2)(−k1−k1)+u2(0+0)+2k21x2−k1k2cos(k1t) | (4.16) |
=0. | (4.17) |
Substituting (3.76)–(3.82) into (4.5) gives
St+u1∂∂x1S+u2∂∂x2S | (4.18) |
=1γˉp(−k21k2cos(k1t)x1−k21k2sin(k1t)x2)+1γˉp(2k21x1−k1k2sin(k1t))(k2cos(k1t)+k1x2)+1γˉp(2k21x2+k1k2cos(k1t))(k2sin(k1t)−k1x1) | (4.19) |
=1γˉp(−k21k2cos(k1t)x1−k21k2sin(k1t)x2)+1γˉp(k21k2sin(k1t)x2+k21k2cos(k1t)x1)=0. | (4.20) |
For 3-dimensional case: Substituting (3.93)–(3.99) and (4.1) into (4.3) produces
ρt+∂∂x1(ρu1)+∂∂x2(ρu2)+∂∂x3(ρu3) | (4.21) |
=μ(ˉp1γ)t+∂∂x1(μˉp1γu1)+∂∂x2(μˉp1γu2)+∂∂x3(μˉp1γu3) | (4.22) |
=μγˉp1−γγˉpt+[k2t+k1(x2−x3)]∂∂x1μˉp1γ+[k2t+k1(x3−x1)]∂∂x2μˉp1γ+[k2t+k1(x1−x2)]∂∂x3μˉp1γ | (4.23) |
=μγˉp1−γγ3k22t+μγˉp1−γγ[k2t+k1(x2−x3)]∂ˉp∂x1+μγˉp1−γγ[k2t+k1(x3−x1)]∂ˉp∂x2+μγˉp1−γγ[k2t+k1(x1−x2)]∂ˉp∂x3 | (4.24) |
=μγˉp1−γγ{3k22t+[k2t+k1(x2−x3)]∂ˉp∂x1+[k2t+k1(x3−x1)]∂ˉp∂x2+[k2t+k1(x1−x2)]∂ˉp∂x3} | (4.25) |
=μγˉp1−γγ{3k22t+[k2t+k1(x2−x3)][2k22(2x1−x2−x3)−k2]+[k2t+k1(x3−x1)][2k22(2x2−x1−x3)−k2]+[k2t+k1(x1−x2)][2k22(2x3−x1−x2)−k2]}=0. | (4.26) |
Substituting (3.93)–(3.99) into (4.4), the first momentum gives
∂u1∂t+u1(∂u1∂x1+j11)+u2(∂u1∂x2+j12)+u3(∂u1∂x3+j13)+αu1+γ+1γ∂∂x1ργ | (4.27) |
=k2+u1(0+0)+[k2t+k1(x3−x1)](k1+k1)+[k2t+k1(x1−x2)](−k1−k1)+2k21(2x1−x2−x3)−k2=0, | (4.28) |
the second momentum gives
∂u2∂t+u1(∂u2∂x1+j21)+u2(∂u2∂x2+j22)+u3(∂u2∂x3+j23)+αu2+γ+1γ∂∂x2ργ | (4.29) |
=k2+[k2t+k1(x2−x3)](−k1−k1)+u2(0+0)+[k2t+k1(x1−x2)](k1+k1)+2k21(2x2−x1−x3)−k2=0, | (4.30) |
the third momentum gives
∂u3∂t+u1(∂u3∂x1+j31)+u2(∂u3∂x2+j32)+u3(∂u3∂x3+j33)+αu3+γ+1γ∂∂x3ργ | (4.31) |
=k2+[k2t+k1(x2−x3)](k1+k1)+[k2t+k1(x3−x1)](−k1−k1)+u3(0+0)+2k21(2x3−x1−x2)−k2=0. | (4.32) |
Substituting (3.93)–(3.99) into (4.5) gives
St+u1∂∂x1S+u2∂∂x2S+u3∂∂x3S | (4.33) |
=1γˉp3k22t+[k2t+k1(x2−x3)]∂∂x1lnˉp+[k2t+k1(x3−x1)]∂∂x2lnˉp+[k2t+k1(x1−x2)]∂∂x3lnˉp | (4.34) |
=1γˉp{3k22t+[k2t+k1(x2−x3)][2k21(2x1−x2−x3)−k2]+[k2t+k1(x3−x1)][2k21(2x2−x1−x3)−k2]+[k2t+k1(x1−x2)][2k21(2x3−x1−x2)−k2]}=0. | (4.35) |
For 4-dimensional case: Substituting (3.111)–(3.117) and (4.1) into (4.3) produces
ρt+∂∂x1(ρu1)+∂∂x2(ρu2)+∂∂x3(ρu3)+∂∂x4(ρu4) | (4.36) |
=μ(ˉp1γ)t+∂∂x1(μˉp1γu1)+∂∂x2(μˉp1γu2)+∂∂x3(μˉp1γu3)+∂∂x4(μˉp1γu4) | (4.37) |
=μγˉp1−γγˉpt+[k2t+k1(−2x2+x3+x4)]∂∂x1μˉp1γ+[k2t+k1(2x1+x3−3x4)]∂∂x2μˉp1γ+[k2t+k1(−x1−x2+2x4)]∂∂x3μˉp1γ+[k2t+k1(−x1+3x2−2x3)]∂∂x4μˉp1γ | (4.38) |
=μγˉp1−γγ4k22t+μγˉp1−γγ[k2t+k1(−2x2+x3+x4)]∂ˉp∂x1+μγˉp1−γγ[k2t+k1(2x1+x3−3x4)]∂ˉp∂x2+μγˉp1−γγ[k2t+k1(−x1−x2+2x4)]∂ˉp∂x3+μγˉp1−γγ[k2t+k1(−x1+3x2−2x3)]∂ˉp∂x4 | (4.39) |
=μγˉp1−γγ{4k22t+[k2t+k1(−2x2+x3+x4)]∂ˉp∂x1+[k2t+k1(2x1+x3−3x4)]∂ˉp∂x2+[k2t+k1(−x1−x2+2x4)]∂ˉp∂x3+[k2t+k1(−x1+3x2−2x3)]∂ˉp∂x4} | (4.40) |
=μγˉp1−γγ{4k22t+[k2t+k1(−2x2+x3+x4)][−k2+k21(12x1−4x2+8x3−16x4)]+[k2t+k1(2x1+x3−3x4)][−k2+k21(28x2−4x1−16x3−8x4)]+[k2t+k1(−x1−x2+2x4)][−k2+k21(12x3+8x1−16x2−4x4)]+[k2t+k1(−x1+3x2−2x3)][−k2+k21(28x4−16x1−8x2−4x3)]}=0. | (4.41) |
Substituting (3.111)–(3.117) into (4.4), the first momentum gives
∂u1∂t+u1(∂u1∂x1+j11)+u2(∂u1∂x2+j12)+u3(∂u1∂x3+j13)+u4(∂u1∂x4+j14)+αu1+γ+1γ∂∂x1ργ | (4.42) |
=k2+u1(0+0)+[k2t+k1(2x1+x3−3x4)](−2k1−2k1)+[k2t+k1(−x1−x2+2x4)](k1+k1)+[k2t+k1(−x1+3x2−2x3)](k1+k1)−k2+k21(12x1−4x2+8x3−16x4)=0, | (4.43) |
the second momentum gives
∂u2∂t+u1(∂u2∂x1+j21)+u2(∂u2∂x2+j22)+u3(∂u2∂x3+j23)+u4(∂u2∂x4+j24)+αu2+γ+1γ∂∂x2ργ | (4.44) |
=k2+[k2t+k1(−2x2+x3+x4)](2k1+2k1)+u2(0+0)+[k2t+k1(−x1−x2+2x4)](k1+k1)+[k2t+k1(−x1+3x2−2x3)](−3k1−3k1)−k2+k21(−4x1+28x2−16x3−8x4)=0, | (4.45) |
the third momentum gives
∂u3∂t+u1(∂u3∂x1+j31)+u2(∂u3∂x2+j32)+u3(∂u3∂x3+j33)+u4(∂u3∂x4+j34)+αu3+γ+1γ∂∂x3ργ | (4.46) |
=k2+[k2t+k1(−2x2+x3+x4)](−k1−k1)+[k2t+k1(2x1+x3−3x4)](−k1−k1)+u3(0+0)+[k2t+k1(−x1+3x2−2x3)](2k1+2k1)−k2+k21(8x1−16x2+12x3−4x4)=0, | (4.47) |
the fourth momentum gives
∂u4∂t+u1(∂u4∂x1+j41)+u2(∂u4∂x2+j42)+u3(∂u4∂x3+j43)+u4(∂u4∂x4+j44)+αu4+γ+1γ∂∂x4ργ | (4.48) |
=k2+[k2t+k1(−2x2+x3+x4)](−k1−k1)+[k2t+k1(2x1+x3−3x4)](3k1+3k1)+[k2t+k1(−x1−x2+2x4)](−2k1−2k1)+u4(0+0)−k2+k21(−16x1−8x2−4x3+28x4)=0. | (4.49) |
Substituting (3.111)–(3.117) into (4.5) gives
St+u1∂∂x1S+u2∂∂x2S+u3∂∂x3S+u4∂∂x4S | (4.50) |
=ˉptγˉp+u1∂∂x1lnˉpγ+u2∂∂x2lnˉpγ+u3∂∂x3lnˉpγ+u4∂∂x4lnˉpγ | (4.51) |
=1γˉp{4k22t+[k2t+k1(−2x2+x3+x4)][−k2+k21(12x1−4x2+8x3−16x4)]+[k2t+k1(2x1+x3−3x4)][−k2+k21(28x2−4x1−16x3−8x4)]+[k2t+k1(−x1−x2+2x4)][−k2+k21(12x3+8x1−16x2−4x4)]+[k2t+k1(−x1+3x2−2x3)][−k2+k21(28x4−16x1−8x2−4x3)]}=0. | (4.52) |
Example 2
Since N-dimensional case covers 2 to 4-dimensional cases, here gives the verification of N-dimensional case. Substituting solutions into Euler equations, as S is a constant, (4.5) is guaranteed. Since ρ is also a constant, by
ρt+N∑k=1∂∂xkρuk | (4.53) |
=0+ρN∑k=1∂∂xkuk | (4.54) |
=ρe−αtN∑k=1∂∂xk[k1(N∑g=k+1xg−k−1∑g=1xg)+k2]=0, | (4.55) |
Eq (4.3) is verified.
∂ui∂xk=∂∂xke−αt[k1(N∑k=i+1xk−i−1∑k=1xk)+k2] | (4.56) |
={−k1e−αt,for k<i0,for k=ik1e−αt,for k>i}=−jik, | (4.57) |
therefore,
∂ui∂t+N∑k=1uk(∂ui∂xk+jik)+αui+γ+1γ∂∂xiργ | (4.58) |
=−αui+0+αui+0=0, | (4.59) |
the n-th momentum Eq (4.4) is satisfied.
Example 3
Substituting (3.159)–(3.161) into (4.3) produces
ρt+∂∂x1ρu1+∂∂x2ρu2 | (4.60) |
=0+μγˉp1−γγtk1(1+x2)k2(x1−1)+μγˉp1−γγtk1(1−x1)k2(x2+1)=0. | (4.61) |
Substituting (3.159)–(3.161) into (4.4) gives
∂ui∂t+u1(∂ui∂xk+ji1)+u2(∂ui∂xk+ji2)+αui+γ+1γ∂∂xiργ | (4.62) |
=u1(∂ui∂xk+ji1)+u2(∂ui∂xk+ji2)+0 | (4.63) |
=k1tk1−1[1+x11−x2]+tk1(1+x2)(tk1[0−1]+[0tk1−k2tk1])+tk1(1−x1)(tk1[10]+[−tk1+k2tk10])−k1ttk1[1+x11−x2]+[k2(x1−1)k2(x2+1)]=0. | (4.64) |
Substituting (3.159)–(3.161) into (4.5) gives
St+u1∂∂x1S+u2∂∂x2S | (4.65) |
=0+tk1(1+x2)k2(2x1−1)γˉp+tk1(1−x1)k2(2x2+1)γˉp=0. | (4.66) |
Example 4
Substituting (3.180)–(3.182) into (4.3) produces
ρt+∂∂x1ρu1+∂∂x2ρu2+∂∂x3ρu3 | (4.67) |
=0+μγˉp1−γγ[tk1(x2+x3+1)k2(2x1+x2−x3−2)+tk1(x3−x1+1)k2(2x2+x1+x3)+tk1(−x1−x2+1)k2(2x3−x1+x2+2)]=0. | (4.68) |
Substituting (3.180)–(3.182) into (4.4), since
ut=k1tk1−1=k1ttk1=−α(t)u, | (4.69) |
we have
∂ui∂t+N∑k=1uk(∂ui∂xk+jik)+αui+γ+1γ∂∂xiργ | (4.70) |
=u1(∂ui∂xk+ji1)+u2(∂ui∂xk+ji2)+u3(∂ui∂xk+ji3)+0 | (4.71) |
=tk1(x2+x3+1)(tk1[0−1−1]+[0tk1−k2tk1tk1−k2tk1])+tk1(x3−x1+1)(tk1[10−1]+[−tk1+k2tk10tk1−k2tk1])+tk1(−x1−x2+1)(tk1[110]+[−tk1+k2tk1−tk1+k2tk10]+[k2(2x1+x2−x3−2)k2(2x2+x1+x3)k2(2x3−x1+x2−2)])=0. | (4.72) |
Substituting (3.180)–(3.182) into (4.5) gives
St+u1∂∂x1S+u2∂∂x2S+u3∂∂x3S | (4.73) |
=0+1γˉp[tk1(x2+x3+1)k2(2x1+x2−x3−2)+tk1(x3−x1+1)k2(2x2+x1+x3)+tk1(−x1−x2+1)k2(2x3−x1+x2+2)]=0. | (4.74) |
[1] |
Bray F, Laversanne M, Sung H, et al. (2024) Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 74: 229-263. https://doi.org/10.3322/caac.21834 ![]() |
[2] |
Hull R, Mbele M, Makhafola T, et al. (2020) Cervical cancer in low and middle-income countries. Oncol Lett 20: 2058-2074. https://doi.org/10.3892/ol.2020.11754 ![]() |
[3] |
Ebrahimi N, Yousefi Z, Khosravi G, et al. (2023) Human papillomavirus vaccination in low- and middle-income countries: progression, barriers, and future prospective. Front Immunol 14: 1150238. https://doi.org/10.3389/fimmu.2023.1150238 ![]() |
[4] | Duncan J, Harris M, Skyers N, et al. (2021) A call for low-and middle-income countries to commit to the elimination of cervical cancer. Lancet Reg Health Am 2. https://doi.org/10.1016/j.lana.2021.100036 |
[5] |
Bruni L, Serrano B, Roura E, et al. (2022) Cervical cancer screening programmes and age-specific coverage estimates for 202 countries and territories worldwide: a review and synthetic analysis. Lancet Glob Health 10: e1115-e1127. https://doi.org/10.1016/S2214-109X(22)00241-8 ![]() |
[6] |
Srinath A, van Merode F, Rao SV, et al. (2023) Barriers to cervical cancer and breast cancer screening uptake in low- and middle-income countries: a systematic review. Health Policy Plan 38: 509-527. https://doi.org/10.1093/heapol/czac104 ![]() |
[7] |
Devarapalli P, Labani S, Nagarjuna N, et al. (2018) Barriers affecting uptake of cervical cancer screening in low and middle income countries: a systematic review. Indian J Cancer 55: 318-326. https://doi.org/10.4103/ijc.IJC_253_18 ![]() |
[8] |
Petersen Z, Jaca A, Ginindza TG, et al. (2022) Barriers to uptake of cervical cancer screening services in low-and-middle-income countries: a systematic review. BMC Womens Health 22: 486. https://doi.org/10.1186/s12905-022-02043-y ![]() |
[9] | World Health OrganizationGlobal strategy to accelerate the elimination of cervical cancer as a public health problem (2020). |
[10] |
Giordano L, Bisanti L, Salamina G, et al. (2016) The EUROMED CANCER network: state-of-art of cancer screening programmes in non-EU Mediterranean countries. Eur J Public Health 26: 83-89. https://doi.org/10.1093/eurpub/ckv107 ![]() |
[11] | Union for the MediterraneanThe WoRTH project: women's right to health. Available from: https://ufmsecretariat.org/project/womens-right-to-health-the-worth-project |
[12] |
Tavasoli SM, Pefoyo AJ, Hader J, et al. (2016) Impact of invitation and reminder letters on cervical cancer screening participation rates in an organized screening program. Prev Med 88: 230-236. https://doi.org/10.1016/j.ypmed.2016.04.019 ![]() |
[13] |
Camilloni L, Ferroni E, Cendales BJ, et al. (2013) Methods to increase participation in organised screening programs: a systematic review. BMC Public Health 13: 1-16. https://doi.org/10.1186/1471-2458-13-464 ![]() |
[14] | Staley H, Shiraz A, Shreeve N, et al. (2021) Interventions targeted at women to encourage the uptake of cervical screening. Cochrane Database Syst Rev 9: CD002834. https://doi.org/10.1002/14651858.CD002834.pub3 |
[15] |
Antinyan A, Bertoni M, Corazzini L (2021) Cervical cancer screening invitations in low and middle income countries: evidence from Armenia. Soc Sci Med 273: 113739. https://doi.org/10.1016/j.socscimed.2021.113739 ![]() |
[16] |
Devi S, Joshi S (2023) The effect of multimodal interventions regarding early cervical cancer diagnosis on the women's knowledge, attitude and participation in cervical screening program. Asian Pac J Cancer Prev 24: 3949-3956. https://doi.org/10.31557/APJCP.2023.24.11.3949 ![]() |
[17] |
Decker KM, Turner D, Demers AA, et al. (2013) Evaluating the effectiveness of cervical cancer screening invitation letters. J Womens Health 22: 687-693. https://doi.org/10.1089/jwh.2012.4203 ![]() |
[18] |
Rees I, Jones D, Chen H, et al. (2018) Interventions to improve the uptake of cervical cancer screening among lower socioeconomic groups: a systematic review. Prev Med J 111: 323-335. https://doi.org/10.1016/j.ypmed.2017.11.019 ![]() |
[19] |
Vale DB, Teixeira JC, Bragança JF, et al. (2021) Elimination of cervical cancer in low- and middle-income countries: inequality of access and fragile healthcare systems. Int J Gynaecol Obstet 152: 7-11. https://doi.org/10.1002/ijgo.13458 ![]() |
[20] |
Orwat J, Caputo N, Key W, et al. (2017) Comparing rural and urban cervical and breast cancer screening rates in a privately insured population. Soc Work Public Health 32: 311-323. https://doi.org/10.1080/19371918.2017.1289872 ![]() |
[21] |
Diendéré J, Kiemtoré S, Coulibaly A, et al. (2023) Low attendance in cervical cancer screening, geographical disparities and sociodemographic determinants of screening uptake among adult women in Burkina Faso: results from the first nationwide population-based survey. Rev Epidemiol Sante 71: 101845. https://doi.org/10.1016/j.respe.2023.101845 ![]() |
[22] |
Donovan J, O'Donovan C, Nagraj S (2019) The role of community health workers in cervical cancer screening in low-income and middle-income countries: a systematic scoping review of the literature. BMJ Glob Health 4: e001452. https://doi.org/10.1136/bmjgh-2019-001452 ![]() |
[23] |
Darj E, Chalise P, Shakya S (2019) Barriers and facilitators to cervical cancer screening in Nepal: a qualitative study. Sex Reprod Healthc 20: 20-26. https://doi.org/10.1016/j.srhc.2019.02.001 ![]() |
[24] |
Black E, Hyslop F, Richmond R (2019) Barriers and facilitators to uptake of cervical cancer screening among women in Uganda: a systematic review. BMC Womens Health 19: 108. https://doi.org/10.1186/s12905-019-0809-z ![]() |
[25] |
Liebermann EJ, VanDevanter N, Shirazian T, et al. (2020) Barriers to cervical cancer screening and treatment in the Dominican Republic: perspectives of focus group participants in the Santo Domingo area. J Transcult Nurs 31: 121-127. https://doi.org/10.1177/1043659619846247 ![]() |
[26] |
Zhang M, Sit JWH, Chan DNS, et al. (2022) Educational interventions to promote cervical cancer screening among rural populations: a systematic review. Int J Environ Res Public Health 19: 6874. https://doi.org/10.3390/ijerph19116874 ![]() |
[27] |
Zhang D, Advani S, Waller J, et al. (2020) Mobile technologies and cervical cancer screening in low- and middle-income countries: a systematic review. JCO Glob Oncol 6: 617-627. https://doi.org/10.1200/JGO.19.00201 ![]() |
[28] |
Uy C, Lopez J, Trinh-Shevrin C, et al. (2017) Text messaging interventions on cancer screening rates: a systematic review. J Med Internet Res 19: e296. https://doi.org/10.2196/jmir.7893 ![]() |