Introduction: The world population is aging, and this demographic fact is associated with an increased prevalence of sedentary lifestyles, sarcopenia and frailty; all of them with impact on health status. Biologic reserve determination in the elderly with comorbidity poses a challenge for medical activities. Frailty is an increasingly used concept in the geriatric medicine literature, which refers to an impairment in biologic reserve. There is a close and multidirectional relationship between physical activity, the muscular system function, and a fit status; decline in this dimensions is associated with poor outcomes. The aim of this article is to make a narrative review on the relationship between physical activity, sarcopenia and frailty syndrome. Results: The low level of physical activity, sarcopenia and frailty, are important predictors for development of disability, poor quality of life, falls, hospitalizations and all causes mortality. For clinical practice we propose a semiological approach based on measurement of muscle performance, mass and also level of physical activity, as a feasible way to determine the biologic reserve. This evidence shows us that the evaluation of muscle mass and performance, provides important prognostic information because the deterioration of these variables is associated with poor clinical outcomes in older adults followed up in multiple cohorts. Conclusions: Low activity is a mechanism and at the same time part of the frailty syndrome. The determination of biologic reserve is important because it allows the prognostic stratification of the patient and constitutes an opportunity for intervention. The clinician should be aware of the clinical tools that evaluate muscular system and level of physical activity, because they place us closer to the knowledge of health status.
Citation: Maximiliano Smietniansky, Bruno R. Boietti, Mariela A. Cal, María E. Riggi, Giselle P.Fuccile, Luis A. Camera, Gabriel D. Waisman. Impact of Physical Activity on Frailty Status and How to Start a Semiological Approach to Muscular System[J]. AIMS Medical Science, 2016, 3(1): 52-60. doi: 10.3934/medsci.2016.1.52
[1] | He Yuan, Zhuo Liu . Lie $ n $-centralizers of generalized matrix algebras. AIMS Mathematics, 2023, 8(6): 14609-14622. doi: 10.3934/math.2023747 |
[2] | Xinfeng Liang, Mengya Zhang . Triangular algebras with nonlinear higher Lie n-derivation by local actions. AIMS Mathematics, 2024, 9(2): 2549-2583. doi: 10.3934/math.2024126 |
[3] | Anas Al-Masarwah, Nadeen Kdaisat, Majdoleen Abuqamar, Kholood Alsager . Crossing cubic Lie algebras. AIMS Mathematics, 2024, 9(8): 22112-22129. doi: 10.3934/math.20241075 |
[4] | Shan Li, Kaijia Luo, Jiankui Li . Generalized Lie $ n $-derivations on generalized matrix algebras. AIMS Mathematics, 2024, 9(10): 29386-29403. doi: 10.3934/math.20241424 |
[5] | He Yuan, Qian Zhang, Zhendi Gu . Characterizations of generalized Lie $ n $-higher derivations on certain triangular algebras. AIMS Mathematics, 2024, 9(11): 29916-29941. doi: 10.3934/math.20241446 |
[6] | Nouf Almutiben, Ryad Ghanam, G. Thompson, Edward L. Boone . Symmetry analysis of the canonical connection on Lie groups: six-dimensional case with abelian nilradical and one-dimensional center. AIMS Mathematics, 2024, 9(6): 14504-14524. doi: 10.3934/math.2024705 |
[7] | Xianguo Hu . Universal enveloping Hom-algebras of regular Hom-Poisson algebras. AIMS Mathematics, 2022, 7(4): 5712-5727. doi: 10.3934/math.2022316 |
[8] | Nouf Almutiben, Edward L. Boone, Ryad Ghanam, G. Thompson . Classification of the symmetry Lie algebras for six-dimensional co-dimension two Abelian nilradical Lie algebras. AIMS Mathematics, 2024, 9(1): 1969-1996. doi: 10.3934/math.2024098 |
[9] | Baiying He, Siyu Gao . The nonisospectral integrable hierarchies of three generalized Lie algebras. AIMS Mathematics, 2024, 9(10): 27361-27387. doi: 10.3934/math.20241329 |
[10] | Mohd Arif Raza, Huda Eid Almehmadi . Lie (Jordan) $ \sigma- $centralizer at the zero products on generalized matrix algebra. AIMS Mathematics, 2024, 9(10): 26631-26648. doi: 10.3934/math.20241295 |
Introduction: The world population is aging, and this demographic fact is associated with an increased prevalence of sedentary lifestyles, sarcopenia and frailty; all of them with impact on health status. Biologic reserve determination in the elderly with comorbidity poses a challenge for medical activities. Frailty is an increasingly used concept in the geriatric medicine literature, which refers to an impairment in biologic reserve. There is a close and multidirectional relationship between physical activity, the muscular system function, and a fit status; decline in this dimensions is associated with poor outcomes. The aim of this article is to make a narrative review on the relationship between physical activity, sarcopenia and frailty syndrome. Results: The low level of physical activity, sarcopenia and frailty, are important predictors for development of disability, poor quality of life, falls, hospitalizations and all causes mortality. For clinical practice we propose a semiological approach based on measurement of muscle performance, mass and also level of physical activity, as a feasible way to determine the biologic reserve. This evidence shows us that the evaluation of muscle mass and performance, provides important prognostic information because the deterioration of these variables is associated with poor clinical outcomes in older adults followed up in multiple cohorts. Conclusions: Low activity is a mechanism and at the same time part of the frailty syndrome. The determination of biologic reserve is important because it allows the prognostic stratification of the patient and constitutes an opportunity for intervention. The clinician should be aware of the clinical tools that evaluate muscular system and level of physical activity, because they place us closer to the knowledge of health status.
A Poisson algebra is a triple, $ (L, \cdot, \left[{-, - } \right]) $, where $ (L, \cdot) $ is a commutative associative algebra and $ (L, \left[{-, - } \right]) $ is a Lie algebra that satisfies the following Leibniz rule:
$ \left[ {x, y\cdot z} \right] = \left[ {x, y} \right]\cdot z + y\cdot \left[ {x, z} \right], \forall x, y, z \in L. $ |
Poisson algebras appear naturally in the study of Hamiltonian mechanics and play a significant role in mathematics and physics, such as in applications of Poisson manifolds, integral systems, algebraic geometry, quantum groups, and quantum field theory (see [7,11,24,25]). Poisson algebras can be viewed as the algebraic counterpart of Poisson manifolds. With the development of Poisson algebras, many other algebraic structures have been found, such as Jacobi algebras [1,9], Poisson bialgebras [20,23], Gerstenhaber algebras, Lie-Rinehart algebras [16,17,26], $ F $-manifold algebras [12], Novikov-Poisson algebras [28], quasi-Poisson algebras [8] and Poisson $ n $-Lie algebras [10].
As a dual notion of a Poisson algebra, the concept of a transposed Poisson algebra was recently introduced by Bai et al. [2]. A transposed Poisson algebra $ (L, \cdot, \left[{-, - } \right]) $ is defined by exchanging the roles of the two binary operations in the Leibniz rule defining the Poisson algebra:
$ 2z \cdot \left[ {x, y} \right] = \left[ {z \cdot x, y} \right] + \left[ {x, z \cdot y} \right], \forall x, y, z \in L, $ |
where $ (L, \cdot) $ is a commutative associative algebra and $ (L, \left[{-, - } \right]) $ is a Lie algebra.
It is shown that a transposed Poisson algebra possesses many important identities and properties and can be naturally obtained by taking the commutator in the Novikov-Poisson algebra [2]. There are many results on transposed Poisson algebras, such as those on transposed Hom-Poisson algebras [18], transposed BiHom-Poisson algebras [21], a bialgebra theory for transposed Poisson algebras [19], the relation between $ \frac{1}{2} $-derivations of Lie algebras and transposed Poisson algebras [14], the relation between $ \frac{1}{2} $-biderivations and transposed Poisson algebras [29], and the transposed Poisson structures with fixed Lie algebras (see [6] for more details).
The notion of an $ n $-Lie algebra (see Definition 2.1), as introduced by Filippov [15], has found use in many fields in mathematics and physics [4,5,22,27]. The explicit construction of $ n $-Lie algebras has become one of the important problems in this theory. In [3], Bai et al. gave a construction of $ (n+1) $-Lie algebras through the use of $ n $-Lie algebras and some linear functions. In [13], Dzhumadil′daev introduced the notion of a Poisson $ n $-Lie algebra which can be used to construct an ($ n+1 $)-Lie algebra under an additional strong condition. In [2], Bai et al. showed that this strong condition for $ n = 2 $ holds automatically for a transposed Poisson algebra, and they gave a construction of 3-Lie algebras from transposed Poisson algebras with derivations. They also found that this constructed $ 3 $-Lie algebra and the commutative associative algebra satisfy the analog of the compatibility condition for transposed Poisson algebras, which is called a transposed Poisson $ 3 $-Lie algebra. This motivated them to introduce the concept of a transposed Poisson $ n $-Lie algebra (see Definition 2.2) and propose the following conjecture:
Conjecture 1.1. [2] Let $ n\geq 2 $ be an integer and $ (L, \cdot, \mu_n) $ a transposed Poisson $ n $-Lie algebra. Let $ D $ be a derivation of $ (L, \cdot) $ and $ (L, \mu_n) $. Define an $ (n+1) $-ary operation:
$ \mu_{n+1}(x_1, \cdots, x_{n+1}): = \sum\limits_{i = 1}^{n+1} (-1)^{i-1}D(x_i) \mu_n(x_1, \cdots, \hat{x}_i, \cdots, x_{n+1}), \quad \forall x_1, \cdots, x_{n+1}\in L, $ |
where $ \hat{x}_i $ means that the $ i $-th entry is omitted. Then, $ (L, \cdot, \mu_{n+1}) $ is a transposed Poisson $ (n+1) $-Lie algebra.
In this paper, based on the identities for transposed Poisson $ n $-Lie algebras given in Section 2, we prove that Conjecture 1.1 holds under a certain strong condition described in Section 3 (see Definition 2.3 and Theorem 3.2).
Throughout the paper, all vector spaces are taken over a field of characteristic zero. To simplify notations, the commutative associative multiplication $ (\cdot) $ will be omitted unless the emphasis is needed.
In this section, we first recall some definitions, and then we exhibit a class of identities for transposed Poisson $ n $-Lie algebras.
Definition 2.1. [15] Let $ n\geq 2 $ be an integer. An $ n $-Lie algebra is a vector space $ L $, together with a skew-symmetric linear map $ \left[{-, \cdots, - } \right]:{ \otimes ^n}L \to L $, such that, for any $ x_i, y_j \in L, 1 \le i \le n-1, 1 \le j \le n, $ the following identity holds:
$ [[y1,⋯,yn],x1,⋯,xn−1]=n∑i=1(−1)i−1[[yi,x1,⋯,xn−1],y1,⋯,ˆyi,⋯,yn]. $
|
(2.1) |
Definition 2.2. [2] Let $ n\geq 2 $ be an integer and $ L $ a vector space. The triple $ (L, \cdot, \left[{-, \cdots, - } \right]) $ is called a transposed Poisson $ n $-Lie algebra if $ (L, \cdot) $ is a commutative associative algebra and $ (L, \left[{-, \cdots, - } \right]) $ is an $ n $-Lie algebra such that, for any $ h, {x_i} \in L, 1 \le i \le n $, the following identity holds:
$ nh[x1,⋯,xn]=n∑i=1[x1,⋯,hxi,⋯,xn]. $
|
(2.2) |
Some identities for transposed Poisson algebras in [2] can be extended to the following theorem for transposed Poisson $ n $-Lie algebras.
Theorem 2.1. Let $ (L, \cdot, \left[{-, \cdots, - } \right]) $ be a transposed Poisson $ n $-Lie algebra. Then, the following identities hold:
(1) For any $ x_i\in L, 1\leq i\leq n+1 $, we have
$ n+1∑i=1(−1)i−1xi[x1,⋯,ˆxi,⋯,xn+1]=0; $
|
(2.3) |
(2) For any $ h, x_i, y_j\in L, 1\leq i\leq n-1, 1\leq j\leq n $, we have
$ n∑i=1(−1)i−1[h[yi,x1,⋯,xn−1],y1,⋯,ˆyi,⋯,yn]=[h[y1,⋯,yn],x1,⋯,xn−1]; $
|
(2.4) |
(3) For any $ x_i, y_j\in L, 1\leq i\leq n-1, 1\leq j\leq n+1 $, we have
$ n+1∑i=1(−1)i−1[yi,x1,⋯,xn−1][y1,⋯,ˆyi,⋯,yn+1]=0; $
|
(2.5) |
(4) For any $ x_1, x_2, y_i\in L, 1\leq i\leq n $, we have
$ n∑i=1n∑j=1,j≠i[y1,⋯,yix1,⋯,yjx2,⋯,yn]=n(n−1)x1x2[y1,y2,⋯,yn]. $
|
(2.6) |
Proof. (1) By Eq (2.2), for any $ 1\leq i\leq n+1 $, we have
$ n{x_i}\left[ {{x_1}, \cdots , {x_{i - 1}}, {x_{i + 1}}, \cdots , {x_{n+1}}} \right] = \sum\limits_{j \ne i}^{} {\left[ {{x_1}, \cdots , {x_{i - 1}}, {x_{i + 1}}, \cdots , {x_i}{x_j}, \cdots , {x_{n+1}}} \right]}. $ |
Thus, we obtain
$ \sum\limits_{i = 1}^{n + 1} {{{( - 1)}^{i - 1}}n{x_i}\left[ {{x_1}, \cdots , {{\hat x}_i}, \cdots , {x_{n + 1}}} \right]} = \sum\limits_{i = 1}^{n + 1} {\sum\limits_{j = 1, j \ne i}^{n + 1} {{{( - 1)}^{i - 1}}\left[ {{x_1}, \cdots , {{\hat x}_i}, \cdots , {x_i}{x_j}, \cdots , {x_{n + 1}}} \right]} }. $ |
Note that, for any $ i > j $, we have
$ (−1)i−1[x1,⋯,xj−1,xixj,xj+1,⋯,ˆxi,⋯,xn]+(−1)j−1[x1,⋯,ˆxj,⋯,xi−1,xjxi,xi+1,⋯,xn]=(−1)i−1+(i−j−1)[x1,⋯,xj−1,xj+1,⋯,xi−1,xixj,xi+1,⋯,xn]+(−1)j−1[x1,⋯,ˆxj,⋯,xi−1,xjxi,xi+1,⋯,xn]=((−1)−j−2+(−1)j−1)[x1,⋯,xj−1,xj+1,⋯,xi−1,xixj,xi+1,⋯,xn]=0, $
|
which gives $ \sum\limits_{i = 1}^{n + 1} {\sum\limits_{j = 1, j \ne i}^{n + 1} {{{(- 1)}^{i - 1}}\left[{{x_1}, \cdots, {{\hat x}_i}, \cdots, {x_i}{x_j}, \cdots, {x_{n + 1}}} \right]} } = 0. $
Hence, we get
$ \sum\limits_{i = 1}^{n + 1} {{{( - 1)}^{i - 1}}n{x_i}\left[ {{x_1}, \cdots , {{\hat x}_i}, \cdots , {x_{n + 1}}} \right]} = 0. $ |
(2) By Eq (2.2), we have
$ −[h[y1,⋯,yn],x1,⋯,xn−1]−n−1∑i=1[[y1,⋯,yn],x1,⋯,hxi,⋯,xn−1]=−nh[[y1,⋯,yn],x1,⋯,xn−1], $
|
and, for any $ 1\leq j\leq n $,
$ (−1)j−1([h[yj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn−1]+n∑i=1,i≠j[[yj,x1,⋯,xn−1],y1,⋯,hyi,⋯,ˆyj,⋯,yn−1])=(−1)j−1nh[[yj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn−1]. $
|
By taking the sum of the above $ n+1 $ identities and applying Eq (2.1), we get
$ −[h[y1,⋯,yn],x1,⋯,xn−1]−n−1∑i=1[[y1,⋯,yn],x1,⋯,hxi,⋯,xn−1]+n∑j=1(−1)j−1([h[yj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn−1]+n∑i=1,i≠j[[yj,x1,⋯,xn−1],y1,⋯,hyi,⋯,ˆyj,⋯,yn−1])=−nh[[y1,⋯,yn],x1,⋯,xn−1]+nhn∑j=1(−1)j−1[[yj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn−1]=0. $
|
We denote
$ Aj:=n∑i=1,i≠j(−1)i−1[[yi,x1,⋯,xn−1],y1,⋯,hyj,⋯,ˆyi,⋯,yn],1≤j≤n,Bi:=[[y1,⋯,yn],x1,⋯,hxi,⋯,xn−1],1≤i≤n−1. $
|
Then, the above equation can be rewritten as
$ n∑i=1(−1)i−1[h[yi,x1,⋯,xn−1],y1,⋯,ˆyi,⋯,yn]−[h[y1,⋯,yn],x1,⋯,xn−1]+n∑j=1Aj−n−1∑i=1Bi=0. $
|
(2.7) |
By applying Eq (2.1) to $ {{A_j}}, 1\leq j\leq n $, we have
$ Aj=n∑i=1,i≠j(−1)i−1[[yi,x1,⋯,xn−1],y1,⋯,hyj,⋯,ˆyi,⋯,yn]=[[y1,⋯,hyj,⋯,yn],x1,⋯,xn−1]+(−1)j[[hyj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn]. $
|
Thus, we get
$ n∑j=1Aj=n∑j=1[[y1,⋯,hyj,⋯,yn],x1,⋯,xn−1]+n∑j=1(−1)j[[hyj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn]=n[h[y1,⋯,yn],x1,⋯,xn−1]+n∑j=1(−1)j[[hyj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn]. $
|
By applying Eq (2.1) to $ {{B_i}}, 1\leq i\leq n-1 $, we have
$ Bi=[[y1,⋯,yn],x1,⋯,hxi,⋯,xn−1]=n∑j=1(−1)j−1[[yj,x1,⋯,hxi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]. $
|
Thus, we get
$ n−1∑i=1Bi=n−1∑i=1n∑j=1(−1)j−1[[yj,x1,⋯,hxi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]=n∑j=1n−1∑i=1(−1)j−1[[yj,x1,⋯,hxi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]. $
|
Note that, by Eq (2.2), we have
$ n−1∑i=1(−1)j−1[[yj,x1,⋯,hxi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]=(−1)j−1n[h[yj,x1,⋯,xi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]+(−1)j[[hyj,x1,⋯,xi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]. $
|
Thus, we obtain
$ n−1∑i=1Bi=n∑j=1(−1)j−1n[h[yj,x1,⋯,xi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]+n∑j=1(−1)j[[hyj,x1,⋯,xi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]. $
|
By substituting these equations into Eq (2.7), we have
$ n∑i=1(−1)i−1[h[yi,x1,⋯,xn−1],y1,⋯,ˆyi,⋯,yn]−[h[y1,⋯,yn],x1,⋯,xn−1]+n[h[y1,⋯,yn],x1,⋯,xn−1]+n∑j=1(−1)j[[hyj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn]−n∑j=1(−1)j−1n[h[yj,x1,⋯,xi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]−n∑j=1(−1)j[[hyj,x1,⋯,xi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]=0, $
|
which implies that
$ (n - 1)(\sum\limits_{i = 1}^n {{{( - 1)}^i}\left[ {h\left[ {{y_i}, {x_1}, \cdots , {x_{n - 1}}} \right], {y_1}, \cdots , {{\hat y}_i}, \cdots , {y_n}} \right]} + \left[ {h\left[ {{y_1}, \cdots , {y_n}} \right], {x_1}, \cdots , {x_{n - 1}}} \right]) = 0. $ |
Therefore, the proof of Eq (2.4) is completed.
(3) By Eq (2.2), for any $ 1\leq j\leq n+1 $, we have
$ (−1)j−1n[yj,x1,⋯,xn−1][y1,⋯,ˆyj,⋯,yn+1]=n+1∑i=1,i≠j(−1)j−1[y1,⋯,yi[yj,x1,⋯,xn−1],⋯,ˆyj,⋯,yn+1]. $
|
By taking the sum of the above $ n+1 $ identities, we obtain
$ n+1∑j=1(−1)j−1n[yj,x1,⋯,xn−1][y1,⋯,ˆyj,⋯,yn+1]=n+1∑j=1n+1∑i=1,i≠j(−1)j−1[y1,⋯,yi[yj,x1,⋯,xn−1],⋯,ˆyj,⋯,yn+1]. $
|
Thus, we only need to prove the following equation:
$ \sum\limits_{j = 1}^{n + 1} {\sum\limits_{i = 1, i \ne j}^{n + 1} {{{( - 1)}^{j - 1}}\left[ {{y_1}, \cdots , {y_i}\left[ {{y_j}, {x_1}, \cdots , {x_{n - 1}}} \right], \cdots , {{\hat y}_j}, \cdots , {y_{n + 1}}} \right]} } = 0. $ |
Note that
$ n+1∑j=1n+1∑i=1,i≠j(−1)j−1[y1,⋯,yi[yj,x1,⋯,xn−1],⋯,ˆyj,⋯,yn+1]=n+1∑i=1n+1∑j=1,j≠i(−1)j−1[y1,⋯,yi[yj,x1,⋯,xn−1],⋯,ˆyj,⋯,yn+1]=n+1∑i=1i−1∑j=1(−1)i+j−1[yi[yj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,ˆyi,⋯,yn+1]+n+1∑i=1n+1∑j=i+1(−1)i+j[yi[yj,x1,⋯,xn−1],y1,⋯,ˆyi,⋯,ˆyj,⋯,yn+1](2.4)=n+1∑i=1(−1)i[yi[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,xn−1](2.3)=0. $
|
Hence, the conclusion holds.
(4) By applying Eq (2.2), we have
$ n2x1x2[y1,y2,⋯,yn]=nx1n∑j=1[y1,⋯,yjx2,⋯,yn]=n∑i=1n∑j=1,j≠i[y1,⋯,yix1,⋯,yjx2,⋯,yn]+n∑j=1[y1,⋯,yjx1x2,⋯,yn]=n∑i=1n∑j=1,j≠i[y1,⋯,yix1,⋯,yjx2,⋯,yn]+nx1x2[y1,⋯,yn], $
|
which gives
$ n(n - 1){x_1}{x_2}\left[ {{y_1}, {y_2}, \cdots , {y_n}} \right] = \sum\limits_{i = 1}^n {\sum\limits_{j = 1, j \ne i}^n {\left[ {{y_1}, \cdots , {y_i}{x_1}, \cdots , {y_j}{x_2}, \cdots , {y_n}} \right]} } . $ |
Hence, the proof is completed.
To prove Conjecture 1.1, we need the following extra condition.
Definition 2.3. A transposed Poisson $ n $-Lie algebra $ (L, \cdot, \left[{-, \cdots, - } \right]) $ is called strong if the following identity holds:
$ y1[hy2,x1,⋯,xn−1]−y2[hy1,x1,⋯,xn−1]+n−1∑i=1(−1)i−1hxi[y1,y2,x1,⋯,ˆxi,⋯,xn−1]=0 $
|
(2.8) |
for any $ {y_1}, {y_2}, {x_i}\in L, 1\leq i\leq n - 1. $
Remark 2.1. When $ n = 2 $, the identity is
$ {y_1}\left[ {h{y_2}, {x_1}} \right] + {y_2}\left[ {{x_1}, h{y_1}} \right] + h{x_1}\left[ {{y_1}, {y_2}} \right] = 0, $ |
which is exactly Theorem 2.5 (11) in [2]. Thus, in the case of a transposed Poisson algebra, the strong condition always holds. So far, we cannot prove that the strong condition fails to hold for $ n\geq 3. $
Proposition 2.1. Let $ (L, \cdot, \left[{-, \cdots, - } \right]) $ be a strong transposed Poisson $ n $-Lie algebra. Then,
$ y1[hy2,x1,⋯,xn−1]−hy1[y2,x1,⋯,xn−1]=y2[hy1,x1,⋯,xn−1]−hy2[y1,x1,⋯,xn−1] $
|
(2.9) |
for any $ {y_1}, {y_2}, {x_i} \in L, 1\leq i\leq n - 1 $.
Proof. By Eq (2.3), we have
$ - h{y_1}\left[ {{y_2}, {x_1}, \cdots , {x_{n - 1}}} \right] + h{y_2}\left[ {{y_1}, {x_1}, \cdots , {x_{n - 1}}} \right] = \sum\limits_{i = 1}^{n - 1} {{{( - 1)}^{i - 1}}h{x_i}\left[ {{y_1}, {y_2}, {x_1}, \cdots , {{\hat x}_i}, \cdots , {x_{n - 1}}} \right]}. $ |
Then, the statement follows from Eq (2.8).
In this section, we will prove Conjecture 1.1 for strong transposed Poisson $ n $-Lie algebras. First, we recall the notion of derivations of transposed Poisson $ n $-Lie algebras.
Definition 3.1. Let $ (L, \cdot, \left[{-, \cdots, - } \right]) $ be a transposed Poisson $ n $-Lie algebra. The linear operation $ D: L\rightarrow L $ is called a derivation of $ (L, \cdot, \left[{-, \cdots, - } \right]) $ if the following holds for any $ u, v, x_{i}\in L, 1\leq i\leq n $:
(1) $ D $ is a derivation of $ \left({L, \cdot} \right) $, i.e., $ D\left({uv} \right) = D\left(u \right)v + uD\left(v \right) $;
(2) $ D $ is a derivation of $ (L, \left[{-, \cdots, - } \right]) $, i.e.,
$ D\left( \left[ {{x_1}, \cdots , x_n} \right] \right) = \sum\limits_{i = 1}^n {\left[ {{x_1}, \cdots , {x_{i - 1}}, D\left( {{x_i}} \right), {x_{i + 1}}, \cdots , {x_n}} \right]}. $ |
Lemma 3.1. Let $ (L, \cdot, \left[{-, \cdots, - } \right]) $ be a transposed Poisson $ n $-Lie algebra and $ D $ a derivation of $ (L, \cdot, \left[{-, \cdots, - } \right]) $. For any $ y_i\in L, 1\leq i\leq n+1 $, we have the following:
(1)
$ n+1∑i=1(−1)i−1D(yi)D([y1,⋯,ˆyi,⋯,yn+1])=n+1∑i=1n+1∑j=1,j≠i(−1)i−1D(yi)[y1,⋯,D(yj),⋯,ˆyi,⋯,yn+1]; $
|
(3.1) |
(2)
$ n+1∑i=1(−1)i−1D(yi)D([y1,⋯,ˆyi,⋯,yn+1])=n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)iyi[y1,⋯,D(yj),⋯,D(yk),⋯,ˆyi,⋯,yn+1], $
|
(3.2) |
where, for any $ i > j $, $ \sum\limits_{i}^{j} $ denotes the empty sum, which is equal to zero.
Proof. (1) The statement follows immediately from Definition 3.1.
(2) By applying Eq (3.1), we need to prove the following equation:
$ n+1∑i=1n+1∑j=1,j≠i(−1)i−1nD(yi)[y1,⋯,D(yj),⋯,ˆyi,⋯,yn+1]=n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)inyi[y1,⋯,D(yj),⋯,D(yk),⋯,ˆyi,⋯,yn+1]. $
|
For any $ 1\leq i\leq n+1 $, denote $ A_i : = n\sum\limits_{j = 1, j \ne i}^{n + 1} {{{(- 1)}^{i - 1}}D({y_i})\left[{{y_1}, \cdots, D({y_j}), \cdots, {{\hat y}_i}, \cdots, {y_{n + 1}}} \right]} $. Then, we have
$ \sum\limits_{i = 1}^{n + 1} {\sum\limits_{j = 1, j \ne i}^{n + 1} {{{( - 1)}^{i - 1}}nD({y_i})\left[ {{y_1}, \cdots , D({y_j}), \cdots , {{\hat y}_i}, \cdots , {y_{n + 1}}} \right]} } = \sum\limits_{i = 1}^{n + 1} { {{A_i}} }. $ |
Note that
$ Ai=(−1)i−1(nD(yi)[D(y1),y2,⋯,ˆyi,⋯,yn+1]+nD(yi)[y1,D(y2),y3,⋯,ˆyi,⋯,yn+1]+⋯+nD(yi)[y1,⋯,ˆyi,⋯,yn,D(yn+1)])=(−1)i−1([D(yi)D(y1),y2,⋯,ˆyi,⋯,yn+1]+n+1∑k=2,k≠i[D(y1),y2,⋯,ykD(yi),⋯,ˆyi,⋯,yn+1]+[y1,D(yi)D(y2),y3,⋯,ˆyi,⋯,yn+1]+n+1∑k=1,k≠2,i[y1,D(y2),y3,⋯,ykD(yi),⋯,ˆyi,⋯,yn+1]+⋯+[y1,⋯,ˆyi,⋯,yn,D(yi)D(yn+1)]+n∑k=1,k≠i[y1,⋯,ykD(yi),⋯,ˆyi,⋯,yn,D(yn+1)])=(−1)i−1n+1∑j=1,j≠i[y1,⋯,D(yi)D(yj),⋯,ˆyi,⋯,yn+1]+(−1)i−1n+1∑j=1,j≠in+1∑k=1,k≠j,i[y1,⋯,D(yj),⋯,ykD(yi),⋯,ˆyi,⋯,yn+1]. $
|
Thus, we have
$ n+1∑i=1Ai=n+1∑j=1n+1∑i=1,i≠j(−1)j−1[y1,⋯,D(yj)D(yi),⋯,ˆyj,⋯,yn+1]+n+1∑i=1n+1∑j=1,j≠in+1∑k=1,k≠i,j(−1)i−1[y1,⋯,D(yj),⋯,ykD(yi),⋯,ˆyi,⋯,yn+1]=T1+T2, $
|
where
$ T1:=n+1∑j=1n+1∑i=1,i≠j(−1)j−1[y1,⋯,D(yj)D(yi),⋯,ˆyj,⋯,yn+1],T2:=n+1∑i=1n+1∑j=1,j≠in+1∑k=1,k≠i,j(−1)i−1[y1,⋯,D(yj),⋯,ykD(yi),⋯,ˆyi,⋯,yn+1]. $
|
Note that
$ T1=n+1∑j,i=1Bji, $
|
where $ {B_{ji}} = {(- 1)^{j - 1}}\left[{{y_1}, \cdots, D({y_j})D({y_i}), \cdots, {{\hat y}_j}, \cdots, {y_{n + 1}}} \right] $ for any $ 1\leq j\neq i\leq n+1 $, and $ {B_{ii}} = 0 $ for any $ 1\leq i\leq n+1 $.
For any $ 1\leq i, j\leq n+1, $ without loss of generality, assume that $ i < j $; then, we have
$ Bji+Bij=(−1)j−1[y1,⋯,D(yj)D(yi),⋯,ˆyj,⋯,yn+1]+(−1)i−1[y1,⋯,ˆyi,⋯,D(yi)D(yj),⋯,yn+1]=(−1)j−1[y1,⋯,D(yj)D(yi),⋯,ˆyj,⋯,yn+1]+(−1)i−1+j−i+1[y1,⋯,D(yj)D(yi),⋯,ˆyj,⋯,yn+1]=0, $
|
which implies that $ {T_1} = \sum\limits_{j, i = 1}^{n + 1} {{B_{ji}}} = 0. $
Thus, we get that $ \sum\limits_{i = 1}^{n + 1} { {{A_i}} } = {T_2} $.
We rewrite
$ n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)inyi[y1,⋯,D(yj),⋯,D(yk),⋯,ˆyi,⋯,yn+1]=n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠in+1∑t=1,t≠j,k,i(−1)i⋅[y1,⋯,D(yj),⋯,D(yk),⋯,ytyi,⋯,ˆyi,⋯,yn+1]+n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,yiD(yj),⋯,D(yk),⋯,ˆyi,⋯,yn+1]+n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]=M1+M2+M3, $
|
where
$ M1:=n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠in+1∑t=1,t≠j,k,i(−1)i⋅[y1,⋯,D(yj),⋯,D(yk),⋯,ytyi,⋯,ˆyi,⋯,yn+1],M2:=n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,yiD(yj),⋯,D(yk),⋯,ˆyi,⋯,yn+1],M3:=n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]. $
|
Note that
$ M1=n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠in+1∑t=1,t≠j,k,i(−1)i⋅[y1,⋯,D(yj),⋯,D(yk),⋯,ytyi,⋯,ˆyi,⋯,yn+1]=n+1∑i,j,k,t=1Bijkt, $
|
where
$ Bijkt={0,if any two indices are equal or k<j;(−1)i[y1,⋯,D(yj),⋯,D(yk),⋯,ytyi,⋯,ˆyi,⋯,yn+1],otherwise. $
|
For any $ 1\leq j, k\leq n+1, $ without loss of generality, assume that $ t < i; $ then, we have
$ Bijkt+Btjki=(−1)i[y1,⋯,D(yj),⋯,D(yk),⋯,ytyi,⋯,ˆyi,⋯,yn+1]+(−1)t[y1,⋯,D(yj),⋯,D(yk),⋯,ˆyt,⋯,ytyi,⋯,yn+1]=(−1)i[y1,⋯,D(yj),⋯,D(yk),⋯,ytyi,⋯,ˆyi,⋯,yn+1]+(−1)t+i−t−1[y1,⋯,D(yj),⋯,D(yk),⋯,ytyi,⋯,ˆyi,⋯,yn+1]=0, $
|
which implies that $ {M_1} = 0. $
Therefore, we only need to prove the following equation:
$ M2+M3=n+1∑i=1n+1∑j=1,j≠in+1∑k=1,k≠i,j(−1)i−1[y1,⋯,D(yj),⋯,ykD(yi),⋯,ˆyi,⋯,yn+1]. $
|
First, we have
$ n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,yiD(yj),⋯,D(yk),⋯,ˆyi,⋯,yn+1]+n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]=n+1∑k=1,k≠ik−1∑j=1,j≠i(−1)i[y1,⋯,yiD(yj),⋯,D(yk),⋯,ˆyi,⋯,yn+1]+n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]=n+1∑j=1,j≠ij−1∑k=1,k≠i(−1)i[y1,⋯,yiD(yk),⋯,D(yj),⋯,ˆyi,⋯,yn+1]+n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]=n+1∑j=1,j≠in+1∑k=1,k≠i,j(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]. $
|
Thus,
$ M2+M3=n+1∑i=1n+1∑j=1,j≠in+1∑k=1,k≠i,j(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]=n+1∑j=1n+1∑i=1,i≠jn+1∑k=1,k≠i,j(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]=n+1∑j=1n+1∑i=1,i≠ji−1∑k=1,k≠j(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]+n+1∑j=1n+1∑i=1,i≠jn+1∑k=i+1,k≠j(−1)i[y1,⋯,D(yj),⋯,ˆyi,⋯,yiD(yk),⋯,yn+1]. $
|
Note that, for any $ 1\leq j\leq n+1, $ we have
$ n+1∑i=1,i≠ji−1∑k=1,k≠j(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]=n+1∑i=1,i≠ji−1∑k=1,k≠j(−1)i[y1,⋯,D(yj),⋯,yk−1,yiD(yk),yk+1,⋯,ˆyi⋯,yn+1]=n+1∑i=1,i≠ji−1∑k=1,k≠j(−1)k−1[y1,⋯,D(yj),⋯,ˆyk,⋯,yi−1,yiD(yk),yi+1,⋯,yn+1]=n+1∑i=1,i≠ji−1∑k=1,k≠j(−1)k−1[y1,⋯,D(yj),⋯,ˆyk,⋯,yiD(yk),⋯,yn+1]. $
|
Similarly, we have
$ n+1∑i=1,i≠jn+1∑k=i+1,k≠j(−1)i[y1,⋯,D(yj),⋯,ˆyi,⋯,yiD(yk),⋯,yn+1]=n+1∑i=1,i≠jn+1∑k=i+1,k≠j(−1)k−1[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyk,⋯,yn+1]. $
|
Thus,
$ M2+M3=n+1∑j=1n+1∑i=1,i≠ji−1∑k=1,k≠j(−1)k−1[y1,⋯,D(yj),⋯,ˆyk,⋯,yiD(yk),⋯,yn+1]+n+1∑j=1n+1∑i=1,i≠jn+1∑k=i+1,k≠j(−1)k−1[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyk,⋯,yn+1]=n+1∑j=1n+1∑i=1,i≠jn+1∑k=1,k≠i,j(−1)k−1[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyk,⋯,yn+1]=n+1∑k=1n+1∑j=1,j≠kn+1∑i=1,i≠j,k(−1)k−1[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyk,⋯,yn+1]=n+1∑i=1n+1∑j=1,j≠in+1∑k=1,k≠j,i(−1)i−1[y1,⋯,D(yj),⋯,ykD(yi),⋯,ˆyi,⋯,yn+1]. $
|
The proof is completed.
Theorem 3.1. Let $ (L, \cdot, \left[{-, \cdots, - } \right]) $ be a strong transposed Poisson $ n $-Lie algebra and $ D $ a derivation of $ (L, \cdot, \left[{-, \cdots, - } \right]) $. Define an $ (n + 1) $-ary operation:
$ μn+1(x1,⋯,xn+1):=n+1∑i=1(−1)i−1D(xi)[x1,⋯,ˆxi,⋯,xn+1] $
|
(3.3) |
for any $ {x_i}\in L, 1\leq i\leq n+1. $ Then, $ (L, \mu_{n+1}) $ is an $ (n+1) $-Lie algebra.
Proof. For convenience, we denote
$ {\mu _{n + 1}}\left( {{x_1}, \cdots , {x_{n + 1}}} \right): = \left[ {{x_1}, \cdots , {x_{n + 1}}} \right]. $ |
On one hand, we have
$ [[y1,⋯,yn+1],x1,⋯,xn](3.3)=n+1∑i=1(−1)i−1[D(yi)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,xn](3.3)=n+1∑i=1(−1)i−1D(D(yi)[y1,⋯,ˆyi,⋯,yn+1])[x1,⋯,xn]+n+1∑i=1n∑j=1(−1)i+j−1D(xj)[D(yi)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]=n+1∑i=1(−1)i−1D2(yi)[y1,⋯,ˆyi,⋯,yn+1][x1,⋯,xn]+n+1∑i=1(−1)i−1D(yi)D([y1,⋯,ˆyi,⋯,yn+1])[x1,⋯,xn]+n+1∑i=1n∑j=1(−1)i+j−1D(xj)[D(yi)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn](3.1)=n+1∑i=1(−1)i−1D2(yi)[y1,⋯,ˆyi,⋯,yn+1][x1,⋯,xn]+n+1∑i=1n+1∑k=1,k≠i(−1)i−1D(yi)[y1,⋯,D(yk),⋯,ˆyi,⋯,yn+1][x1,⋯,xn]+n+1∑i=1n∑j=1(−1)i+j−1D(xj)[D(yi)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]=n+1∑i=1(−1)i−1D2(yi)[y1,⋯,ˆyi,⋯,yn+1][x1,⋯,xn]+n+1∑k=1k−1∑i=1(−1)k+i−1D(yi)[D(yk),y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1][x1,⋯,xn]+n+1∑k=1n+1∑i=k+1(−1)i+kD(yi)[D(yk),y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1][x1,⋯,xn]+n+1∑i=1n∑j=1(−1)i+j−1D(xj)[D(yi)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]. $
|
On the other hand, for any $ 1\leq k\leq n $, we have
$ (−1)k−1[[yk,x1,⋯,xn],y1,⋯,ˆyk,⋯,yn+1](3.3)=(−1)k−1[D(yk)[x1,⋯,xn],y1,⋯,ˆyk,⋯,yn+1]+n∑j=1(−1)j+k−1[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyk,⋯,yn+1](3.3)=(−1)k−1D(D(yk)[x1,⋯,xn])[y1,⋯,ˆyk,⋯,yn+1]+k−1∑i=1(−1)i+k−1D(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]+n+1∑i=k+1(−1)i+kD(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1]+n∑j=1(−1)j+k−1D(D(xj)[yk,x1,⋯,ˆxj,⋯,xn])[y1,⋯,ˆyk,⋯,yn+1]+n∑j=1n+1∑i=k+1((−1)i+jD(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1])+n∑j=1k−1∑i=1((−1)i+j−1D(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1])=(−1)k−1D2(yk)[x1,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]+k−1∑i=1(−1)i+k−1D(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]+n+1∑i=k+1(−1)i+kD(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1]+n∑j=1(−1)j+k−1D2(xj)[yk,x1,⋯,ˆxj,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]+n∑j=1n+1∑i=k+1((−1)i+jD(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1])+n∑j=1k−1∑i=1((−1)i+j−1D(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1])+(−1)k−1D(yk)D([x1,⋯,xn])[y1,⋯,ˆyk,⋯,yn+1]+n∑j=1(−1)j+k−1D(xj)D([yk,x1,⋯,ˆxj,⋯,xn])[y1,⋯,ˆyk,⋯,yn+1](3.2)=(−1)k−1D2(yk)[x1,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]+k−1∑i=1(−1)i+k−1D(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]+n+1∑i=k+1(−1)i+kD(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1]+n∑j=1(−1)j+k−1D2(xj)[yk,x1,⋯,ˆxj,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]+n∑j=1n+1∑i=k+1((−1)i+jD(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1])+n∑j=1k−1∑i=1((−1)i+j−1D(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1])+n∑j=1n∑t=j+1(−1)kyk[x1,⋯,D(xj),⋯,D(xt),⋯,xn][y1,⋯,ˆyk,⋯,yn+1]+n∑i=1n∑j=1,j≠i(−1)k+ixi[D(yk),x1,⋯,D(xj),⋯,ˆxi,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]+n∑i=1n∑j=1,j≠in∑t=j+1,t≠i(−1)k+ixi[yk,x1,⋯,D(xj),D(xt),⋯,ˆxi,⋯,xn]⋅[y1,⋯,ˆyk,⋯,yn+1]. $
|
We denote
$ \sum\limits_{i = 1}^{n + 1} {{{( - 1)}^{i - 1}}\left[ {\left[ {{y_i}, {x_1}, \cdots , {x_n}} \right], {y_1}, \cdots , {{\hat y}_i}, \cdots , {y_{n + 1}}} \right]} = \sum\limits_{i = 1}^7 {{A_i}}, $ |
where
$ A1:=n+1∑i=1(−1)i−1D2(yi)[x1,⋯,xn][y1,⋯,ˆyi,⋯,yn+1],A2:=n+1∑k=1n∑j=1(−1)k+j−1D2(xj)[yk,x1,⋯,ˆxj,⋯,xn][y1,⋯,ˆyk,⋯,yn+1],A3:=n+1∑i=1n∑j=1n∑k=j+1(−1)iyi[x1,⋯,D(xj),⋯,D(xk),⋯,xn][y1,⋯,ˆyi,⋯,yn+1],A4:=n+1∑k=1n∑i=1n∑j=1,j≠in∑t=j+1,t≠i((−1)k+ixi[yk,x1,⋯,D(xj),D(xt),⋯,ˆxi,⋯,xn]⋅[y1,⋯,ˆyk,⋯,yn+1]),A5:=n+1∑k=1k−1∑i=1(−1)k+i−1D(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]+n+1∑k=1n+1∑i=k+1(−1)i+kD(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1],A6:=n+1∑k=1n∑i=1n∑j=1,j≠i((−1)k+ixi[D(yk),x1,⋯,D(xj),⋯,ˆxi,⋯,xn]⋅[y1,⋯,ˆyk,⋯,yn+1]),A7:=n+1∑k=1n∑j=1n+1∑i=k+1((−1)k+i+jD(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1])+n+1∑k=1n∑j=1k−1∑i=1((−1)k+i+j−1D(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]). $
|
By Eq (2.5), for fixed $ j $, we have
$ \sum\limits_{k = 1}^{n + 1} {{{( - 1)}^{k + j - 1}}{D^2}({x_j})\left[ {{y_k}, {x_1}, \cdots , {{\hat x}_j}, \cdots , {x_n}} \right]\left[ {{y_1}, \cdots , {{\hat y}_k}, \cdots , {y_{n + 1}}} \right]} = 0. $ |
So, we obtain that $ {{A_2}} = 0. $
By Eq (2.3), for fixed $ j $ and $ k $, we have
$ \sum\limits_{i = 1}^{n + 1} {{{( - 1)}^i}{y_i}\left[ {{x_1}, \cdots , D({x_j}), \cdots , D({x_k}), \cdots , {x_n}} \right]\left[ {{y_1}, \cdots , {{\hat y}_i}, \cdots , {y_{n + 1}}} \right]} = 0. $ |
So, we obtain that $ {{A_3}} = 0. $
By Eq (2.5), for fixed $ j $ and $ t $, we have
$ \sum\limits_{k = 1}^{n + 1} {{{( - 1)}^{k + i}}{x_i}\left[ {{y_k}, {x_1}, \cdots , D({x_j}), D({x_t}), \cdots , {{\hat x}_i}, \cdots , {x_n}} \right]\left[ {{y_1}, \cdots , {{\hat y}_k}, \cdots , {y_{n + 1}}} \right]} = 0. $ |
So, we obtain that $ {{A_4}} = 0. $
By Eq (2.9), for fixed $ i $ and $ k $, we have
$ (−1)k+i−1D(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]+(−1)i+kD(yk)[D(yi)[x1,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]=(−1)k+i−1D(yi)[D(yk),y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1][x1,⋯,xn]+(−1)i+kD(yk)[D(yi),y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1][x1,⋯,xn]. $
|
Thus, we obtain
$ A5=n+1∑k=1k−1∑i=1(−1)k+i−1D(yi)[D(yk),y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1][x1,⋯,xn]+n+1∑k=1n+1∑i=k+1(−1)i+kD(yi)[D(yk),y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1][x1,⋯,xn]. $
|
By Eq (2.3), for fixed $ j $ and $ k $, we have
$ n∑i=1(−1)k+ixi[D(yk),x1,⋯,D(xj),⋯,ˆxi,⋯,xn]=(−1)k−1D(yk)[x1,⋯,D(xj),⋯,xn]+(−1)k+j−1D(xj)[D(yk),x1,⋯,xn]=(−1)k+jD(yk)[D(xj),x1,⋯,ˆxj,⋯,xn]+(−1)k+j−1D(xj)[D(yk),x1,⋯,xn]. $
|
Thus, we get
$ A6=n+1∑k=1n∑j=1(−1)k+jD(yk)[D(xj),x1,⋯,ˆxj,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]+n+1∑k=1n∑j=1(−1)k+j−1D(xj)[D(yk),x1,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]. $
|
By Eq (2.4), for fixed $ j $ and $ i $, we have
$ n+1∑k=i+1(−1)k+i+j−1D(yi)[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]+i−1∑k=1(−1)k+i+jD(yi)[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1]=(−1)j+i−1D(yi)[D(xj)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]. $
|
So, we obtain
$ {{{A_7}}} = \sum\limits_{j = 1}^n {\sum\limits_{i = 1}^{n + 1} {{{( - 1)}^{j + i - 1}}D({y_i})\left[ {D({x_j})\left[ {{y_1}, \cdots , {{\hat y}_i}, \cdots , {y_{n + 1}}} \right], {x_1}, \cdots , {{\hat x}_j}, \cdots , {x_n}} \right]} } . $ |
By Eq (2.9), we have
$ (−1)i+jD(yi)[D(xj),x1,⋯,ˆxj,⋯,xn][y1,⋯,ˆyi,⋯,yn+1]+(−1)i+j−1D(xj)[D(yi),x1,⋯,xn][y1,⋯,ˆyi,⋯,yn+1]+(−1)j+i−1D(yi)[D(xj)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]=(−1)j+i−1D(xj)[D(yi)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]. $
|
So, we get
$ {{{A_6}}} + {{{A_7}}} = \sum\limits_{i = 1}^{n + 1} {\sum\limits_{j = 1}^n {{{( - 1)}^{j + i - 1}}D({x_j})\left[ {D({y_i})\left[ {{y_1}, \cdots , {{\hat y}_i}, \cdots , {y_{n + 1}}} \right], {x_1}, \cdots , {{\hat x}_j}, \cdots , {x_n}} \right].} } $ |
Thus, we have
$ \sum\limits_{i = 1}^7 {{A_i}} = {{A_1}} +{{A_5}} + {{A_6}} + {{A_7}} = \left[ {\left[ {{y_1}, \cdots , {y_{n + 1}}} \right], {x_1}, \cdots , {x_n}} \right]. $ |
Therefore, $ (L, \mu_{n+1}) $ is an $ (n+1) $-Lie algebra.
Now, we can prove Conjecture 1.1 for strong transposed Poisson $ n $-Lie algebras.
Theorem 3.2. With the notations in Theorem 3.1, $ (L, \cdot, \mu_{n+1}) $ is a strong transposed Poisson $ (n + 1) $-Lie algebra.
Proof. For convenience, we denote $ {\mu _{n + 1}}\left({{x_1}, \cdots, {x_{n + 1}}} \right): = \left[{{x_1}, \cdots, {x_{n + 1}}} \right]. $ According to Theorem 3.1, we only need to prove Eqs (2.2) and (2.8).
Proof of Eq (2.2). By Eq (3.3), we have
$ n+1∑i=1[x1,⋯,hxi,⋯,xn+1]=D(hx1)[x2,⋯,xn+1]+n+1∑j=2(−1)j−1D(xj)[hx1,x2,⋯,ˆxj,⋯,xn+1]−D(hx2)[x1,x3,⋯,xn+1]+n+1∑j=1,j≠2(−1)j−1D(xj)[x1,hx2,x3,⋯,ˆxj,⋯,xn+1]+⋯+(−1)nD(hxn)[x1,⋯,xn]+n∑j=1(−1)j−1D(xj)[x1,⋯,ˆxj,⋯,xn,hxn+1]=n+1∑i=1(−1)i−1D(hxi)[x1,⋯,ˆxi,⋯,xn]+n+1∑i=1n+1∑j=1,j≠i(−1)j−1D(xj)[x1,,⋯,hxi,⋯,ˆxj,⋯,xn+1]=n+1∑i=1(−1)i−1D(hxi)[x1,⋯,ˆxi,⋯,xn+1]+n+1∑j=1n+1∑i=1,i≠j(−1)j−1D(xj)[x1,⋯,hxi,⋯,ˆxj,⋯,xn+1]=n+1∑i=1(−1)i−1hD(xi)[x1,⋯,ˆxi,⋯,xn+1]+n+1∑i=1(−1)i−1xiD(h)[x1,⋯,ˆxi,⋯,xn+1]+n+1∑j=1n+1∑i=1,i≠j(−1)j−1D(xj)[x1,⋯,hxi,⋯,ˆxj,⋯,xn+1](2.3)=n+1∑i=1(−1)i−1hD(xi)[x1,⋯,ˆxi,⋯,xn+1]+n+1∑j=1n+1∑i=1,i≠j(−1)j−1D(xj)[x1,⋯,hxi,⋯,ˆxj,⋯,xn+1](3.3)=h[x1,⋯,xn+1]+n+1∑j=1n+1∑i=1,i≠j(−1)j−1D(xj)[x1,⋯,hxi,⋯,ˆxj,⋯,xn+1](2.2)=h[x1,⋯,xn+1]+nhn+1∑j=1(−1)j−1D(xj)[x1,⋯,ˆxj,⋯,xn+1](3.3)=h[x1,⋯,xn+1]+nh[x1,⋯,xn+1]=(n+1)h[x1,⋯,xn+1]. $
|
Proof of Eq (2.8). By Eq (3.3), we have
$ y1[hy2,x1,⋯,xn]−y2[hy1,x1,⋯,xn]+n∑i=1(−1)i−1hxi[y1,y2,x1,⋯,ˆxi,⋯,xn]=y1y2D(h)[x1,⋯,xn]+y1hD(y2)[x1,⋯,xn]−y1D(x1)[hy2,x2,⋯,xn]+y1D(x2)[hy2,x1,x3,⋯,xn]+⋯+(−1)ny1D(xn)[hy2,x1,⋯,xn−1]−y2y1D(h)[x1,⋯,xn]−y2hD(y1)[x1,⋯,xn]+y2D(x1)[hy1,x2,⋯,xn]−y2D(x2)[hy1,x1,x3,⋯,xn]+⋯+(−1)n−1y2D(xn)[hy1,x1,⋯,xn−1]+hx1D(y1)[y2,x2,⋯,xn]−hx1D(y2)[y1,x2,⋯,xn]+hx1D(x2)[y1,y2,x3,⋯,xn]+⋯+(−1)n+1hx1D(xn)[y1,y2,x2,⋯,xn−1]−hx2D(y1)[y2,x1,x3,⋯,xn]+hx2D(y2)[y1,x1,x3,⋯,xn]−hx2D(x1)[y1,y2,x3,⋯,xn]+⋯+(−1)n+2hx2D(xn)[y1,y2,x1,x3,⋯,xn−1]+⋯+(−1)n−1hxnD(y1)[y2,x1,⋯,xn−1]+(−1)nhxnD(y2)[y1,x1,⋯,xn−1]+(−1)n+1hxnD(x1)[y1,y2,x2,⋯,xn−1]+⋯+(−1)2n−1hxnD(xn−1)[y1,y2,x1,⋯,xn−2]=−y2hD(y1)[x1,⋯,xn]+hx1D(y1)[y2,x2,⋯,xn]+n∑i=2(−1)i−1hxiD(y1)[y2,x1,⋯,ˆxi,⋯,xn]+y1hD(y2)[x1,⋯,xn]−hx1D(y2)[y1,x2,⋯,xn]+n∑i=2(−1)ihxiD(y2)[y1,x1,⋯,ˆxi,⋯,xn]−y1D(x1)[hy2,x2,⋯,xn]+y2D(x1)[hy1,x2,⋯,xn]+n∑i=2(−1)i−1hxiD(x1)[y1,y2,x2,⋯,ˆxi,⋯,xn]+y1D(x2)[hy2,x1,x3,⋯,xn]−y2D(x2)[hy1,x1,x3,⋯,xn]+hx1D(x2)[y1,y2,x3,⋯,xn]+n∑i=3(−1)ihxiD(x2)[y1,y2,x1,x3,⋯,ˆxi,⋯,xn]⋯+(−1)ny1D(xn)[hy2,x1,⋯,xn−1]+(−1)n−1y2D(xn)[hy1,x1,⋯,xn−1]+n−1∑j=1(−1)n+j−1hxjD(xn)[y1,y2,x1,⋯,ˆxj,⋯,xn−1]=A1+A2+n∑i=1Bi, $
|
where
$ A1:=−y2hD(y1)[x1,⋯,xn]+n∑i=1(−1)i−1hxiD(y1)[y2,x1,⋯,ˆxi,⋯,xn],A2:=y1hD(y2)[x1,⋯,xn]+n∑i=1(−1)ihxiD(y2)[y1,x1,⋯,ˆxi,⋯,xn], $
|
and, for any $ 1\leq i\leq n, $
$ Bi:=(−1)iy1D(xi)[hy2,x1,⋯,ˆxi,⋯,xn]+(−1)i−1y2D(xi)[hy1,x1,⋯,ˆxi,⋯,xn]+i−1∑j=1(−1)i+j−1hxjD(xi)[y1,y2,x1,⋯,ˆxj,⋯,ˆxi,⋯,xn]+n∑j=i+1(−1)i+jhxjD(xi)[y1,y2,x1,⋯,ˆxi,⋯,ˆxj,⋯,xn]. $
|
By Eq (2.3), we have
$ A1=hD(y1)(−y2[x1,⋯,xn]+n∑i=1(−1)i−1xi[y2,x1,⋯,ˆxi,⋯,xn])=0. $
|
Similarly, we have that $ {A_2} = 0. $
By Eq (2.8), for any $ 1\leq i\leq n $, we have
$ Bi=(−1)iD(xi)(y1[hy2,x1,⋯,ˆxi,⋯,xn]−y2[hy1,x1,⋯,ˆxi,⋯,xn]+i−1∑j=1(−1)j−1hxj[y1,y2,x1,⋯,ˆxj,⋯,ˆxi,⋯,xn]+n∑j=i+1(−1)jhxj[y1,y2,x1,⋯,ˆxi,⋯,ˆxj,⋯,xn])=0. $
|
Thus, we get
$ {y_1}\left[ {h{y_2}, {x_1}, \cdots , {x_n}} \right] - {y_2}\left[ {h{y_1}, {x_1}, \cdots , {x_n}} \right] + \sum\limits_{i = 1}^n {{{( - 1)}^{i - 1}}h{x_i}\left[ {{y_1}, {y_2}, {x_1}, \cdots , {{\hat x}_i}, \cdots , {x_n}} \right]} = 0. $ |
The proof is completed.
Example 3.1. The commutative associative algebra $ L = k[x_1, x_2, x_3] $, together with the bracket
$ [x,y]:=x⋅D1(y)−y⋅D1(x),∀x,y∈L. $
|
gives a transposed Poisson algebra $ (L, \cdot, [-, -]) $, where $ {D_1} = \partial_{x_1} $ ([2, Proposition 2.2]). Note that the transposed Poisson algebra $ (L, \cdot, [-, -]) $ is strong according to Remark 2.5. Now, let $ {D_2} = \partial_{x_2} $; one can check that $ D_2 $ is a derivation of $ (L, \cdot, [-, -]) $. Then, there exists a strong transposed Poisson 3-Lie algebra defined by
$ [x,y,z]:=D2(x)(yD1(z)−zD1(y))+D2(y)(zD1(x)−xD1(z))+D2(z)(xD1(y)−yD1(x)), ∀x,y,z∈L. $
|
We note that $ [{x_1}, {x_2}, {x_3}] = {x_3} $, which is non-zero. The strong condition can be checked as follows:
For any $ h, y_1, y_2, z_1, z_2\in L, $ by a direct calculation, we have
$ y1[hy2,z1,z2]=y1z1hD1(z2)D2(y2)−y1z2hD1(z1)D2(y2)+y1y2z1D1(z2)D2(h)−y1y2z2D1(z1)D2(h)−y1y2hD1(z2)D2(z1)+y1z2hD1(y2)D2(z1)+y1y2z2D1(h)D2(z1)+y1y2hD1(z1)D2(z2)−y1z1hD1(y2)D2(z2)−y1y2z1D1(h)D2(z2), $
|
$ −y2[hy1,z1,z2]=−y2z1hD1(z2)D2(y1)+y2z2hD1(z1)D2(y1)−y1y2z1D1(z2)D2(h)+y1y2z2D1(z1)D2(h)+y1y2hD1(z2)D2(z1)−y2z2hD1(y1)D2(z1)−y1y2z2D1(h)D2(z1)−y1y2hD1(z1)D2(z2)+y2z1hD1(y1)D2(z2)+y1y2z1D1(h)D2(z2), $
|
$ hz1[y1,y2,z2]=hy2z1D1(z2)D2(y1)−hz1z2D1(y2)D2(y1)−hy1z1D1(z2)D2(y2)+hz1z2D1(y1)D2(y2)+hy1z1D1(y2)D2(z2)−hy2z1D1(y1)D2(z2), $
|
$ −hz2[y1,y2,z1]=−hy2z2D1(z1)D2(y1)+hz1z2D1(y2)D2(y1)+hy1z2D1(z1)D2(y2)−hz1z2D1(y1)D2(y2)−hy1z2D1(y2)D2(z1)+hy2z2D1(y1)D2(z1). $
|
Thus, we get
$ {y_1}[h{y_2}, {z_1}, {z_2}] - {y_2}[h{y_1}, {z_1}, {z_2}] + h{z_1}[{y_1}, {y_2}, {z_2}] - h{z_2}[{y_1}, {y_2}, {z_1}] = 0. $ |
We have studied transposed Poisson $ n $-Lie algebras. We first established an important class of identities for transposed Poisson $ n $-Lie algebras, which were subsequently used throughout the paper. We believe that the identities developed here will be useful in investigations of the structure of transposed Poisson $ n $-Lie algebras in the future. Then, we introduced the notion of a strong transposed Poisson $ n $-Lie algebra and derived an $ (n+1) $-Lie algebra from a strong transposed Poisson $ n $-Lie algebra with a derivation. Finally, we proved the conjecture of Bai et al. [2] for strong transposed Poisson $ n $-Lie algebras.
The authors declare that they have not used artificial intelligence tools in the creation of this article.
Ming Ding was supported by the Guangdong Basic and Applied Basic Research Foundation (2023A1515011739) and the Basic Research Joint Funding Project of University and Guangzhou City under grant number 202201020103.
The authors declare that there is no conflict of interest.
[1] | Nations U (2013) World Population Ageing. Available from: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:World+Population+Ageing+2013#7. |
[2] | Censo (2010) Argentina. Available from: http://www.censo2010.indec.gov.ar/. |
[3] | Bettelli G (2011) Preoperative evaluation in geriatric surgery : comorbidity, functional status. Minerva anestesiologica 77: 637-646. |
[4] |
Fried LP, Tangen CM, Walston J, et al. (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56: M146-156. doi: 10.1093/gerona/56.3.M146
![]() |
[5] |
Grimby G, Saltin B (1983) The ageing muscle. Clin Physiol 3: 209-218. doi: 10.1111/j.1475-097X.1983.tb00704.x
![]() |
[6] | Morley JE (2008) Sarcopenia: Diagnosis and treatment. J Nutr Heal Aging 12: 452-456. |
[7] | Peterson MJ, Giuliani C, Morey MC, et al. (2009) Physical activity as a preventative factor for frailty: The health, aging, and body composition study. J Gerontol Ser A Biol Sci Med Sci 64: 61-68. |
[8] |
Puetz TW (2006) Physical activity and feelings of energy and fatigue: Epidemiological evidence. Sport Med 36: 767-780. doi: 10.2165/00007256-200636090-00004
![]() |
[9] |
Puetz TW, Flowers SS, O’Connor PJ (2008) A randomized controlled trial of the effect of aerobic exercise training on feelings of energy and fatigue in sedentary young adults with persistent fatigue. Psychother Psychosom 77: 167-174. doi: 10.1159/000116610
![]() |
[10] |
Baumgartner RN, Koehler KM, Gallagher D, et al. (1998) Epidemiology of sarcopenia among the elderly in New Mexico.Am J Epidemiol 147: 755-763. doi: 10.1093/oxfordjournals.aje.a009520
![]() |
[11] |
Henwood TR, Riek S, Taaffe DR (2008) Strength versus muscle power-specific resistance training in community-dwelling older adults. J Gerontol A Biol Sci Med Sci 63: 83-91. doi: 10.1093/gerona/63.1.83
![]() |
[12] |
Englund U, Littbrand H, Sondell A, et al. (2005) A 1-year combined weight-bearing training program is beneficial for bone mineral density and neuromuscular function in older women. Osteoporos Int 16: 1117-1123. doi: 10.1007/s00198-004-1821-0
![]() |
[13] | Liu C-J, Latham NK (2009) Progressive resistance strength training for improving physical function in older adults. Cochrane Database Syst Rev: CD002759. |
[14] |
Rantanen T, Guralnik JM, Foley D, et al. (1999) Midlife hand grip strength as a predictor of old age disability. JAMA 281: 558-560. doi: 10.1001/jama.281.6.558
![]() |
[15] | Pate RR, Pratt M, Blair SN, et al. (1995) Physical activity and public health. A recommendation from the centers for disease control and prevention and the american college of sports medicine. JAMA: 402-407. |
[16] | Rydwik E, Lammes E, Frändin K, et al. (2008) Effects of a physical and nutritional intervention program for frail elderly people over age 75. A randomized controlled pilot treatment trial. Aging Clin Exp Res 20: 159-170. |
[17] | King M, Sibbald B, Ward E, et al. (2000) Randomised controlled trial of non-directive counselling, cognitive-behaviour therapy and usual general practitioner care in the management of depression as well as mixed anxiety and depression in primary care. Health Technol Assess 4. |
[18] |
Cress ME, Buchner DM, Questad K a, et al. (1999) Exercise: effects on physical functional performance in independent older adults. J Gerontol A Biol Sci Med Sci 54: M242-248. doi: 10.1093/gerona/54.5.M242
![]() |
[19] | Ettinger WH, Burns R, Messier SP, et al. (1997) A randomized trial comparing aerobic exercise and resistance exercise with a health education program in older adults with knee osteoarthritis. FAST: 25-31. |
[20] | Messier SP, Loeser RF, Mitchell MN, et al. (2000) Exercise and weight loss in obese older adults with knee osteoarthritis: a preliminary study. J Am Geriatrics Soc 48:1062-1072. |
[21] |
Miszko T a, Cress ME, Slade JM, et al. (2003) Effect of strength and power training on physical function in community-dwelling older adults.J Gerontol A Biol Sci Med Sci 58: 171-175. doi: 10.1093/gerona/58.2.M171
![]() |
[22] |
Gauchard GC, Gangloff P, Jeandel C, et al. (2003) Physical activity improves gaze and posture control in the elderly. Neurosci Res 45: 409-417. doi: 10.1016/S0168-0102(03)00008-7
![]() |
[23] | Paterson DH, Jones GR, Rice CL (2007) Ageing and physical activity: evidence to develop exercise recommendations for older adults. CanJ public Heal Rev 98 Suppl: 2. |
[24] | Kortebein P, Ferrando A, Lombeida J, et al. (2007) Effect of 10 days of bed rest on skeletal muscle in healthy older adults.JAMA 297: 1772-1774. |
[25] |
Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. (2010) Sarcopenia: European consensus on definition and diagnosis. Age Ageing 39: 412-423. doi: 10.1093/ageing/afq034
![]() |
[26] | Freiberger E, Sieber C, Pfeifer K (2011) Physical activity, exercise, and sarcopenia—future challenges. Wien Med Wochenschr 161: 416-425. |
[27] |
Clegg A, Young J, Iliffe S, et al. (2013) Frailty in elderly people. Lancet (London, England) 381: 752-762. doi: 10.1016/S0140-6736(12)62167-9
![]() |
[28] | Felicio DC, Pereira DS, Assumpção AM, et al. (2014) Inflammatory mediators, muscle and functional performance of community-dwelling elderly women. Arch Gerontol Geriatr59: 549-553 |
[29] | Smietniansky M, Perrota M, Saadi JM (2015) Impacto de una Consulta Geriátrica en el Proceso de Toma de Decisiones en Pacientes con Cáncer Ginecológico. Congreso Argentino de Ginecología Oncológica: 289-296. |
[30] | Smietniansky M, Cal M (2015) Impact of a geriatric consultation in decision-making in elderly patients with severe aortic stenosis candidates for TAVI. An Sci Meeting AGS. |
[31] |
Mijnarends DM, Meijers JMM, Halfens RJG, et al. (2013) Validity and reliability of tools to measure muscle mass, strength, and physical performance in community-dwelling older people: A systematic review. J Am Med Dir Assoc 14: 170-178. doi: 10.1016/j.jamda.2012.10.009
![]() |
[32] | Legrand D, Vaes B, Matheï C, et al. (2014) Muscle strength and physical performance as predictors of mortality, hospitalization, and disability in the oldest old. J Am Geriatr Soc62: 1030-1038. |
[33] | Bijlsma AY, Pasma JH, Lambers D, et al. (2013) Muscle strength rather than muscle mass is associated with standing balance in elderly outpatients. J Am Med Dir Assoc 14: 493-498. |
[34] | Afilalo J, Eisenberg MJ, Morin J-F, et al. (2010) Gait speed as an incremental predictor of mortality and major morbidity in elderly patients undergoing cardiac surgery. J Am Coll Cardiol56: 1668-1676. |
[35] | Vasunilashorn S, Coppin AK, Patel K V, et al. (2009) Use of the short physical performance battery score to predict loss of ability to walk 400 meters: Analysis from the InCHIANTI study. J Gerontol-Ser A Biol Sci Med Sci 64: 223-229. |
[36] | Spruit MA, Sillen MJH, Groenen MTJ, et al. (2013) New Normative values for handgrip strength: results from the uk biobank. J Am Med Dir Assoc 14: 775.e5-e11 |
[37] | Hasselager R, G genur I (2014) Core muscle size assessed by perioperative abdominal CT scan is related to mortality, postoperative complications, and hospitalization after major abdominal surgery: A systematic review. Langenbeck’s Arch Surg: 1-9. |
[38] | Cooper R, Hardy R, Sayer A, et al. (2011) Age and gender differences in physical capability levels from mid-life onwards: The harmonisation and meta-analysis of data from eight UK cohort studies. PLoS One 6. |
[39] | Hardy R, Cooper R, Aihie Sayer A, et al. (2013) Body mass index, muscle strength and physical performance in older adults from eight cohort studies: the halcyon programme. PLoS One 8: e56483. Available from: http://dx.plos.org/10.1371/journal.pone.0056483. |
[40] |
Savela SL, Koistinen P, Stenholm S, et al. (2013) Leisure-time physical activity in midlife is related to old age frailty.J Gerontol-Ser A Biol Sci Med Sci 68: 1433-1438. doi: 10.1093/gerona/glt029
![]() |
[41] |
Katzmarzyk PT, Church TS, Craig CL, et al. (2009) Sitting time and mortality from all causes, cardiovascular disease, and cancer. Med Sci Sports Exerc 41: 998-1005. doi: 10.1249/MSS.0b013e3181930355
![]() |
[42] | Saltin B, Grimby G (1968) Physiological analysis of middle-aged and old former athletes. Comparison with still active athletes of the same ages. Circulation 38: 1104-1115. |
[43] |
Rödjer L, Jonsdottir IH, Rosengren A, et al. (2012) Self-reported leisure time physical activity: A useful assessment tool in everyday health care. BMC Public Health 12: 693. doi: 10.1186/1471-2458-12-693
![]() |
[44] | Centers for Disease Control and Prevention. U.S. Physical Activity Statistics. 2007. Department of Health and Human Services. Available from: http://apps.nccd.cdc.gov/PASurveillance/StateSumResultV.asp?CI=&Year=2007&State=0#data. |
[45] | US Department of Health & Human Services. Physical guidelines for American. 2010. Available at: http://www.healthypeople. gov/ default.htm. Accessed August 28th 2010. |
[46] | Keysor JJ (2003) Does late-life physical activity or exercise prevent or minimize disablement? A critical review of the scientific evidence. Am J Prev Med 25: 129-136. |
[47] | Cesari M, Vellas B, Hsu F-C, et al. (2015) A physical activity intervention to treat the frailty syndrome in older persons-results from the LIFE-P study. J Gerontol A Biol Sci Med Sci70: 216-222. |
[48] |
Liu CK, Leng X, Hsu FC, et al. (2014) The impact of sarcopenia on a physical activity intervention: The lifestyle interventions and independence for elders pilot study (LIFE-P). J Nutr Heal Aging 18: 59-64. doi: 10.1007/s12603-013-0369-0
![]() |
[49] | Giné-Garriga M, Roqué-Fíguls M, Coll-Planas L, et al. (2014) Physical exercise interventions for improving performance-based measures of physical function in community-dwelling, frail older adults: A systematic review and meta-analysis.Arch Phys Med Rehabil.95: 753-769. |
[50] | Stewart VH, Saunders DH, Greig CA (2014) Responsiveness of muscle size and strength to physical training in very elderly people: A systematic review. Scand J Med Sci Sports 24: e1-10. |
[51] | Fiatarone MA, O’Neill EF, Ryan ND, et al. (1994) Exercise training and nutritional supplementation for physical frailty in very elderly people. The New England J Med 330: 1769-1775. |
[52] | Galvão DA, Taaffe DR, Spry N, et al. (2010) Combined resistance and aerobic exercise program reverses muscle loss in men undergoing androgen suppression therapy for prostate cancer without bone metastases: A randomized controlled trial.J Clin Oncol28: 340-347. |
1. | K. Abdurasulov, F. Deraman, A. Saydaliyev, S. H. Sapar, Transposed Poisson Structures on Low Dimensional Quasi-Filiform Lie Algebras of Maximum Length, 2024, 45, 1995-0802, 5735, 10.1134/S1995080224606866 |