Research article Special Issues

Investigating glucose-lactate metabolism in glioblastoma multiforme via universal physics-informed neural networks

  • Received: 08 May 2025 Revised: 02 July 2025 Accepted: 08 July 2025 Published: 28 July 2025
  • Understanding the metabolic adaptations of cancer cells is crucial for uncovering potential therapeutic targets and improving treatment strategies. In this study, we present a hybrid modeling framework that combines Physics-Informed Neural Networks (PINNs) and Universal PINNs (UPINNs) to investigate glucose-lactate metabolism in glioblastoma cell lines. We first employed PINNs to infer critical model parameters governing glucose uptake and phenotypic switching in tumor cells, demonstrating high accuracy using synthetic data. We then extended this framework using UPINNs to uncover hidden metabolic dynamics that could not be explicitly modeled, introducing a latent variable $ W $ to represent unknown functional behavior in glycolytic processes. Our approach was validated for both synthetic and experimental datasets for two glioblastoma cell lines (LN18 and LN229) with distinct metabolic phenotypes. The UPINN framework not only captured cell-type-specific behaviors but also remained robust in the presence of moderate experimental noise. Furthermore, we explored the sensitivity of the model to the trade-off between data fidelity and mechanistic constraints, showing that the choice of loss term weighting significantly impacts predictive performance. While our application centered on cancer metabolism, the proposed method was general and applicable to a wide range of systems described by differential equations, including problems in biology, engineering, and physical sciences. This work demonstrates the potential of UPINNs as a powerful and interpretable tool for data-driven discovery in partially observed dynamical systems.

    Citation: Shadi Vandvajdi, Yuannong Mao, Mahla Poudineh, Mohammad Kohandel. Investigating glucose-lactate metabolism in glioblastoma multiforme via universal physics-informed neural networks[J]. Mathematical Biosciences and Engineering, 2025, 22(9): 2486-2505. doi: 10.3934/mbe.2025091

    Related Papers:

  • Understanding the metabolic adaptations of cancer cells is crucial for uncovering potential therapeutic targets and improving treatment strategies. In this study, we present a hybrid modeling framework that combines Physics-Informed Neural Networks (PINNs) and Universal PINNs (UPINNs) to investigate glucose-lactate metabolism in glioblastoma cell lines. We first employed PINNs to infer critical model parameters governing glucose uptake and phenotypic switching in tumor cells, demonstrating high accuracy using synthetic data. We then extended this framework using UPINNs to uncover hidden metabolic dynamics that could not be explicitly modeled, introducing a latent variable $ W $ to represent unknown functional behavior in glycolytic processes. Our approach was validated for both synthetic and experimental datasets for two glioblastoma cell lines (LN18 and LN229) with distinct metabolic phenotypes. The UPINN framework not only captured cell-type-specific behaviors but also remained robust in the presence of moderate experimental noise. Furthermore, we explored the sensitivity of the model to the trade-off between data fidelity and mechanistic constraints, showing that the choice of loss term weighting significantly impacts predictive performance. While our application centered on cancer metabolism, the proposed method was general and applicable to a wide range of systems described by differential equations, including problems in biology, engineering, and physical sciences. This work demonstrates the potential of UPINNs as a powerful and interpretable tool for data-driven discovery in partially observed dynamical systems.



    加载中


    [1] National Cancer Institute, What is Cancer?, National Institutes of Health, 2021. Available from: https://www.cancer.gov/about-cancer/understanding/what-is-cancer.
    [2] D. Hanahan, R. A. Weinberg, Hallmarks of cancer: the next generation, Cell, 144 (2011), 646–674. https://doi.org/10.1016/j.cell.2011.02.013 doi: 10.1016/j.cell.2011.02.013
    [3] D. Hanahan, Hallmarks of cancer: new dimensions, Cancer Discovery, 12 (2022), 31–46. https://doi.org/10.1158/2159-8290.CD-21-1059 doi: 10.1158/2159-8290.CD-21-1059
    [4] R. A. Weinberg, The Biology of Cancer, WW Norton, 2013
    [5] R. L. Siegel, K. D. Miller, H. E. Fuchs, A. Jemal, Cancer statistics, 2022, CA Cancer J. Clin., 72 (2022), 7–33. https://doi.org/10.3322/caac.21708
    [6] D. Hanahan, R. A. Weinberg, The hallmarks of cancer, Cell, 100 (2000), 57–70. https://doi.org/10.1016/S0092-8674(00)81683-9 doi: 10.1016/S0092-8674(00)81683-9
    [7] O. Warburg, On the origin of cancer cells, Science, 123 (1956), 309–314. https://doi.org/10.1126/science.123.3191.309 doi: 10.1126/science.123.3191.309
    [8] M. G. Vander Heiden, L. C. Cantley, C. B. Thompson, Understanding the Warburg effect: the metabolic requirements of cell proliferation, Science, 324 (2009), 1029–1033. https://doi.org/10.1126/science.1160809 doi: 10.1126/science.1160809
    [9] N. N. Pavlova, C. B. Thompson, The emerging hallmarks of cancer metabolism, Cell Metab., 23 (2016), 27–47. https://doi.org/10.1016/j.cmet.2015.12.006 doi: 10.1016/j.cmet.2015.12.006
    [10] R. Pérez-Tomás, I. Pérez-Guillén, Lactate in the tumor microenvironment: an essential molecule in cancer progression and treatment, Cancers, 12 (2020), 3244. https://doi.org/10.3390/cancers12113244 doi: 10.3390/cancers12113244
    [11] Q. T. Ostrom, G. Cioffi, H. Gittleman, N. Patil, K. Waite, C. Kruchko, et al., CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016, Neuro-Oncology, 21 (2019), v1–v100. https://doi.org/10.1093/neuonc/noz150 doi: 10.1093/neuonc/noz150
    [12] R. A. Gatenby, R. J. Gillies, Why do cancers have high aerobic glycolysis?, Nat. Rev. Cancer, 4 (2004), 891–899. https://doi.org/10.1038/nrc1478 doi: 10.1038/nrc1478
    [13] N. Raghunand, R. A. Gatenby, R. J. Gillies, Microenvironmental and cellular consequences of altered blood flow in tumours, Br. J. Radiol., 76 (2003), S11–S22. https://doi.org/10.1259/bjr/12913493 doi: 10.1259/bjr/12913493
    [14] J. Metzcar, C. R. Jutzeler, P. Macklin, A. Köhn-Luque, S. C. Brüningk, A review of mechanistic learning in mathematical oncology, Front. Immunol., 15 (2024), 1363144. https://doi.org/10.3389/fimmu.2024.1363144 doi: 10.3389/fimmu.2024.1363144
    [15] J. Yang, J. Virostko, J. Liu, A. M. Jarrett, D. A. Hormuth, T. E. Yankeelov, Comparing mechanism-based and machine learning models for predicting the effects of glucose accessibility on tumor cell proliferation, Sci. Rep., 13 (2023), 10387. https://doi.org/10.1038/s41598-023-37493-3 doi: 10.1038/s41598-023-37493-3
    [16] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378 (2019), 686–707. https://doi.org/10.1016/j.jcp.2018.10.045 doi: 10.1016/j.jcp.2018.10.045
    [17] A. D. Jagtap, K. Kawaguchi, G. E. Karniadakis, Extended physics-informed neural networks (XPINNs): a generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations, Commun. Comput. Phys., 28 (2020), 2002–2041. https://doi.org/10.4208/cicp.OA-2020-0165 doi: 10.4208/cicp.OA-2020-0165
    [18] J. Willard, X. Jia, S. Xu, M. Steinbach, V. Kumar, Integrating physics-based modeling with machine learning: a survey, preprint, arXiv: 2003.04919, 2020. https://arXiv.org/abs/2003.04919
    [19] L. Podina, B. Eastman, M. Kohandel, Universal physics-informed neural networks: symbolic differential operator discovery with sparse data, in International Conference on Machine Learning, (2023), 27948–27956.
    [20] B. Mendoza-Juez, A. Martínez-González, G. F. Calvo, V. M. Pérez-García, A mathematical model for the glucose-lactate metabolism of in vitro cancer cells, Bull. Math. Biol., 74 (2012), 1125–1142. https://doi.org/10.1007/s11538-011-9705-1 doi: 10.1007/s11538-011-9705-1
    [21] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Physics-informed machine learning, Nat. Rev. Phys., 3 (2021), 422–440. https://doi.org/10.1038/s42254-021-00314-5 doi: 10.1038/s42254-021-00314-5
    [22] M. Shan, D. Dai, A. Vudem, J. D. Varner, A. D. Stroock, Multi-scale computational study of the Warburg effect, reverse Warburg effect and glutamine addiction in solid tumors, PLoS Comput. Biol., 14 (2018), e1006584. https://doi.org/10.1371/journal.pcbi.1006584 doi: 10.1371/journal.pcbi.1006584
    [23] S. Pavlides, D. Whitaker-Menezes, R. Castello-Cros, N. Flomenberg, A. K. Witkiewicz, P. G. Frank, et al., The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma, Cell Cycle, 8 (2009), 3984–4001. https://doi.org/10.4161/cc.8.23.10238 doi: 10.4161/cc.8.23.10238
    [24] L. Almeida, J. A. Denis, N. Ferrand, T. Lorenzi, A. Prunet, M. Sabbah, et al., Evolutionary dynamics of glucose-deprived cancer cells: insights from experimentally informed mathematical modelling, J. R. Soc. Interface, 21 (2024), 2023.0587. https://doi.org/10.1098/rsif.2023.0587 doi: 10.1098/rsif.2023.0587
    [25] M. Roy, S. D. Finley, Metabolic reprogramming dynamics in tumor spheroids: insights from a multicellular, multiscale model, PLoS Comput. Biol., 15 (2019), e1007053. https://doi.org/10.1371/journal.pcbi.1007053 doi: 10.1371/journal.pcbi.1007053
    [26] P. G. Jayathilake, P. Victori, C. E. Pavillet, C. H. Lee, D. Voukantsis, A. Miar, et al., Metabolic symbiosis between oxygenated and hypoxic tumour cells: an agent-based modelling study, PLoS Comput. Biol., 20 (2024), e1011944. https://doi.org/10.1371/journal.pcbi.1011944 doi: 10.1371/journal.pcbi.1011944
    [27] J. B. McGillen, C. J. Kelly, A. Martínez-González, N. K. Martin, E. A. Gaffney, P. K. Maini, et al., Glucose–lactate metabolic cooperation in cancer: insights from a spatial mathematical model and implications for targeted therapy, J. Theor. Biol., 361 (2014), 19–33. https://doi.org/10.1016/j.jtbi.2014.09.018 doi: 10.1016/j.jtbi.2014.09.018
    [28] J. Yang, J. Virostko, D. A. Hormuth, J. Liu, A. Brock, J. Kowalski, et al., An experimental-mathematical approach to predict tumor cell growth as a function of glucose availability in breast cancer cell lines, PLoS One, 16 (2021), e0240765. https://doi.org/10.1371/journal.pone.0240765 doi: 10.1371/journal.pone.0240765
    [29] P. Sonveaux, F. Végran, T. Schroeder, M. C. Wergin, J. Verrax, Z. N. Rabbani, et al., Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice, J. Clin. Invest., 118 (2008), 3930–3942. https://doi.org/10.1172/JCI36843 doi: 10.1172/JCI36843
    [30] D. Basanta, H. Hatzikirou, A. Deutsch, Evolutionary game theory elucidates the role of glycolysis in glioma progression and invasion, Cell Proliferation, 41 (2008), 980–987. https://doi.org/10.1111/j.1365-2184.2008.00560.x doi: 10.1111/j.1365-2184.2008.00560.x
    [31] L. You, H. Zhang, X. Zhu, Y. Xing, J. Zhang, An agent-based model of glucose-lactate metabolic cooperation in cancer: insights into the Warburg effect, PLoS One, 12 (2017), e0177325. https://doi.org/10.1371/journal.pone.0177325 doi: 10.1371/journal.pone.0177325
    [32] R. L. Elstrom, D. E. Bauer, M. Buzzai, R. Karnauskas, M. H. Harris, D. R. Plas, et al., Akt stimulates aerobic glycolysis in cancer cells, Cancer Res., 64 (2004), 3892–3899. https://doi.org/10.1158/0008-5472.CAN-03-2904 doi: 10.1158/0008-5472.CAN-03-2904
    [33] L. Podina, A. Ghodsi, M. Kohandel, Learning chemotherapy drug action via universal physics-informed neural networks, Pharm. Res., 42 (2025), 593–612. https://doi.org/10.1007/s11095-025-03521-8 doi: 10.1007/s11095-025-03521-8
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(831) PDF downloads(47) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog