Processing math: 100%
Review

Update on management of acute respiratory distress syndrome

  • Acute respiratory distress syndrome (ARDS) is a frequent and life-threatening condition in intensive care units (ICUs). Management of ARDS remains challenging despite years of research. Morbidity and mortality are not only caused by the syndrome itself but can also be the result of ventilator-induced lung injury. In this article, an update on ARDS management including ventilator strategies, rescue therapies, pharmacological treatments, ICU supportive care, and rehabilitation is proposed. While lung protective ventilation remains the standard option for patients with ARDS, neuromuscular blockade and prone positioning are gaining support after successful trials. Helmet non-invasive ventilation and high-flow nasal cannula might be useful for mild-to-moderate ARDS. Extracorporeal membrane oxygenation and carbon dioxide removal are not recommended in standard practice although they might be useful in severe ARDS.

    Citation: Ka-man Fong, Shek-yin Au, Ka-lee Lily Chan, Wing-yiu George Ng. Update on management of acute respiratory distress syndrome[J]. AIMS Medical Science, 2018, 5(2): 145-161. doi: 10.3934/medsci.2018.2.145

    Related Papers:

    [1] Rajalakshmi Manoharan, Reenu Rani, Ali Moussaoui . Predator-prey dynamics with refuge, alternate food, and harvesting strategies in a patchy habitat. Mathematical Biosciences and Engineering, 2025, 22(4): 810-845. doi: 10.3934/mbe.2025029
    [2] Fang Liu, Yanfei Du . Spatiotemporal dynamics of a diffusive predator-prey model with delay and Allee effect in predator. Mathematical Biosciences and Engineering, 2023, 20(11): 19372-19400. doi: 10.3934/mbe.2023857
    [3] Hongqiuxue Wu, Zhong Li, Mengxin He . Dynamic analysis of a Leslie-Gower predator-prey model with the fear effect and nonlinear harvesting. Mathematical Biosciences and Engineering, 2023, 20(10): 18592-18629. doi: 10.3934/mbe.2023825
    [4] Xin-You Meng, Yu-Qian Wu . Bifurcation analysis in a singular Beddington-DeAngelis predator-prey model with two delays and nonlinear predator harvesting. Mathematical Biosciences and Engineering, 2019, 16(4): 2668-2696. doi: 10.3934/mbe.2019133
    [5] Ting Yu, Qinglong Wang, Shuqi Zhai . Exploration on dynamics in a ratio-dependent predator-prey bioeconomic model with time delay and additional food supply. Mathematical Biosciences and Engineering, 2023, 20(8): 15094-15119. doi: 10.3934/mbe.2023676
    [6] Sourav Kumar Sasmal, Jeet Banerjee, Yasuhiro Takeuchi . Dynamics and spatio-temporal patterns in a prey–predator system with aposematic prey. Mathematical Biosciences and Engineering, 2019, 16(5): 3864-3884. doi: 10.3934/mbe.2019191
    [7] Yuanfu Shao . Bifurcations of a delayed predator-prey system with fear, refuge for prey and additional food for predator. Mathematical Biosciences and Engineering, 2023, 20(4): 7429-7452. doi: 10.3934/mbe.2023322
    [8] Rongjie Yu, Hengguo Yu, Chuanjun Dai, Zengling Ma, Qi Wang, Min Zhao . Bifurcation analysis of Leslie-Gower predator-prey system with harvesting and fear effect. Mathematical Biosciences and Engineering, 2023, 20(10): 18267-18300. doi: 10.3934/mbe.2023812
    [9] Christian Cortés García, Jasmidt Vera Cuenca . Impact of alternative food on predator diet in a Leslie-Gower model with prey refuge and Holling Ⅱ functional response. Mathematical Biosciences and Engineering, 2023, 20(8): 13681-13703. doi: 10.3934/mbe.2023610
    [10] Manoj K. Singh, Brajesh K. Singh, Poonam, Carlo Cattani . Under nonlinear prey-harvesting, effect of strong Allee effect on the dynamics of a modified Leslie-Gower predator-prey model. Mathematical Biosciences and Engineering, 2023, 20(6): 9625-9644. doi: 10.3934/mbe.2023422
  • Acute respiratory distress syndrome (ARDS) is a frequent and life-threatening condition in intensive care units (ICUs). Management of ARDS remains challenging despite years of research. Morbidity and mortality are not only caused by the syndrome itself but can also be the result of ventilator-induced lung injury. In this article, an update on ARDS management including ventilator strategies, rescue therapies, pharmacological treatments, ICU supportive care, and rehabilitation is proposed. While lung protective ventilation remains the standard option for patients with ARDS, neuromuscular blockade and prone positioning are gaining support after successful trials. Helmet non-invasive ventilation and high-flow nasal cannula might be useful for mild-to-moderate ARDS. Extracorporeal membrane oxygenation and carbon dioxide removal are not recommended in standard practice although they might be useful in severe ARDS.


    Time inconsistency in dynamic decision making is often observed in social systems and daily life. Motivated by practical applications, especially in mathematical economics and finance, time-inconsistency control problems have recently attracted considerable research interest and efforts attempting to seek equilibrium, instead of optimal controls. At a conceptual level, the idea is that a decision made by the controller at every instant of time is considered as a game against all the decisions made by the future incarnations of the controller. An "equilibrium" control is therefore one such that any deviation from it at any time instant will be worse off. The study on time inconsistency by economists can be dated back to Stroz [1] and Phelps [2,3] in models with discrete time (see [4] and [5] for further developments), and adapted by Karp [6,7], and by Ekeland and Lazrak [8,9,10,11,12,13] to the case of continuous time. In the LQ control problems, Yong [14] studied a time-inconsistent deterministic model and derived equilibrium controls via some integral equations.

    It is natural to study time inconsistency in the stochastic models. Ekeland and Pirvu [15] studied the non-exponential discounting which leads to time inconsistency in an agent's investment-consumption policies in a Merton model. Grenadier and Wang [16] also studied the hyperbolic discounting problem in an optimal stopping model. In a Markovian systems, Björk and Murgoci [17] proposed a definition of a general stochastic control problem with time inconsistent terms, and proposed some sufficient condition for a control to be solution by a system of integro-differential equations. They constructed some solutions for some examples including an LQ one, but it looks very hard to find not-to-harsh condition on parameters to ensure the existence of a solution. Björk, Murgoci and Zhou [18] also constructed an equilibrium for a mean-variance portfolio selection with state-dependent risk aversion. Basak and Chabakauri [19] studied the mean-variance portfolio selection problem and got more details on the constructed solution. Hu, Jin and Zhou [20,21] studied the general LQ control problem with time inconsistent terms in a non-Markovian system and constructed an unique equilibrium for quite general LQ control problem, including a non-Markovian system.

    To the best of our knowledge, most of the time-inconsistent problems are associated with the control problems though we use the game formulation to define its equilibrium. In the problems of game theory, the literatures about time inconsistency is little [22,23]. However, the definitions of equilibrium strategies in the above two papers are based on some corresponding control problems like before. In this paper, we formulate a general stochastic LQ differential game, where the objective functional of each player include both a quadratic term of the expected state and a state-dependent term. These non-standard terms each introduces time inconsistency into the problem in somewhat different ways. We define our equilibrium via open-loop controls. Then we derive a general sufficient condition for equilibrium strategies through a system of forward-backward stochastic differential equations (FBSDEs). An intriguing feature of these FBSDEs is that a time parameter is involved; so these form a flow of FBSDEs. When the state process is scalar valued and all the coefficients are deterministic functions of time, we are able to reduce this flow of FBSDEs into several Riccati-like ODEs. Comparing to the ODEs in [20], though the state process is scalar valued, the unknowns are matrix-valued because of two players. Therefore, such ODEs are harder to solve than those of [20]. Under some more stronger conditions, we obtain explicitly an equilibrium strategy, which turns out to be a linear feedback. We also prove that the equilibrium strategy we obtained is unique.

    The rest of the paper is organized as follows. The next section is devoted to the formulation of our problem and the definition of equilibrium strategy. In Section 3, we apply the spike variation technique to derive a flow of FBSEDs and a sufficient condition of equilibrium strategies. Based on this general results, we solve in Section 4 the case when the state is one dimensional and all the coefficients are deterministic. The uniqueness of such equilibrium strategy is also proved in this section.

    Let $ T > 0 $ be the end of a finite time horizon, and let $ (W_t)_{0\le t\le{T}} = (W_t^1, ..., W_t^d)_{0\le t\le{T}} $ be a $ d $-dimensional Brownian motion on a probability space $ (\Omega, \mathcal{F}, \mathbb{P}) $. Denote by $ (\mathcal{F}_t) $ the augmented filtration generated by $ (W_t) $.

    Let $ \mathbb{S}^n $ be the set of symmetric $ n\times n $ real matrices; $ L_{\mathcal{F}}^2(\Omega, \mathbb{R}^l) $ be the set of square-integrable random variables; $ L_{\mathcal{F}}^2(t, T;\mathbb{R}^n) $ be the set of $ \{\mathcal{F}_s\}_{s\in[t, T]} $-adapted square-integrable processes; and $ L_{\mathcal{F}}^2(\Omega; C(t, T;\mathbb{R}^n)) $ be the set of continuous $ \{\mathcal{F}_s\}_{s\in[t, T]} $-adapted square-integrable processes.

    We consider a continuous-time, $ n $-dimensional nonhomogeneous linear controlled system:

    $ dX_s = [A_sX_s+B_{1,s}'u_{1,s}+B_{2,s}'u_{2,s}+b_s]ds+\sum\limits_{j = 1}^d[C_s^jX_s+D_{1,s}^ju_{1,s}+D_{2,s}^ju_{2,s}+\sigma_s^j]dW_s^j, \\ X_0 = x_0. $ (2.1)

    Here $ A $ is a bounded deterministic function on $ [0, T] $ with value in $ \mathbb{R}^{n\times n} $. The other parameters $ B_1, B_2, C, D_1, D_2 $ are all essentially bounded adapted processes on $ [0, T] $ with values in $ \mathbb{R}^{l\times n}, \mathbb{R}^{l\times n}, \mathbb{R}^{n\times n}, \mathbb{R}^{n\times l}, \mathbb{R}^{n\times l} $, respectively; $ b $ and $ \sigma^j $ are stochastic processes in $ L^2_{\mathcal{F}}(0, T;\mathbb{R}^n) $. The processes $ u_i\in L^2_{\mathcal{F}}(0, T;\mathbb{R}^l), \ i = 1, 2 $ are the controls, and $ X $ is the state process valued in $ \mathbb{R}^{n} $. Finally, $ x_0\in\mathbb{R}^{n} $ is the initial state. It is obvious that for any controls $ u_i\in L^2_{\mathcal{F}}(0, T;\mathbb{R}^l), \ i = 1, 2 $, there exists a unique solution $ X\in L^2_{\mathcal{F}}(\Omega, C(0, T;\mathbb{R}^n)) $.

    As time evolves, we need to consider the controlled system starting from time $ t\in[0, T] $ and state $ x_t\in L^2_{\mathcal{F}_t}(\Omega; \mathbb{R}^n) $:

    $ dX_s = [A_sX_s+B_{1,s}'u_{1,s}+B_{2,s}'u_{2,s}+b_s]ds+\sum\limits_{j = 1}^d[C_s^jX_s+D_{1,s}^ju_{1,s}+D_{2,s}^ju_{2,s}+\sigma_s^j]dW_s^j, \\ X_t = x_t. $ (2.2)

    For any controls $ u_i\in L^2_{\mathcal{F}}(0, T;\mathbb{R}^l), \ i = 1, 2 $, there exists a unique solution $ X^{t, x_t, u_1, u_2}\in L^2_{\mathcal{F}}(\Omega, C(0, T;\mathbb{R}^n)) $.

    We consider a two-person differential game problem. At any time $ t $ with the system state $ X_t = x_t $, the $ i $-th ($ i = 1, 2 $) person's aim is to minimize her cost (if maximize, we can times the following function by $ -1 $):

    $ Ji(t,xt;u1,u2)=12EtTt[Qi,sXs,Xs+Ri,sui,s,ui,s]ds+12Et[GiXT,XT]12hiEt[XT],Et[XT]λixt+μi,Et[XT]
    $
    (2.3)

    over $ u_1, u_2\in L_{\mathcal{F}}^2(t, T;\mathbb{R}^l) $, where $ X = X^{t, x_t, u_1, u_2} $, and $ \mathbb{E}_t[\cdot] = \mathbb{E}[\cdot|\mathcal{F}_t] $. Here, for $ i = 1, 2 $, $ Q_i $ and $ R_i $ are both given essentially bounded adapted process on $ [0, T] $ with values in $ \mathbb{S}^n $ and $ \mathbb{S}^l $, respectively, $ G_i, h_i, \lambda_i, \mu_i $ are all constants in $ \mathbb{S}^n $, $ \mathbb{S}^n $, $ \mathbb{R}^{n\times n} $ and $ \mathbb{R}^n $, respectively. Furthermore, we assume that $ Q_i, R_i $ are non-negative definite almost surely and $ G_i $ are non-negative definite.

    Given a control pair $ (u_1^*, u_2^*) $. For any $ t\in[0, T), \epsilon > 0 $, and $ v_1, v_2\in L_{\mathcal{F}_t}^2(\Omega, \mathbb{R}^l) $, define

    $ ut,ϵ,vii,s=ui,s+vi1s[t,t+ϵ),s[t,T], i=1,2.
    $
    (2.4)

    Because each person at time $ t > 0 $ wants to minimize his/her cost as we claimed before, we have

    Definition 2.1. Let $ (u_1^*, u_2^*)\in L_{\mathcal{F}}^2(0, T;\mathbb{R}^l)\times L_{\mathcal{F}}^2(0, T;\mathbb{R}^l) $ be a given strategy pair, and let $ X^* $ be the state process corresponding to $ (u_1^*, u_2^*) $. The strategy pair $ (u_1^*, u_2^*) $ is called an equilibrium if

    $ limϵ0J1(t,Xt;ut,ϵ,v11,u2)J1(t,Xt;u1,u2)ϵ0,
    $
    (2.5)
    $ limϵ0J2(t,Xt;u1,ut,ϵ,v22)J2(t,Xt;u1,u2)ϵ0,
    $
    (2.6)

    where $ u_i^{t, \epsilon, v_i}, i = 1, 2 $ are defined by (2.4), for any $ t\in[0, T) $ and $ v_1, v_2\in L_{\mathcal{F}_t}^2(\Omega, \mathbb{R}^l) $.

    Remark. The above definition means that, in each time $ t $, the equilibrium is a static Nash equilibrium in a corresponding game.

    Let $ (u_1^*, u_2^*) $ be a fixed strategy pair, and let $ X^* $ be the corresponding state process. For any $ t\in[0, T) $, as a similar arguments of Theorem 5.1 in pp. 309 of [24], defined in the time interval $ [t, T] $, there exist adapted processes $ (p_i(\cdot; t), (k_i^j(\cdot; t)_{j = 1, 2, ..., d}))\in L_{\mathcal{F}}^2(t, T;\mathbb{R}^n)\times(L_{\mathcal{F}}^2(t, T;\mathbb{R}^n))^d $ and $ (P_i(\cdot; t), (K_i^j(\cdot; t)_{j = 1, 2, ..., d}))\in L_{\mathcal{F}}^2(t, T;\mathbb{S}^n)\times(L_{\mathcal{F}}^2(t, T;\mathbb{S}^n))^d $ for $ i = 1, 2 $ satisfying the following equations:

    $ {dpi(s;t)=[Aspi(s;t)+dj=1(Cjs)kji(s;t)+Qi,sXs]ds+dj=1kji(s;t)dWjs,s[t,T],pi(T;t)=GiXThiEt[XT]λiXtμi,
    $
    (3.1)
    $ {dPi(s;t)={AsPi(s;t)+Pi(s;t)As+Qi,s+dj=1[(Cjs)Pi(s;t)Cjs+(Cjs)Kji(s;t)+Kji(s;t)Cjs]}ds+dj=1Kji(s;t)dWji,s[t,T],Pi(T;t)=Gi,
    $
    (3.2)

    for $ i = 1, 2 $. From the assumption that $ Q_i $ and $ G_i $ are non-negative definite, it follows that $ P_i(s; t) $ are non-negative definite for $ i = 1, 2 $.

    Proposition 1. For any $ t\in[0, T), \epsilon > 0 $, and $ v_1, v_2\in L_{\mathcal{F}_t}^2(\Omega, \mathbb{R}^l) $, define $ u_i^{t, \epsilon, v_i}, i = 1, 2 $ by (2.4). Then

    $ J1(t,Xt;ut,ϵ,v11,u2)J1(t,Xt;u1,u2)=Ett+ϵt{Λ1(s;t),v1+12H1(s;t)v1,v1}ds+o(ϵ),
    $
    (3.3)
    $ J2(t,Xt;u1,ut,ϵ,v22)J2(t,Xt;u1,u2)=Ett+ϵt{Λ2(s;t),v2+12H2(s;t)v2,v2}ds+o(ϵ),
    $
    (3.4)

    where $ \Lambda_i(s; t) = B_{i, s}p_i(s; t)+\sum_{j = 1}^d(D_{i, s}^j)'k_i^j(s; t)+R_{i, s}u_{i, s}^* $ and $ H_i(s; t) = R_{i, s}+\sum_{j = 1}^d(D_{i, s}^j)'P_i(s; t)D_{i, s}^j $ for $ i = 1, 2 $.

    Proof. Let $ X^{t, \epsilon, v_1, v_2} $ be the state process corresponding to $ u_i^{t, \epsilon, v_i}, i = 1, 2 $. Then by standard perturbation approach (cf. [20,25] or pp. 126-128 of [24]), we have

    $ Xt,ϵ,v1,v2s=Xs+Yt,ϵ,v1,v2s+Zt,ϵ,v1,v2s,s[t,T],
    $
    (3.5)

    where $ Y\equiv Y^{t, \epsilon, v_1, v_2} $ and $ Z\equiv Z^{t, \epsilon, v_1, v_2} $ satisfy

    $ {dYs=AsYsds+dj=1[CjsYs+Dj1,sv11s[t,t+ϵ)+Dj2,sv21s[t,t+ϵ)]dWjs,s[t,T],Yt=0,
    $
    (3.6)
    $ {dZs=[AsZs+B1,sv11s[t,t+ϵ)+B2,sv21s[t,t+ϵ)]ds+dj=1CjsZsdWjs,s[t,T],Zt=0.
    $
    (3.7)

    Moreover, by Theorem 4.4 in [24], we have

    $ Et[sups[t,T)|Ys|2]=O(ϵ),Et[sups[t,T)|Zs|2]=O(ϵ2).
    $
    (3.8)

    With $ A $ being deterministic, it follows from the dynamics of $ Y $ that, for any $ s\in[t, T] $, we have

    $ Et[Ys]=stEt[AsYτ]dτ=stAsEt[Yτ]dτ.
    $
    (3.9)

    Hence we conclude that

    $ Et[Ys]=0s[t,T].
    $
    (3.10)

    By these estimates, we can calculate

    $ Ji(t,Xt;ut,ϵ,v11,ut,ϵ,v22)Ji(t,Xt;u1,u2)=12EtTt[<Qi,s(2Xs+Ys+Zs),Ys+Zs>+<Ri,s(2ui+vi),vi>1s[t,t+ϵ)]ds+Et[<GiXT,YT+ZT>]+12Et[<Gi(YT+ZT),YT+ZT>]<hiEt[XT]+λiXt+μi,Et[YT+ZT]>12<hiEt[YT+ZT],Et[YT+ZT]>=12EtTt[<Qi,s(2Xs+Ys+Zs),Ys+Zs>+<Ri,s(2ui+vi),vi>1s[t,t+ϵ)]ds+Et[<GiXThiEt[XT]λiXtμi,YT+ZT>+12<Gi(YT+ZT),YT+ZT>]+o(ϵ).
    $
    (3.11)

    Recalling that $ (p_i(\cdot; t), k_i(\cdot; t)) $ and $ (P_i(\cdot; t), K_i(\cdot; t)) $ solve, respectively, BSDEs (3.1) and (3.2) for $ i = 1, 2 $, we have

    $ Et[<GiXThiEt[XT]λiXtμi,YT+ZT>]=Et[<pi(T;t),YT+ZT>]=Et[Ttd<pi(s;t),Ys+Zs>]=EtTt[<pi(s;t),As(Ys+Zs)+B1,sv11s[t,t+ϵ)+B2,sv21s[t,t+ϵ)><Aspi(s;t)+dj=1(Cjs)kji(s;t)+Qi,sXs,Ys+Zs>+dj=1<kji(s;t),Cjs(Ys+Zs)+Dj1,sv11s[t,t+ϵ)+Dj2,sv21s[t,t+ϵ)>]ds=EtTt[<Qi,sXs>+B1,spi(s;t)+dj=1(Dj1,s)kji(s;t),v11s[t,t+ϵ)+B2,spi(s;t)+dj=1(Dj2,s)kji(s;t),v21s[t,t+ϵ)]ds
    $
    (3.12)

    and

    $ Et[12<Gi(YT+ZT),YT+ZT>]=Et[12<Pi(T;t)(YT+ZT),YT+ZT>]=Et[Ttd<Pi(s;t)(Ys+Zs),Ys+Zs>]=EtTt{<Pi(s;t)(Ys+Zs),As(Ys+Zs)+B1,sv11s[t,t+ϵ)+B2,sv21s[t,t+ϵ)>+<Pi(s;t)[As(Ys+Zs)+B1,sv11s[t,t+ϵ)+B2,sv21s[t,t+ϵ)],Ys+Zs><[AsPi(s;t)+Pi(s;t)As+Qi,s+dj=1((Cjs)Pi(s;t)Cjs+(Cjs)Kji(s;t)+Kji(s;t)Cjs)](Ys+Zs),Ys+Zs>+dj=1<Kji(s;t)(Ys+Zs),Cjs(Ys+Zs)+Dj1,sv11s[t,t+ϵ)+Dj2,sv21s[t,t+ϵ)>+dj=1<Kji(s;t)[Cjs(Ys+Zs)+Dj1,sv11s[t,t+ϵ)+Dj2,sv21s[t,t+ϵ)],Ys+Zs>+dj=1<Pi(s;t)[Cjs(Ys+Zs)+Dj1,sv11s[t,t+ϵ)+Dj2,sv21s[t,t+ϵ)],Cjs(Ys+Zs)+Dj1,sv11s[t,t+ϵ)+Dj2,sv21s[t,t+ϵ)>}ds=EtTt[<Qi,s(Ys+Zs),Ys+Zs>+dj=1<Pi(s;t)[Dj1,sv1+Dj2,sv2],Dj1,sv1+Dj2,sv2>1s[t,t+ϵ)]ds+o(ϵ)
    $
    (3.13)

    Combining (3.11)-(3.13), we have

    $ Ji(t,Xt;ut,ϵ,v11,ut,ϵ,v22)Ji(t,Xt;u1,u2)=EtTt[12<Ri,s(2ui+vi),vi>1s[t,t+ϵ)+B1,spi(s;t)+dj=1(Dj1,s)kji(s;t),v11s[t,t+ϵ)+B2,spi(s;t)+dj=1(Dj2,s)kji(s;t),v21s[t,t+ϵ)+12dj=1<Pi(s;t)[Dj1,sv1+Dj2,sv2],Dj1,sv1+Dj2,sv2>1s[t,t+ϵ)]ds+o(ϵ).
    $
    (3.14)

    Take $ i = 1 $, we let $ v_2 = 0 $, then $ u_2^{t, \epsilon, v_2} = u_2^* $, from (3.14), we obtain

    $ J1(t,Xt;ut,ϵ,v11,u2)J1(t,Xt;u1,u2)=EtTt{R1,su1+B1,sp1(s;t)+dj=1(Dj1,s)kj1(s;t),v11s[t,t+ϵ)+12[R1,s+dj=1(Dj1,s)P1(s;t)Dj1,s]v1,v1}ds=Ett+ϵt{<Λ1(s;t),v1>+12<H1(s;t)v1,v1>}ds+o(ϵ).
    $
    (3.15)

    This proves (3.3), and similarly, we obtain (3.4).

    Because of $ R_{i, s} $ and $ P_i(s; t), i = 1, 2 $ are non-negative definite, $ H_i(s; t), \ i = 1, 2 $ are also non-negative definite. In view of (3.3)-(3.4), a sufficient condition for an equilibrium is

    $ EtTt|Λi(s;t)|ds<+,limstEt[Λi(s;t)]=0 a.s. t[0,T],i=1,2.
    $
    (3.16)

    By an arguments similar to the proof of Proposition 3.3 in [21], we have the following lemma:

    Lemma 3.1. For any triple of state and control processes $ (X^*, u_1^*, u_2^*) $, the solution to BSDE (3.1) in $ L^2(0, T;\mathbb{R}^n)\times (L^2(0, T;\mathbb{R}^n))^d $ satisfies $ k_i(s; t_1) = k_i(s; t_2) $ for a.e. $ s\ge\max\{t_1, t_2\}, \; i = 1, 2 $. Furthermore, there exist $ \rho_i\in L^2(0, T;\mathbb{R}^l) $, $ \delta_i\in L^2(0, T;\mathbb{R}^{l\times n}) $ and $ \xi_i\in L^2(\Omega; C(0, T;\mathbb{R}^n)) $, such that

    $ Λi(s;t)=ρi(s)+δi(s)ξi(t),i=1,2.
    $
    (3.17)

    Therefore, we have another characterization for equilibrium strategies:

    Proposition 2. Given a strategy pair $ (u_1^*, u_2^*)\in L^2(0, T;\mathbb{R}^l)\times L^2(0, T;\mathbb{R}^l) $. Denote $ X^* $ as the state process, and $ (p_i(\cdot; t), (k_i^j(\cdot; t)_{j = 1, 2, ..., d}))\in L_{\mathcal{F}}^2(t, T;\mathbb{R}^n)\times(L_{\mathcal{F}}^2(t, T;\mathbb{R}^n))^d $ as the unique solution for the BSDE (3.1), with $ k_i(s) = k_i(s; t) $ according to Lemma 3.1 for $ i = 1, 2 $ respectively. For $ i = 1, 2 $, letting

    $ Λi(s,t)=Bi,spi(s;t)+dj=1(Dj,s)k(s;t)j+Ri,sui,s,s[t,T],
    $
    (3.18)

    then $ u^* $ is an equilibrium strategy if and only if

    $ Λi(t,t)=0,a.s.,a.e.t[0,T],i=1,2.
    $
    (3.19)

    Proof. From (3.17), we have $ \Lambda_1(s; t) = \rho_1(s)+\delta_1(s)\xi_1(t) $. Since $ \delta_1 $ is essentially bounded and $ \xi_1 $ is continuous, we have

    $ \lim\limits_{\epsilon\downarrow0}\mathbb{E}_t\left[{1\over\epsilon}\int_t^{t+\epsilon}|\delta_1(s)(\xi_1(s)-\xi_1(t))|ds\right] \le c\lim\limits_{\epsilon\downarrow0}{1\over\epsilon}\int_t^{t+\epsilon}\mathbb{E}_t[|\xi_1(s)-\xi_1(t)|]ds = 0, $

    and hence

    $ \lim\limits_{\epsilon\downarrow0}{1\over\epsilon}\int_t^{t+\epsilon}\mathbb{E}_t[\Lambda_1(s;t)]ds = \lim\limits_{\epsilon\downarrow0}{1\over\epsilon}\int_t^{t+\epsilon}\mathbb{E}_t[\Lambda_1(s;s)]ds. $

    Therefore, if (3.19) holds, we have

    $ \lim\limits_{\epsilon\downarrow0}{1\over\epsilon}\int_t^{t+\epsilon}\mathbb{E}_t[\Lambda_1(s;t)]ds = \lim\limits_{\epsilon\downarrow0}{1\over\epsilon}\int_t^{t+\epsilon}\mathbb{E}_t[\Lambda_1(s;s)]ds = 0. $

    When $ i = 2 $, we can prove (3.19) similarly.

    Conversely, if (3.16) holds, then $ \lim_{\epsilon\downarrow0}{1\over\epsilon}\int_t^{t+\epsilon}\mathbb{E}_t[\Lambda_i(s; s)]ds = 0, i = 1, 2 $ leading to (3.19) by virtue of Lemma 3.4 of [21].

    The following is the main general result for the stochastic LQ differential game with time-inconsistency.

    Theorem 3.2. A strategy pair $ (u_1^*, u_2^*)\in L_{\mathcal{F}}^2(0, T;\mathbb{R}^l)\times L_{\mathcal{F}}^2(0, T;\mathbb{R}^l) $ is an equilibrium strategy pair if the following two conditions hold for any time $ t $:

    (i) The system of SDEs

    $ {dXs=[AsXs+B1,su1,s+B2,su2,s+bs]ds+dj=1[CjsXs+Dj1,su1,s+Dj2,su2,s+σjs]dWjs,X0=x0,dp1(s;t)=[Asp1(s;t)+dj=1(Cjs)kj1(s;t)+Q1,sXs]ds+dj=1kj1(s;t)dWjs,s[t,T],p1(T;t)=G1XTh1Et[XT]λ1Xtμ1,dp2(s;t)=[Asp2(s;t)+dj=1(Cjs)kj2(s;t)+Q2,sXs]ds+dj=1kj2(s;t)dWjs,s[t,T],p2(T;t)=G2XTh2Et[XT]λ2Xtμ2,
    $
    (3.20)

    admits a solution $ (X^*, p_1, k_1, p_2, k_2) $;

    (ii) $ \Lambda_i(s; t) = R_{i, s}u_{i, s}^*+B_{i, s}p_i(s; t)+\sum_{j = 1}^d(D_{i, s}^j)'k_i^j(s; t), i = 1, 2 $ satisfy condition (3.19).

    Proof. Given a strategy pair $ (u_1^*, u_2^*)\in L_{\mathcal{F}}^2(0, T;\mathbb{R}^l)\times L_{\mathcal{F}}^2(0, T;\mathbb{R}^l) $ satisfying (i) and (ii), then for any $ v_1, v_2\in L_{\mathcal{F}_t}^2(\Omega, \mathbb{R}^l) $, define $ \Lambda_i, H_i, i = 1, 2 $ as in Proposition 1. We have

    $ limϵ0J1(t,Xt;ut,ϵ,v11,u2)J1(t,Xt;u1,u2)ϵ=limϵ0Ett+ϵt{<Λ1(s;t),v1>+12<H1(s;t)v1,v1>}dsϵlimϵ0Ett+ϵt<Λ1(s;t),v1>dsϵ=0,
    $
    (3.21)

    proving the first condition of Definition 2.1, and the proof of the second condition is similar.

    Theorem 3.2 involve the existence of solutions to a flow of FBSDEs along with other conditions. The system (3.20) is more complicated than system (3.6) in [20]. As declared in [20], "proving the general existence for this type of FBSEs remains an outstanding open problem", it is also true for our system (3.20).

    In the rest of this paper, we will focus on the case when $ n = 1 $. When $ n = 1 $, the state process $ X $ is a scalar-valued rocess evolving by the dynamics

    $ dX_s = [A_sX_s+B_{1,s}'u_{1,s}+B_{2,s}'u_{2,s}+b_s]ds+[C_sX_s+D_{1,s}u_{1,s}+D_{2,s}u_{2,s}+\sigma_s]'dW_s, \\ X_0 = x_0, $ (3.22)

    where $ A $ is a bounded deterministic scalar function on $ [0, T] $. The other parameters $ B, C, D $ are all essentially bounded and $ \mathcal{F}_t $-adapted processes on $ [0, T] $ with values in $ \mathbb{R}^l, \mathbb{R}^d, \mathbb{R}^{d\times l} $, respectively. Moreover, $ b\in L_{\mathcal{F}}^2(0, T;\mathbb{R}) $ and $ \sigma\in L_{\mathcal{F}}^2(0, T;\mathbb{R}^d) $.

    In this case, the adjoint equations for the equilibrium strategy become

    $ {dpi(s;t)=[Aspi(s;t)+(Cs)ki(s;t)+Qi,sXs]ds+ki(s;t)dWs,s[t,T],pi(T;t)=GiXThiEt[XT]λiXtμi,
    $
    (3.23)
    $ {dPi(s;t)=[(2As+|Cs|2)Pi(s;t)+2CsK(s;t)+Qi,s]ds+Ki(s;t)dWs,s[t,T],Pi(T;t)=Gi,
    $
    (3.24)

    for $ i = 1, 2 $. For convenience, we also state here the $ n = 1 $ version of Theorem 3.2:

    Theorem 3.3. A strategy pair $ (u_1^*, u_2^*)\in L_{\mathcal{F}}^2(0, T;\mathbb{R}^l)\times L_{\mathcal{F}}^2(0, T;\mathbb{R}^l) $ is an equilibrium strategy pair if, for any time $ t\in[0, T) $,

    (i) The system of SDEs

    $ {dXs=[AsXs+B1,su1,s+B2,su2,s+bs]ds+[CsXs+D1,su1,s+D2,su2,s+σs]dWs,X0=x0,dp1(s;t)=[Asp1(s;t)+(Cs)k1(s;t)+Q1,sXs]ds+k1(s;t)dWs,s[t,T],p1(T;t)=G1XTh1Et[XT]λ1Xtμ1,dp2(s;t)=[Asp2(s;t)+(Cs)k2(s;t)+Q2,sXs]ds+k2(s;t)dWs,s[t,T],p2(T;t)=G2XTh2Et[XT]λ2Xtμ2,
    $
    (3.25)

    admits a solution $ (X^*, p_1, k_1, p_2, k_2) $;

    (ii) $ \Lambda_i(s; t) = R_{i, s}u_{i, s}^*+B_{i, s}p_i(s; t)+(D_{i, s})'k_i(s; t), i = 1, 2 $ satisfy condition (3.19).

    The unique solvability of (3.25) remains a challenging open problem even for the case $ n = 1 $. However, we are able to solve this problem when the parameters $ A, B_1, B_2, C, D_1, D_2, b, \sigma, Q_1, Q_2, R_1 $ and $ R_2 $ are all deterministic functions.

    Throughout this section we assume all the parameters are deterministic functions of $ t $. In this case, since $ G_1, G_2 $ have been also assumed to be deterministic, the BSDEs (3.24) turns out to be ODEs with solutions $ K_i\equiv0 $ and $ P_i(s; t) = G_ie^{\int_s^T(2A_u+|C_u|^2)du}+\int_s^Te^{\int_s^T(2A_u+|C_u|^2)du}Q_{i, v}dv $ for $ i = 1, 2 $. Hence, the equilibrium strategy will be characterized through a system of coupled Riccati-type equations.

    As in classical LQ control, we attempt to look for a linear feedback equilibrium strategy pair. For such purpose, motivated by [20], given any $ t\in[0, T] $, we consider the following process:

    $ pi(s;t)=Mi,sXsNi,sEt[Xs]Γi,sXt+Φi,s,0tsT,i=1,2,
    $
    (4.1)

    where $ M_i, N_i, \Gamma_i, \Phi_i $ are deterministic differentiable functions with $ \dot{M}_i = m_i, \dot{N}_i = n_i, \dot{\Gamma}_i = \gamma_i $ and $ \dot\Phi_i = \phi_i $ for $ i = 1, 2 $. The advantage of this process is to separate the variables $ X_s^*, \mathbb{E}_t[X_s^*] $ and $ X_t^* $ in the solutions $ p_i(s; t), i = 1, 2 $, thereby reducing the complicated FBSDEs to some ODEs.

    For any fixed $ t $, applying Ito's formula to (4.1) in the time variable $ s $, we obtain, for $ i = 1, 2 $,

    $ dp_i(s;t) = \{M_{i,s}(A_sX_s^*+B_{1,s}'u_{1,s}^*+B_{2,s}'u_{2,s}^*+b_s)\\+m_{i,s}X_s^*-N_{i,s}\mathbb{E}_t[A_sX_s^*+B_{1,s}'u_{1,s}^*+B_{2,s}'u_{2,s}^*+b_s] \\ \qquad -n_{i,s}\mathbb{E}_t[X_s^*]-\gamma_{i,s}X_t^*+\phi_{i,s}\}ds+M_{i,s}(C_sX_s^*+D_{1,s}u_{1,s}^*+D_{2,s}u_{2,s}^*+\sigma_s)'dW_s. $ (4.2)

    Comparing the $ dW_s $ term of $ dp_i(s; t) $ in (3.25) and (4.2), we have

    $ ki(s;t)=Mi,s[CsXs+D1,su1,s+D2,su2,s+σs],s[t,T],i=1,2.
    $
    (4.3)

    Notice that $ k(s; t) $ turns out to be independent of $ t $.

    Putting the above expressions (4.1) and (4.3) of $ p_i(s; t) $ and $ k_i(s; t), i = 1, 2 $ into (3.19), we have

    $ R_{i,s}u_{i,s}^*+B_{i,s}[(M_{i,s}-N_{i,s}-\Gamma_{i,s})X_s^*+\Phi_{i,s}]+D_{i,s}'M_{i,s}[C_sX_s^*+D_{1,s}u_{1,s}^*+D_{2,s}u_{2,s}^*+\sigma_s]\\ = 0, \;s\in[0,T], $ (4.4)

    for $ i = 1, 2 $. Then we can formally deduce

    $ ui,s=αi,sXs+βi,s,i=1,2.
    $
    (4.5)

    Let $ M_s = {{{\text{diag}}}}(M_{1, s}I_l, M_{2, s}I_l), N_s = {{{\text{diag}}}}(N_{1, s}I_l, N_{2, s}I_l), \Gamma_s = {{{\text{diag}}}}(\Gamma_{1, s}I_l, \Gamma_{2, s}I_l), \Phi_s = {{{\text{diag}}}}(\Phi_{1, s}I_l, \Phi_{2, s}I_l) $, $ R_s = {{{\text{diag}}}}(R_{1, s}, R_{2, s}), B_s = \left(B1,sB2,s

    \right), D_s = \left(D1,s,D2,s
    \right) $, $ u_s^* = \left(u1,su2,s
    \right), \alpha_s = \left(α1,sα2,s
    \right) $ and $ \beta_s = \left(β1,sβ2,s
    \right) $. Then from (4.4), we have

    $ Rsus+[(MsNsΓs)Xs+Φs]Bs+MsDs[CsXs+Ds(αsXs+βs)+σs]=0,s[0,T]
    $
    (4.6)

    and hence

    $ αs=(Rs+MsDsDs)1[(MsNsΓs)Bs+MsDsCs],
    $
    (4.7)
    $ βs=(Rs+MsDsDs)1(ΦsBs+MsDsσs).
    $
    (4.8)

    Next, comparing the $ ds $ term of $ dp_i(s; t) $ in (3.25) and (4.2) (we supress the argument $ s $ here), we have

    $ M_i[AX^*+B'(\alpha X^*+\beta)+b]+m_iX^*-N_i\{A\mathbb{E}_t[X^*]+\\ B'\mathbb{E}_t[\alpha X^*+\beta]+b\} -n_i\mathbb{E}_t[X^*]-\gamma_iX_t^*+\phi_i \\ = -[A(M_iX^*-N_i\mathbb{E}_t[X^*]-\Gamma_iX_t^*+\Phi_i)+M_iC'(CX^*+D(\alpha X^*+\beta)+\sigma)]. $ (4.9)

    Notice in the above that $ X^* = X_s^* $ and $ \mathbb{E}_t[X^*] = \mathbb{E}_t[X_s^*] $ due to the omission of $ s $. This leads to the following equations for $ M_i, N_i, \Gamma_i, \Phi_i $:

    $ \left\{ ˙Mi=(2A+|C|2)MiQi+Mi(B+CD)(R+MDD)1[(MNΓ)B+MDC],s[0,T],Mi,T=Gi;
    \right. $
    (4.10)
    $ {˙Ni=2ANi+NiB(R+MDD)1[(MNΓ)B+MDC],s[0,T],Ni,T=hi;
    $
    (4.11)
    $ {˙Γi=AΓi,s[0,T],Γi,T=λi;
    $
    (4.12)
    $ {˙Φi={A[B(MN)+CDM](R+MDD)1B}Φi(MiNi)bMiCσ[(MiNi)B+MiCD](R+MDD)1MDσ,s[0,T],Φi,T=μi.
    $
    (4.13)

    Though $ M_i, N_i, \Gamma_i, \Phi_i, i = 1, 2 $ are scalars, $ M, N, \Gamma, \Phi $ are now matrices because of two players. Therefore, the above equations are more complicated than the similar equations (4.5)–(4.8) in [20]. Before we solve the equations (4.10)–(4.13), we first prove that, if exist, the equilibrium constructed above is the unique equilibrium. Indeed, we have

    Theorem 4.1. Let

    $ L1={X(;):X(;t)L2F(t,T;R),supt[0,T]E[supst|X(s;t)|2]<+}
    $
    (4.14)

    and

    $ L2={Y(;):Y(;t)L2F(t,T;Rd),supt[0,T]E[Tt|X(s;t)|2ds]<+}.
    $
    (4.15)

    Suppose all the parameters $ A, B_1, B_2, C, D_1, D_2, b, \sigma, Q_1, Q_2, R_1 $ and $ R_2 $ are all deterministic.

    When $ (M_i, N_i, \Gamma_i, \Phi_i), i = 1, 2 $ exist, and for $ i = 1, 2 $, $ (p_i(s; t), k_i(s; t))\in\mathcal{L}_1\times \mathcal{L}_2 $, the equilibrium strategy is unique.

    Proof. Suppose there is another equilibrium $ (X, u_1, u_2) $, then the BSDE (3.1), with $ X^* $ replaced by $ X $, admits a solution $ (p_i(s; t), k_i(s), u_{i, s}) $ for $ i = 1, 2 $, which satisfies $ B_{i, s}p_i(s; s)+D_{i, s}'k_i(s)+R_{i, s}u_{i, s} = 0 $ for a.e. $ s\in[0, T] $. For $ i = 1, 2 $, define

    $ ˉpi(s;t)pi(s;t)[Mi,sXsNi,sEt[Xs]Γi,s+Φi,s],
    $
    (4.16)
    $ ˉki(s;t)ki(s)Mi,s(CsXs+D1,su1,s+D2,su2,s+σs),
    $
    (4.17)

    where $ k_i(s) = k_i(s; t) $ by Lemma 3.1.

    We define $ p(s; t) = {{{\text{diag}}}}(p_1(s; t)I_l, p_2(s; t)I_l) $, $ \bar{p}(s; t) = {{{\text{diag}}}}(\bar{p}_1(s; t)I_l, \bar{p}_2(s; t)I_l) $, and $ u = \left(u1,su2,s

    \right) $. By the equilibrium condition (3.19), we have

    $ 0 = \left(B1,sp1(s;s)+D1,sk1(s)+R1,su1,sB2,sp2(s;s)+D2,sk2(s)+R2,su2,s
    \right) \\ = p(s;s)B_s+\left(D1,sk1(s)D2,sk2(s)
    \right)+R_su_s \\ = [\bar{p}(s;s)+X_s(M_s-N_s-\Gamma_s)+\Phi_s]B_s+\left(D1,sˉk1(s)D2,sˉk2(s)
    \right) +\\M_sD_s'(C_sX_s+D_su_s+\sigma_s)+R_su_s \\ = \bar{p}(s;s)B_s+\left(D1,sˉk1(s)D2,sˉk2(s)
    \right) +X_s[(M_s-N_s-\Gamma_s)B_s+M_sD_s'C_s]+\Phi_sB_s+M_sD_s'\sigma_s \\ +(R_s+M_sD_s'D_s)u_s. $
    (4.18)

    Since $ R_s+M_sD_s'D_s $ is invertible, we have

    $ us=(Rs+MsDsDs)1{ˉp(s;s)Bs+(D1,sˉk1(s)D2,sˉk2(s))+Xs[(MsNsΓs)Bs+MsDsCs]+ΦsBs+MsDsσs},
    $
    (4.19)

    and hence for $ i = 1, 2 $,

    $ d\bar{p}_i(s;t) = dp_i(s;t)-d[M_{i,s}X_s-N_{i,s}\mathbb{E}_t[X_s]-\Gamma_{i,s}+\Phi_{i,s}] \\ = -[A_sp_i(s;t)+C_{s}'k_i(s)+Q_{i,s}X_s]ds+k_i'(s)dW_s-d[M_{i,s}X_s-N_{i,s}\mathbb{E}_t[X_s]-\Gamma_{i,s}X_t+\Phi_{i,s}] \\ = -\bigg\{A_s\bar{p}_i(s;t)+C_s'\bar{k}_i(s)+A_s(M_{i,s}X_s-N_{i,s}\mathbb{E}_t[X_s]-\Gamma_{i,s}X_t+\Phi_{i,s}) \\ \ +C_s'M_{i,s}(C_sX_s+D_{1,s}u_{1,s}+D_{2,s}u_{2,s}+\sigma_s)\bigg\}ds \\ \ +[\bar{k}_i(s)-M_{i,s}(C_sX_s+D_{1,s}u_{1,s}+D_{2,s}u_{2,s}+\sigma_s)]'dW_s \\ -\bigg\{M_{i,s}[A_sX_s+B_s'u_s+b_s]+m_{i,s}X_s-N_{i,s}(A_s\mathbb{E}_t[X_s]+B_s'\mathbb{E}_t[u_s]+b_s) \\ \ -n_{i,s}\mathbb{E}_t[X_s]-\gamma_{i,s}X_t+\phi_{i,s}\bigg\}ds \\ -M_{i,s}[C_sX_s+D_su_s+\sigma_s]'dW_s \\ = -\Bigg\{A_s\bar{p}_i(s;t)+C_s'\bar{k}_i(s)-M_{i,s}(B_s'+C_s'D_s)(R_s+M_sD_s'D_s)^{-1}\left[B_s\bar{p}(s;s)+\left(D1,sˉk1(s)D2,sˉk2(s)
    \right)\right] \\ \qquad N_{i,s}B_s'(R_s+M_sD_s'D_s)^{-1}\mathbb{E}_t\left[B_s\bar{p}(s;s)+\left(D1,sˉk1(s)D2,sˉk2(s)
    \right)\right]\Bigg\}ds+\bar{k}_i(s)'dW_s, $
    (4.20)

    where we suppress the subscript $ s $ for the parameters, and we have used the equations (4.10)–(4.13) for $ M_i, N_i, \Gamma_i, \Phi_i $ in the last equality. From (4.16) and (4.17), we have $ (\bar{p}_i, \bar{k}_i)\in\mathcal{L}_1\times\mathcal{L}_2 $. Therefore, by Theorem 4.2 of [21], we obtain $ \bar{p}(s; t)\equiv0 $ and $ \bar{k}(s)\equiv0 $.

    Finally, plugging $ \bar{p}\equiv\bar{k}\equiv0 $ into $ u $ of (4.19), we get $ u $ being the same form of feedback strategy as in (4.5), and hence $ (X, u_1, u_2) $ is the same as $ (X^*, u_1^*, u_2^*) $ which defined by (4.5) and (3.25).

    The solutions to (4.12) is

    $ Γi,s=λieTsAtdt,
    $
    (4.21)

    for $ i = 1, 2 $. Let $ \tilde{N} = N_1/ N_2 $, from (4.11), we have $ \dot{\tilde{N}} = 0 $, and hence

    $ ˜Nh1h2,N2h2h1N1.
    $
    (4.22)

    Equations (4.10) and (4.11) form a system of coupled Riccati-type equations for $ (M_1, M_2, N_1) $:

    $ {˙M1=[2A+|C|2+BΓ(R+MDD)1(B+DC)]M1Q1+(B+DC)(R+MDD)1M(B+DC)M1BN(R+MDD)1(B+DC)M1,M1,T=G1;˙M2=[2A+|C|2+BΓ(R+MDD)1(B+DC)]M2Q2+(B+DC)(R+MDD)1M(B+DC)M2BN(R+MDD)1(B+DC)M2,M2,T=G2;˙N1=2ANi+NiB(R+MDD)1[(MNΓ)B+MDC],N1,T=h1.
    $
    (4.23)

    Finally, once we get the solution for $ (M_1, M_2, N_1) $, (4.13) is a simple ODE. Therefore, it is crucial to solve (4.23).

    Formally, we define $ \tilde{M} = {M_1\over M_2} $ and $ J_1 = {M_1\over N_1} $ and study the following equation for $ (M_1, \tilde{M}, J_1) $:

    $ {˙M1=[2A+|C|2+BΓ(R+MDD)1(B+DC)]M1Q1+(B+DC)(R+MDD)1M(B+DC)M1BN(R+MDD)1(B+DC)M1,M1,T=G1;˙˜M=(Q1M1Q2M1˜M)˜M,˜MT=G1G2;˙J1=[|C|2CD(R+MDD)1M(B+DC)+BΓ(R+MDD)1DC+Q1M1]J1CD(R+MDD)1Mdiag(Il,h2h1˜MIl)B,J1,T=G1h1,
    $
    (4.24)

    where $ M = {{{\text{diag}}}}(M_1I_l, {M_1\over\tilde M}I_l), N = {{{\text{diag}}}}({M_1\over J_1}I_l, {h_2\over h_1}{M_1\over J_1}I_l) $ and $ \Gamma = {{{\text{diag}}}}(\lambda_1e^{\int_s^T A_tdt}I_l, \lambda_2e^{\int_s^T A_tdt}I_l) $.

    By a direct calculation, we have

    Proposition 3. If the system (4.24) admits a positive solution $ (M_1, \tilde{M}, J_1) $, then the system (4.23) admits a solution $ (M_1, M_2, N_1) $.

    In the following, we will use the truncation method to study the system (4.24). For convenienc, we use the following notations:

    $ ab=max{a,b},a,bR,
    $
    (4.25)
    $ ab=min{a,b},a,bR.
    $
    (4.26)

    Moreover, for a matrix $ M\in\mathbb{R}^{m\times n} $ and a real number $ c $, we define

    $ (Mc)i,j=Mi,jc,1im,1jn,
    $
    (4.27)
    $ (Mc)i,j=Mi,jc,1im,1jn.
    $
    (4.28)

    We first consider the standard case where $ R-\delta{I}\succeq0 $ for some $ \delta > 0 $. We have

    Theorem 4.2. Assume that $ R-\delta{I}\succeq0 $ for some $ \delta > 0 $ and $ G\ge h > 0 $. Then (4.24), and hence (4.23) admit unique solution if

    (i) there exists a constant $ \lambda\ge0 $ such that $ B = \lambda D'C $;

    (ii) $ \frac{|C|^2}{2l}D'D-(\lambda+1)D'CC'D\succeq0 $.

    Proof. For fixed $ c > 0 $ and $ K > 0 $, consider the following truncated system of (4.24):

    $ {˙M1=[2A+|C|2+BΓ(R+M+cDD)1(B+DC)]M1Q1+(B+DC)(R+M+cDD)1(M+cK)(B+DC)M1B(N+cK)(R+M+cDD)1(B+DC)M1,M1,T=G1;˙˜M=(Q1M1cQ2M1c˜MK)˜M,˜MT=G1G2;˙J1=λ(1)J1CD(R+M+cDD)1(M+cK)diag(Il,h2h1(˜MK)Il)B,J1,T=G1h1,
    $
    (4.29)

    where $ M_{c}^+ = {{{\text{diag}}}}((M_1\vee0)I_l, {{M_1\vee0}\over\tilde M\vee c}I_l) $, $ N_c^+ = {{{\text{diag}}}}({{M_1\vee0}\over J_1\vee c}I_l, {h_2\over h_1}{{M_1\vee0}\over J_1\vee c}I_l) $ and

    $ λ(1)=|C|2CD(R+M+cDD)1(M+cK)(B+DC)+BΓ(R+M+cDD)1DC+Q1M1c.
    $
    (4.30)

    Since $ R-\delta I\succeq0 $, the above system (4.29) is locally Lipschitz with linear growth, and hence it admits a unique solution $ (M_1^{c, K}, \tilde{M}^{c, K}, J_1^{c, K}) $. We will omit the superscript $ (c, K) $ when there is no confusion.

    We are going to prove that $ J_1\ge1 $ and that $ M_1, \tilde{M}\in[L_1, L_2] $ for some $ L_1, L_2 > 0 $ independent of $ c $ and $ K $ appearing in the truncation functions. We denote

    $ λ(2)=(2A+|C|2+BΓ(R+M+cDD)1(B+DC))(B+DC)(R+M+cDD)1(M+cK)(B+DC)B(N+cK)(R+M+cDD)1(B+DC).
    $
    (4.31)

    Then $ \lambda^{(2)} $ is bounded, and $ M_1 $ satisfies

    $ ˙M1+λ(2)M1+Q1=0,M1,T=G1.
    $
    (4.32)

    Hence $ M_1 > 0 $. Similarly, we have $ \tilde{M} > 0 $.

    The equation for $ \tilde{M} $ is

    $ {˙˜M=(Q1M1c˜MQ2M1c(˜MK)˜M,˜MT=G1G2;
    $
    (4.33)

    hence $ \tilde{M} $ admits an upper bound $ L_2 $ independent of $ c $ and $ K $. Choosing $ K = L_2 $ and examining again (4.33), we deduce that there exists $ L_1 > 0 $ independent of $ c $ and $ K $ such that $ \tilde{M}\ge L_1 $. Indeed, we can choose $ L_1 = \min_{0\le t\le T}{Q_{1, t}\over Q_{2, t}}\wedge{G1\over G_2} $ and $ L_2 = \max_{0\le t\le T}{Q_{1, t}\over Q_{2, t}}\vee{G1\over G_2} $. As a result, choosing $ c < L_1 $, the terms $ M_c^+ $ can be replaced by $ M = {{{\text{diag}}}}(M_1I_l, {M_1\over\tilde M}I_l) $, respectively, in (4.29) without changing their values.

    Now we prove $ J\ge1 $. Denote $ \tilde{J} = J_1-1 $, then $ \tilde{J} $ satisfies the ODE:

    $ ˙˜J=λ(1)˜J[λ(1)+CD(R+MDD)1(MK)diag(Il,h2h1˜MIl)B]=λ(1)˜Ja(1),
    $
    (4.34)

    where

    $ a^{(1)} = \lambda^{(1)}+C'D(R+MD'D)^{-1}(M\wedge K){{{\text{diag}}}}(I_l,{h_2\over h_1}\tilde{M}I_l)B \\ = |C|^2-(\lambda+1)C'D(R+MD'D)^{-1}(M\wedge K)D'C+C'D\Gamma(R+MD'D)^{-1}(M\wedge K)D'C++{Q_1\over M_1\vee c} \\ +C'D(R+MD'D)^{-1}(M\wedge K){{{\text{diag}}}}(I_l,{h_2\over h_1}\tilde{M}I_l)D'C \\ \ge|C|^2-(\lambda+1)C'D(R+MD'D)^{-1}MD'C+C'D\Gamma(R+MD'D)^{-1}(M\wedge K)D'C++{Q_1\over M_1\vee c} \\ = tr\left\{(R+MD'D)^{-1}{|C|^2+Q_1/(M_1\vee c)\over2l}(R+MD'D)\right\}-(\lambda+1)tr\{(R+MD'D)^{-1}D'CC'DM\} \\ = tr\left\{(R+MD'D)^{-1}H\right\} $ (4.35)

    with $ H = {|C|^2+Q_1/(M_1\vee c)\over2l}(R+D'DM)-(\lambda+1)D'CC'DM $.

    When $ c $ is small enough such that $ R-cD'D\succeq0 $, we have

    $ Q1M1c(R+MDD)Q1L2DD.
    $
    (4.36)

    Hence,

    $ H(|C|22lDD(λ+1)DCCD)M0,
    $
    (4.37)

    and consequently $ a^{(1)}\ge tr\{(R+MD'D)^{-1}H\}\ge0 $. We then deduce that $ \tilde{J}\ge0 $, and hence $ J_1\ge1 $. The boundness of $ M_1 $ can be proved by a similar argument in the proof of Theorem 4.2 in [20].

    Similarly, for the singular case $ R\equiv0 $, we have

    Theorem 4.3. Given $ G_1\ge h_1\ge1, R\equiv0 $, if $ B = \lambda D'C $ and $ |C|^2-(\lambda+1)C'D(D'D)^{-1}D'C\ge0 $, then (4.24) and (4.23) admit a unique positive solution.

    Concluding the above two theorems, we can present our main results of this section:

    Theorem 4.4. Given $ G_1\ge h_1\ge1 $ and $ B = \lambda D'C $. The (4.23) admits a unique positive solution $ (M_1, M_2, N_1) $ in the following two cases:

    (i) $ R-\delta I\succeq0 $ for some $ \delta > 0 $, $ \frac{|C|^2}{2l}D'D-(\lambda+1)D'CC'D\succeq0 $;

    (ii) $ R\equiv0 $, $ |C|^2-(\lambda+1)C'D(D'D)^{-1}D'C\ge0 $.

    Proof. Define $ p_i(s; t) $ and $ k_i(s; t) $ by (4.1) and (4.3), respectively. It is straightforward to check that $ (u_1^*, u_2^*, X^*, p_1, p_2, k_1, k_2) $ satisfies the system of SDEs (3.25). Moreover, in the both cases, we can check that $ \alpha_{i, s} $ and $ \beta_{i, s} $ in (4.5) are all uniformly bounded, and hence $ u_i^*\in L_{\mathcal{F}}^2(0, T;\mathbb{R}^l) $ and $ X^*\in L^2(\Omega; C(0, T;\mathbb{R})) $.

    Finally, denote $ \Lambda_i(s; t) = R_{i, s}u_{i, s}^*+p_i(s; t)B_{i, s}+(D_{i, s})'k_i(s; t), i = 1, 2 $. Plugging $ p_i, k_i, u_i^* $ define in (4.1), (4.3) and (4.5) into $ \Lambda_i $, we have

    $ \Lambda_i(s;t) = R_{i,s}u_{i,s}^*+(M_{i,s}X_s^*-N_{i,s}\mathbb{E}_t[X_s^*]-\Gamma_{i,s}X_t^*+\Phi_{i,s})B_{i,s} +\\ M_{i,s}D_{i,s}'[C_sX_s^*+D_{1,s}u_{1,s}^*+D_{2,s}u_{2,s}^*+\sigma_s] $ (4.38)

    and hence,

    $ \Lambda(t;t) \triangleq \left(Λ1(t;t)Λ2(t;t)
    \right) \\ = (R_t+M_tD_t'D_t)u_t^*+M_t(B_t+D_t'C_t)X_t^* -N_tB_t\mathbb{E}_t[X_t^*]-\Gamma_tB_tX_t^*+(\Phi_tB_t+M_tD_t'\sigma_t) \\ = -[(M_t-N_t-\Gamma_t)B_t+M_tD_t'C_t]X_t^*-(\Phi_tB_t+M_tD_t'\sigma_t) \\ \quad+M_t(B_t+D_t'C_t)X_t^*-N_tB_tX_t^*-\Gamma_tB_tX_t^*+(\Phi_tB_t+M_tD_t'\sigma_t) \\ = 0. $
    (4.39)

    Therefore, $ \Lambda_i $ satisfies the seond condition in (3.19).

    We investigate a general stochastic linear-quadratic differential game, where the objective functional of each player include both a quadratic term of the expected state and a state-dependent term. As discussed in detail in Björk and Murgoci [17] and [18], the last two terms in each objective functional, respectively, introduce two sources of time inconsistency into the differential game problem. That is to say, the usual equilibrium aspect is not a proper way when the players at 0 cannot commit the players at all intermediate times to implement the decisions they have planed. With the time-inconsistency, the notion "equilibrium" needs to be extended in an appropriate way. We turn to adopt the concept of equilibrium strategy between the players at all different times, which is at any time, an equilibrium "infinitesimally" via spike variation. By applying the spike variation technique, We derive a sufficient condition for equilibrium strategies via a system of forward-backward stochastic differential equation. The unique solvability of such FBSDEs remains a challenging open problem.

    For a special case, when the state is one-dimensional and the coefficients are all deterministic, the equilibrium strategy will be characterized through a system of coupled Riccati-type equations. At last, we find an explicit equilibrium strategy, which is also proved be the unique equilibrium strategy.

    The research of the first author was partially supported by NSFC (No.12171426), the Natural Science Foundation of Zhejiang Province (No. Y19A010020) and the Fundamental Research Funds for the Central Universities (No. 2021FZZX001-01). The research of the second author was partially supported by NSFC (No. 11501325, No.71871129) and the China Postdoctoral Science Foundation (Grant No. 2018T110706, No.2018M642641). The authors would like to thank sincerely the referees and the associate editor for their helpful comments and suggestions.

    The authors declare there is no conflicts of interest.

    [1] Wheeler AP, Bernard GR (2007) Acute lung injury and the acute respiratory distress syndrome: A clinical review. Lancet 369: 1553–1564. doi: 10.1016/S0140-6736(07)60604-7
    [2] Bellani G, Laffey JG, Pham T, et al. (2016) Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA 315: 788–800. doi: 10.1001/jama.2016.0291
    [3] Ranieri VM, Rubenfeld GD, Thompson BT, et al. (2012) Acute respiratory distress syndrome: The Berlin Definition. JAMA 307: 2526–2533.
    [4] Bernard GR, Artigas A, Brigham KL, et al. (1994) The American-European consensus conference on ARDS: Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149: 818–824. doi: 10.1164/ajrccm.149.3.7509706
    [5] Meade MO, Cook RJ, Guyatt GH, et al. (2000) Interobserver variation in interpreting chest radiographs for the diagnosis of acute respiratory distress syndrome. Am J Respir Crit Care Med 161: 85–90. doi: 10.1164/ajrccm.161.1.9809003
    [6] Peng JM, Qian CY, Yu XY, et al. (2017) Does training improve diagnostic accuracy and inter-rater agreement in applying the Berlin radiographic definition of acute respiratory distress syndrome? A multicenter prospective study. Crit Care 21: 12.
    [7] Gajic O, Dara SI, Mendez JL, et al. (2004) Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med 32: 1817–1824. doi: 10.1097/01.CCM.0000133019.52531.30
    [8] Anonymous (1999) International consensus conferences in intensive care medicine: Ventilator-associated Lung Injury in ARDS. Am J Respir Crit Care Med 160: 2118–2124. doi: 10.1164/ajrccm.160.6.ats16060
    [9] Pesenti AM (2005) The concept of "baby lung". Intensive Care Med 31: 776–784. doi: 10.1007/s00134-005-2627-z
    [10] Curley GF, Laffey JG, Zhang H, et al. (2016) Biotrauma and Ventilator-Induced Lung Injury: Clinical Implications. Chest 150: 1109–1117. doi: 10.1016/j.chest.2016.07.019
    [11] Thompson BT, Chambers RC, Liu KD (2017) Acute Respiratory Distress Syndrome. N Engl J Med 377: 562–572. doi: 10.1056/NEJMra1608077
    [12] Amato MB, Barbas CS, Medeiros DM, et al. (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338: 347–354. doi: 10.1056/NEJM199802053380602
    [13] Ards N (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342: 1301–1308. doi: 10.1056/NEJM200005043421801
    [14] Walkey AJ, Goligher E, Del SL, et al. (2017) Low Tidal Volume versus Non-Volume-Limited Strategies for Patients with Acute Respiratory Distress Syndrome: A Systematic Review and Meta-Analysis. Ann Am Thorac Soc 14: S271–S279. doi: 10.1513/AnnalsATS.201704-337OT
    [15] Fan E, Del SL, Goligher EC, et al. (2017) An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 195: 1253–1263. doi: 10.1164/rccm.201703-0548ST
    [16] Lang JD, Chumley P, Eiserich JP, et al. (2000) Hypercapnia induces injury to alveolar epithelial cells via a nitric oxide-dependent pathway. Am J Physiol Lung Cell Mol Physiol 279: 994–1002. doi: 10.1152/ajplung.2000.279.5.L994
    [17] Morimont P, Batchinsky A, Lambermont B (2015) Update on the role of extracorporeal CO 2 removal as an adjunct to mechanical ventilation in ARDS. Crit Care 19: 117. doi: 10.1186/s13054-015-0799-7
    [18] Repessé X, Vieillardbaron A (2017) Hypercapnia during acute respiratory distress syndrome: The tree that hides the forest! J Thorac Dis 9: 1420–1425.
    [19] Nin N, Muriel A, Penuelas O, et al. (2017) Severe hypercapnia and outcome of mechanically ventilated patients with moderate or severe acute respiratory distress syndrome. Intensive Care Med 43: 200–208. doi: 10.1007/s00134-016-4611-1
    [20] Barnes T, Zochios V, Parhar K (2017) Re-examining permissive hypercapnia in ARDS: A narrative review. Chest.
    [21] Sahetya SK, Goligher EC, Brower RG (2017) Fifty Years of Research in ARDS. Setting Positive End-Expiratory Pressure in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 195: 1429–1438.
    [22] Brower RG, Lanken PN, MacIntyre N, et al. (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351: 327–336. doi: 10.1056/NEJMoa032193
    [23] Meade MO, Cook DJ, Guyatt GH, et al. (2008) Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: A randomized controlled trial. JAMA 299: 637–645. doi: 10.1001/jama.299.6.637
    [24] Mercat A, Richard JC, Vielle B, et al. (2008) Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: A randomized controlled trial. JAMA 299: 646–655. doi: 10.1001/jama.299.6.646
    [25] Santa CR, Rojas JI, Nervi R, et al. (2013) High versus low positive end-expiratory pressure (PEEP) levels for mechanically ventilated adult patients with acute lung injury and acute respiratory distress syndrome. Cochrane Database Syst Rev 6: CD009098.
    [26] Talmor D, Sarge T, Malhotra A, et al. (2008) Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 359: 2095–2104. doi: 10.1056/NEJMoa0708638
    [27] Fish E, Novack V, Bannergoodspeed VM, et al. (2014) The Esophageal Pressure-Guided Ventilation 2 (EPVent2) trial protocol: A multicentre, randomised clinical trial of mechanical ventilation guided by transpulmonary pressure. BMJ Open 4: e006356. doi: 10.1136/bmjopen-2014-006356
    [28] Kacmarek RM, Villar J, Sulemanji D, et al. (2016) Open Lung Approach for the Acute Respiratory Distress Syndrome: A Pilot, Randomized Controlled Trial. Crit Care Med 44: 32–42. doi: 10.1097/CCM.0000000000001383
    [29] Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial I, Cavalcanti AB, Suzumura EA, et al. (2017) Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs. Low PEEP on Mortality in Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA 318: 1335–1345.
    [30] Luecke T, Corradi F, Pelosi P (2012) Lung imaging for titration of mechanical ventilation. Curr Opin Anaesthesiol 25: 131–140. doi: 10.1097/ACO.0b013e32835003fb
    [31] Jabaudon M, Godet T, Futier E, et al. (2017) Rationale, study design and analysis plan of the lung imaging morphology for ventilator settings in acute respiratory distress syndrome study (LIVE study): Study protocol for a randomised controlled trial. Anaesthesia Crit Care Pain Med 36: 301–306. doi: 10.1016/j.accpm.2017.02.006
    [32] Bugedo G, Retamal J, Bruhn A (2017) Driving pressure: A marker of severity, a safety limit, or a goal for mechanical ventilation? Crit Care 21: 199. doi: 10.1186/s13054-017-1779-x
    [33] Amato MB, Meade MO, Slutsky AS, et al. (2015) Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 372: 747–755. doi: 10.1056/NEJMsa1410639
    [34] Estenssoro E, Dubin A, Laffaire E, et al. (2002) Incidence, clinical course, and outcome in 217 patients with acute respiratory distress syndrome. Crit Care Med 30: 2450–2456. doi: 10.1097/00003246-200211000-00008
    [35] Papazian L, Forel JM, Gacouin A, et al. (2010) Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 363: 1107–1116. doi: 10.1056/NEJMoa1005372
    [36] Guerin C, Reignier J, Richard JC, et al. (2013) Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 368: 2159–2168. doi: 10.1056/NEJMoa1214103
    [37] Kassis EB, Loring SH, Talmor D (2016) Mortality and pulmonary mechanics in relation to respiratory system and transpulmonary driving pressures in ARDS. Intensive Care Med 42: 1206–1213. doi: 10.1007/s00134-016-4403-7
    [38] Ferguson ND, Cook DJ, Guyatt GH, et al. (2013) High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med 368: 795–805. doi: 10.1056/NEJMoa1215554
    [39] Young D, Lamb SE, Shah S, et al. (2013) High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med 368: 806–813. doi: 10.1056/NEJMoa1215716
    [40] Davies SW, Leonard KL, Falls RK, et al. (2015) Lung protective ventilation (ARDSNet) versus airway pressure release ventilation: Ventilatory management in a combined model of acute lung and brain injury. Trauma Acute Care Surg 78: 240–249. doi: 10.1097/TA.0000000000000518
    [41] Mireles-Cabodevila E, Kacmarek RM (2016) Should Airway Pressure Release Ventilation Be the Primary Mode in ARDS? Respir Care 61: 761–773. doi: 10.4187/respcare.04653
    [42] Zhou Y, Jin X, Lv Y, et al. (2017) Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome. Intensive Care Med 43: 1648–1659. doi: 10.1007/s00134-017-4912-z
    [43] Bellani G, Laffey JG, Pham T, et al. (2017) Noninvasive Ventilation of Patients with Acute Respiratory Distress Syndrome. Insights from the LUNG SAFE Study. Am J Respir Crit Care Med 195: 67–77. doi: 10.1164/rccm.201606-1306OC
    [44] Patel BK, Wolfe KS, Pohlman AS, et al. (2016) Effect of Noninvasive Ventilation Delivered by Helmet vs. Face Mask on the Rate of Endotracheal Intubation in Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA 315: 2435–2441.
    [45] Hernandez G, Roca O, Colinas L (2017) High-flow nasal cannula support therapy: New insights and improving performance. Crit Care 21: 62. doi: 10.1186/s13054-017-1640-2
    [46] Parke RL, Mcguinness SP (2013) Pressures delivered by nasal high flow oxygen during all phases of the respiratory cycle. Respir Care 58: 1621–1624. doi: 10.4187/respcare.02358
    [47] Drake MG (2017) High Flow Nasal Cannula Oxygen in Adults: An Evidence-Based Assessment. Ann Am Thorac Soc 15: 145–155.
    [48] Frat JP, Thille AW, Mercat A, et al. (2015) High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med 372: 2185–2196. doi: 10.1056/NEJMoa1503326
    [49] Kang BJ, Koh Y, Lim CM, et al. (2015) Failure of high-flow nasal cannula therapy may delay intubation and increase mortality. Intensive Care Med 41: 623–632. doi: 10.1007/s00134-015-3693-5
    [50] Ni YN, Luo J, Yu H, et al. (2017) Can High-flow Nasal Cannula Reduce the Rate of Endotracheal Intubation in Adult Patients With Acute Respiratory Failure Compared With Conventional Oxygen Therapy and Noninvasive Positive Pressure Ventilation?: A Systematic Review and Meta-analysis. Chest 151: 764–775.
    [51] Marik PE, Kaufman D (1996) The effects of neuromuscular paralysis on systemic and splanchnic oxygen utilization in mechanically ventilated patients. Chest 109: 1038–1042. doi: 10.1378/chest.109.4.1038
    [52] Kaisers U, Busch T, Deja M, et al. (2003) Selective pulmonary vasodilation in acute respiratory distress syndrome. Crit Care Med 31: S337–S342. doi: 10.1097/01.CCM.0000057913.45273.1A
    [53] Griffiths MJ, Evans TW (2005) Inhaled nitric oxide therapy in adults. N Engl J Med 353: 2683–2695. doi: 10.1056/NEJMra051884
    [54] Markewitz BA, Michael JR (2000) Inhaled nitric oxide in adults with the acute respiratory distress syndrome. Respir Med 94: 1023–1028. doi: 10.1053/rmed.2000.0928
    [55] Gebistorf F, Karam O, Wetterslev J, et al. (2016) Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults. Cochrane Database Syst Rev 6: CD002787.
    [56] Fuller BM, Mohr NM, Skrupky L, et al. (2015) The use of inhaled prostaglandins in patients with ARDS: A systematic review and meta-analysis. Chest 147: 1510–1522. doi: 10.1378/chest.14-3161
    [57] Bassford CR, Thickett DR, Perkins GD (2012) The rise and fall of beta-agonists in the treatment of ARDS. Crit Care 16: 208. doi: 10.1186/cc11221
    [58] National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Matthay MA, et al. (2011) Randomized, placebo-controlled clinical trial of an aerosolized beta(2)-agonist for treatment of acute lung injury. Am J Respir Crit Care Med 184: 561–568. doi: 10.1164/rccm.201012-2090OC
    [59] Gao SF, Perkins GD, Gates S, et al. (2012) Effect of intravenous beta-2 agonist treatment on clinical outcomes in acute respiratory distress syndrome (BALTI-2): A multicentre, randomised controlled trial. Lancet 379: 229–235. doi: 10.1016/S0140-6736(11)61623-1
    [60] Lai-Fook SJ, Rodarte JR (1991) Pleural pressure distribution and its relationship to lung volume and interstitial pressure. J Appl Physiol 70: 967–978. doi: 10.1152/jappl.1991.70.3.967
    [61] Pelosi P, D'Andrea L, Vitale G, et al. (1994) Vertical gradient of regional lung inflation in adult respiratory distress syndrome. Am J Respir Crit Care Med 149: 8–13. doi: 10.1164/ajrccm.149.1.8111603
    [62] Tawhai MH, Nash MP, Lin CL, et al. (2009) Supine and prone differences in regional lung density and pleural pressure gradients in the human lung with constant shape. J Appl Physiol 107: 912–920. doi: 10.1152/japplphysiol.00324.2009
    [63] Malbouisson LM, Busch CJ, Puybasset L, et al. (2000) Role of the heart in the loss of aeration characterizing lower lobes in acute respiratory distress syndrome. CT Scan ARDS Study Group. Am J Respir Crit Care Med 161: 2005–2012. doi: 10.1164/ajrccm.161.6.9907067
    [64] Scholten EL, Beitler JR, Prisk GK, et al. (2017) Treatment of ARDS With Prone Positioning. Chest 151: 215–224. doi: 10.1016/j.chest.2016.06.032
    [65] Mutoh T, Guest RJ, Lamm WJ, et al. (1992) Prone position alters the effect of volume overload on regional pleural pressures and improves hypoxemia in pigs in vivo. Am Rev Respir Dis 146: 300–306. doi: 10.1164/ajrccm/146.2.300
    [66] Lamm WJ, Graham MM, Albert RK (1994) Mechanism by which the prone position improves oxygenation in acute lung injury. Am J Respir Crit Care Med 150: 184–193. doi: 10.1164/ajrccm.150.1.8025748
    [67] Munshi L, Del LS, Adhikari N, et al. (2017) Prone Position for Acute Respiratory Distress Syndrome. A Systematic Review and Meta-Analysis. Ann Am Thorac Soc 14: S280–S288.
    [68] Peek GJ, Mugford M, Tiruvoipati R, et al. (2009) Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): A multicentre randomised controlled trial. Lancet 374: 1351–1363. doi: 10.1016/S0140-6736(09)61069-2
    [69] Dembinski R, Hochhausen N, Terbeck S, et al. (2007) Pumpless extracorporeal lung assist for protective mechanical ventilation in experimental lung injury. Crit Care Med 35: 2359–2366. doi: 10.1097/01.CCM.0000281857.87354.A5
    [70] Schmidt M, Stewart C, Bailey M, et al. (2015) Mechanical ventilation management during extracorporeal membrane oxygenation for acute respiratory distress syndrome: A retrospective international multicenter study. Crit Care Med 43: 654–664. doi: 10.1097/CCM.0000000000000753
    [71] Neto AS, Schmidt M, Azevedo LCP, et al. (2016) Associations between ventilator settings during extracorporeal membrane oxygenation for refractory hypoxemia and outcome in patients with acute respiratory distress syndrome: A pooled individual patient data analysis: Mechanical ventilation during ECMO. Intensive Care Med 42: 1672–1684. doi: 10.1007/s00134-016-4507-0
    [72] Tillmann BW, Klingel ML, Iansavichene AE, et al. (2017) Extracorporeal membrane oxygenation (ECMO) as a treatment strategy for severe acute respiratory distress syndrome (ARDS) in the low tidal volume era: A systematic review. J Crit Care 41: 64–71. doi: 10.1016/j.jcrc.2017.04.041
    [73] Bizzarro MJ, Conrad SA, Kaufman DA, et al. (2011) Infections acquired during extracorporeal membrane oxygenation in neonates, children, and adults. Pediatr Crit Care Med 12: 277–281. doi: 10.1097/PCC.0b013e3181e28894
    [74] Paden ML, Conrad SA, Rycus PT, et al. (2013) Extracorporeal Life Support Organization Registry Report 2012. ASAIO J 59: 202–210. doi: 10.1097/MAT.0b013e3182904a52
    [75] Mishra V, Svennevig JL, Bugge JF, et al. (2010) Cost of extracorporeal membrane oxygenation: Evidence from the Rikshospitalet University Hospital, Oslo, Norway. Eur J Cardiothorac Surg 37: 339–342.
    [76] Muller T, Lubnow M, Philipp A, et al. (2009) Extracorporeal pumpless interventional lung assist in clinical practice: Determinants of efficacy. Eur Respir J 33: 551–558. doi: 10.1183/09031936.00123608
    [77] Bein T, Aubron C, Papazian L (2017) Focus on ECMO and ECCO2R in ARDS patients. Intensive Care Med 43: 1424–1426. doi: 10.1007/s00134-017-4882-1
    [78] Bein T, Weber-Carstens S, Goldmann A, et al. (2013) Lower tidal volume strategy (approximately 3 ml/kg) combined with extracorporeal CO2 removal versus "conventional" protective ventilation (6 ml/kg) in severe ARDS: The prospective randomized Xtravent-study. Intensive Care Med 39: 847–856. doi: 10.1007/s00134-012-2787-6
    [79] Fitzgerald M, Millar J, Blackwood B, et al. (2014) Extracorporeal carbon dioxide removal for patients with acute respiratory failure secondary to the acute respiratory distress syndrome: A systematic review. Crit Care 18: 222. doi: 10.1186/cc13875
    [80] Calfee CS, Delucchi K, Parsons PE, et al. (2014) Subphenotypes in acute respiratory distress syndrome: Latent class analysis of data from two randomised controlled trials. Lancet Respir Med 2: 611–620. doi: 10.1016/S2213-2600(14)70097-9
    [81] Famous KR, Delucchi K, Ware LB, et al. (2017) Acute Respiratory Distress Syndrome Subphenotypes Respond Differently to Randomized Fluid Management Strategy. Am J Respir Crit Care Med 195: 331–338.
    [82] Hough CL (2014) Steroids for acute respiratory distress syndrome? Clin Chest Med 35: 781–795. doi: 10.1016/j.ccm.2014.08.014
    [83] Meduri GU, Bridges L, Shih MC, et al. (2016) Prolonged glucocorticoid treatment is associated with improved ARDS outcomes: Analysis of individual patients' data from four randomized trials and trial-level meta-analysis of the updated literature. Intensive Care Med 42: 829–840. doi: 10.1007/s00134-015-4095-4
    [84] Network TA (2000) Ketoconazole for early treatment of acute lung injury and acute respiratory distress syndrome: A randomized controlled trial. The ARDS Network. JAMA 283: 1995–2002.
    [85] Xiong B, Wang C, Tan J, et al. (2016) Statins for the prevention and treatment of acute lung injury and acute respiratory distress syndrome: A systematic review and meta-analysis. Respirology 21: 1026–1033. doi: 10.1111/resp.12820
    [86] Sabater J, Masclans JR, Sacanell J, et al. (2008) Effects on hemodynamics and gas exchange of omega-3 fatty acid-enriched lipid emulsion in acute respiratory distress syndrome (ARDS): A prospective, randomized, double-blind, parallel group study. Lipids Health Dis 7: 39. doi: 10.1186/1476-511X-7-39
    [87] Raghavendran K, Willson D, Notter RH (2011) Surfactant therapy for acute lung injury and acute respiratory distress syndrome. Crit Care Clin 27: 525–559. doi: 10.1016/j.ccc.2011.04.005
    [88] Shah FA, Girard TD, Yende S (2017) Limiting sedation for patients with acute respiratory distress syndrome-time to wake up. Curr Opin Crit Care 23: 45–51. doi: 10.1097/MCC.0000000000000382
    [89] National Heart L, Wheeler AP, Wiedemann HP, et al. (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354: 2564–2575. doi: 10.1056/NEJMoa062200
    [90] Jozwiak M, Silva S, Persichini R, et al. (2013) Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome. Crit Care Med 41: 472–480. doi: 10.1097/CCM.0b013e31826ab377
    [91] Krzak A, Pleva M, Napolitano LM (2011) Nutrition therapy for ALI and ARDS. Crit Care Clin 27: 647–659. doi: 10.1016/j.ccc.2011.05.004
    [92] Investigators NS, Finfer S, Chittock DR, et al. (2009) Intensive versus conventional glucose control in critically ill patients. N Engl J Med 360: 1283–1297. doi: 10.1056/NEJMoa0810625
    [93] Kortebein P (2009) Rehabilitation for hospital-associated deconditioning. Am J Phys Med Rehabil 88: 66–77. doi: 10.1097/PHM.0b013e3181838f70
    [94] Bailey P, Thomsen GE, Spuhler VJ, et al. (2007) Early activity is feasible and safe in respiratory failure patients. Crit Care Med 35: 139–145. doi: 10.1097/01.CCM.0000251130.69568.87
    [95] Morris PE, Berry MJ, Files DC, et al. (2016) Standardized Rehabilitation and Hospital Length of Stay Among Patients With Acute Respiratory Failure: A Randomized Clinical Trial. JAMA 315: 2694–2702. doi: 10.1001/jama.2016.7201
    [96] Jabaudon M, Blondonnet R, Audard J, et al. (2017) Recent directions in personalised acute respiratory distress syndrome medicine. Anaesth Crit Care Pain Med.
    [97] Shankar-Hari M, Mcauley DF (2017) Acute Respiratory Distress Syndrome Phenotypes and Identifying Treatable Traits. The Dawn of Personalized Medicine for ARDS. Am J Respir Crit Care Med 195: 280–281.
    [98] Wilson JG, Liu KD, Zhuo H, et al. (2015) Mesenchymal stem (stromal) cells for treatment of ARDS: A phase 1 clinical trial. Lancet Respir Med 3: 24–32. doi: 10.1016/S2213-2600(14)70291-7
    [99] Laffey JG, Matthay MA (2017) Fifty Years of Research in ARDS. Cell-based Therapy for Acute Respiratory Distress Syndrome. Biology and Potential Therapeutic Value. Am J Respir Crit Care Med 196: 266–273.
  • This article has been cited by:

    1. Binxiang Dai, Guangxun Sun, Turing–Hopf bifurcation of a delayed diffusive predator–prey system with chemotaxis and fear effect, 2021, 111, 08939659, 106644, 10.1016/j.aml.2020.106644
    2. Wenlong Wang, Zijun Liu, Ruizhi Yang, Binxiang Dai, Hopf Bifurcation Analysis of a Delayed Diffusive Predator-Prey Model with Predator Interference or Foraging Facilitation, 2022, 2022, 1607-887X, 1, 10.1155/2022/5278036
    3. Feilong Wang, Min Xiao, Zhengxin Wang, Jing Zhao, Gong Chen, Jinde Cao, Sergey Dashkovskiy, Spatiotemporal Evolution Characteristics of Time-Delay Ecological Competition Systems with Food-Limited and Diffusion, 2022, 2022, 1099-0526, 1, 10.1155/2022/2823303
    4. Lu Lu, Chengdai Huang, Xinyu Song, Bifurcation control of a fractional-order PD control strategy for a delayed fractional-order prey–predator system, 2023, 138, 2190-5444, 10.1140/epjp/s13360-023-03708-9
    5. Min Xiao, Gong Chen, Feilong Wang, Zunshui Cheng, Yi Yao, M. De Aguiar, Spatiotemporal Tipping Induced by Turing Instability and Hopf Bifurcation in a Population Ecosystem Model with the Fear Factor, 2023, 2023, 1099-0526, 1, 10.1155/2023/6375533
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8011) PDF downloads(1469) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog