Research article Special Issues

Targeting stem cells with oncolytic viruses: a mathematical modelling approach

  • Received: 13 April 2025 Revised: 29 June 2025 Accepted: 08 July 2025 Published: 24 July 2025
  • Intratumoural epigenetic heterogeneity, which affects the outcome of many cancer treatments, results from stem cell-differentiated cell hierarchy. Cancer stem cells, also known as tumour-initiating cells, are a pluripotent subpopulation of tumour cells capable of creating a tumour clone through self-renewal and differentiation. Oncolytic viral therapy is a category of cancer therapeutics with high specificity in targeting cancer cells while leaving normal cells unharmed. More recently, oncolytic viruses have been developed that target tumour initiating cells with some promising results. The question is what values for virus infectivity and stem cell specificity result in the best clinical outcome. To address this question, we model interactions between uninfected and infected cancer cells, within a stem cell-differentiated cell hierarchy, during oncolytic viral therapy. We calculate the basic reproduction number and use it to constrain the infectivity rates of initiating and differentiated cancer cells. Long-term tumour shrinkage is observable when this constraint is met; otherwise, treatment fails. Our results suggest that stem cell specificity of an oncolytic virus depends both on the average infectivity and mitotic rates of infected cells. There is a positive correlation between the average infectivity rate and stem cell specificity for nonmitotic infected cells: when average infectivity is high, an oncolytic virus with higher stem cell specificity leads to smaller tumours. In contrast, when average infectivity is low, the minimum tumour size is obtained when an oncolytic virus with higher potency targeting differentiated cells is used. For the perfect stem cell targeting regimen, we derive the condition that leads to the minimum tumour size.

    Citation: Sana Jahedi, Kamran Kaveh, James Watmough. Targeting stem cells with oncolytic viruses: a mathematical modelling approach[J]. Mathematical Biosciences and Engineering, 2025, 22(9): 2458-2485. doi: 10.3934/mbe.2025090

    Related Papers:

  • Intratumoural epigenetic heterogeneity, which affects the outcome of many cancer treatments, results from stem cell-differentiated cell hierarchy. Cancer stem cells, also known as tumour-initiating cells, are a pluripotent subpopulation of tumour cells capable of creating a tumour clone through self-renewal and differentiation. Oncolytic viral therapy is a category of cancer therapeutics with high specificity in targeting cancer cells while leaving normal cells unharmed. More recently, oncolytic viruses have been developed that target tumour initiating cells with some promising results. The question is what values for virus infectivity and stem cell specificity result in the best clinical outcome. To address this question, we model interactions between uninfected and infected cancer cells, within a stem cell-differentiated cell hierarchy, during oncolytic viral therapy. We calculate the basic reproduction number and use it to constrain the infectivity rates of initiating and differentiated cancer cells. Long-term tumour shrinkage is observable when this constraint is met; otherwise, treatment fails. Our results suggest that stem cell specificity of an oncolytic virus depends both on the average infectivity and mitotic rates of infected cells. There is a positive correlation between the average infectivity rate and stem cell specificity for nonmitotic infected cells: when average infectivity is high, an oncolytic virus with higher stem cell specificity leads to smaller tumours. In contrast, when average infectivity is low, the minimum tumour size is obtained when an oncolytic virus with higher potency targeting differentiated cells is used. For the perfect stem cell targeting regimen, we derive the condition that leads to the minimum tumour size.



    加载中


    [1] S. Turajlic, A. Sottoriva, T. Graham, C. Swanton, Resolving genetic heterogeneity in cancer, Nat. Rev. Genet., 20 (2019), 404–416. https://doi.org/10.1038/s41576-019-0114-6 doi: 10.1038/s41576-019-0114-6
    [2] N. McGranahan, C. Swanton, Biological and therapeutic impact of intratumor heterogeneity in cancer evolution, Cancer Cell, 27 (2015), 15–26. https://doi.org/10.1016/j.ccell.2014.12.001 doi: 10.1016/j.ccell.2014.12.001
    [3] A. Marusyk, V. Almendro, K. Polyak, Intra-tumour heterogeneity: A looking glass for cancer? Nat. Rev. Cancer, 12 (2012), 323–334. https://doi.org/10.1038/nrc3261 doi: 10.1038/nrc3261
    [4] B. Beck, C. Blanpain, Unravelling cancer stem cell potential, Nat. Rev. Cancer, 13 (2013), 727–738. https://doi.org/10.1038/nrc3597 doi: 10.1038/nrc3597
    [5] P. Valent, D. Bonnet, R. De Maria, T. Lapidot, M. Copland, J. V. Melo, et al., Cancer stem cell definitions and terminology: The devil is in the details, Nat. Rev. Cancer, 12 (2012), 767–775. https://doi.org/10.1038/nrc3368 doi: 10.1038/nrc3368
    [6] S. Vinogradov, X. Wei, Cancer stem cells and drug resistance: the potential of nanomedicine, Nanomedicine, 7 (2012), 597–615. https://doi.org/10.2217/nnm.12.22 doi: 10.2217/nnm.12.22
    [7] T. Reya, S. J. Morrison, M. F. Clarke, I. L. Weissman, Stem cells, cancer, and cancer stem cells, Nature, 414 (2001), 105–111. https://doi.org/10.1038/35102167 doi: 10.1038/35102167
    [8] N. Picco, R. A. Gatenby, A. R. A. Anderson, Stem cell plasticity and niche dynamics in cancer progression, IEEE Trans. Biomed. Eng., 64 (2017), 528–537. https://doi.org/10.1109/TBME.2016.2607183 doi: 10.1109/TBME.2016.2607183
    [9] W. Yu, Z. Wang, C. Fong, D. Liu, T. Yip, S. Au, et al., Chemoresistant lung cancer stem cells display high DNA repair capability to remove cisplatin-induced DNA damage, Br. J. Pharmacol., 174 (2017), 302–313. https://doi.org/10.1111/bph.13690 doi: 10.1111/bph.13690
    [10] A. Schulz, F. Meyer, A. Dubrovska, K. Borgmann, Cancer stem cells and radioresistance: DNA repair and beyond, Cancers, 11 (2019), 862. https://doi.org/10.3390/cancers11060862 doi: 10.3390/cancers11060862
    [11] D. T. Curiel, P. Fisher, Applications of Viruses for Cancer Therapy, Academic Press, 2012.
    [12] M. Eriksson, K. Guse, G. Bauerschmitz, P. Virkkunen, M. Tarkkanen, M. Tanner, et al., Oncolytic adenoviruses kill breast cancer initiating CD44$^+$ CD24$^{–/Low}$ cells, Mol. Ther., 15 (2007), 2088–2093. https://doi.org/10.1038/sj.mt.6300300 doi: 10.1038/sj.mt.6300300
    [13] T. Liu, D. Kirn, Targeting the untargetable: oncolytic virotherapy for the cancer stem cell, Mol. Ther., 15 (2007), 2060–2061. https://doi.org/10.1038/sj.mt.6300337 doi: 10.1038/sj.mt.6300337
    [14] G. J. Bauerschmitz, T. Ranki, L. Kangasniemi, C. Ribacka, M. Eriksson, M. Porten, et al., Tissue-specific promoters active in CD44 $^{+}$ CD24 $^{-/low}$ breast cancer cells, Cancer Res., 68 (2008), 5533–5539. https://doi.org/10.1158/0008-5472.CAN-07-5288 doi: 10.1158/0008-5472.CAN-07-5288
    [15] M. Sagara, H. Inoue, S. Miyamoto, C. Sakamoto, Y. Nakano, K. Takayama, et al., CVB3 infection elicits potent oncolytic activity against lung cancer stemcells, Mol. Ther., 21 (2013), 170. https://doi.org/10.1016/S1525-0016(16)34775-X doi: 10.1016/S1525-0016(16)34775-X
    [16] M. J. F. Crupi, J. C. Bell, R. Singaravelu, Concise review: Targeting cancer stem cells and their supporting niche using oncolytic viruses, Stem Cells, 37 (2019), 716–723. https://doi.org/10.1002/stem.3004 doi: 10.1002/stem.3004
    [17] S. G. Warner, D. Haddad, J. Au, J. S. Carson, M. P. O'Leary, C. Lewis, et al., Oncolytic herpes simplex virus kills stem-like tumor-initiating colon cancer cells, Mol. Ther.: Oncol., 3 (2016). https://doi.org/10.1038/mto.2016.13
    [18] R. Rezaei, H. E. G. Ghaleh, M. Farzanehpour, R. Dorostkar, R. Ranjbar, M. Bolandian, et al., Combination therapy with CAR T cells and oncolytic viruses: a new era in cancer immunotherapy, Cancer Gene Ther., 29 (2022), 647–660. https://doi.org/10.1038/s41417-021-00359-9 doi: 10.1038/s41417-021-00359-9
    [19] M. D. Johnston, C. M. Edwards, W. F. Bodmer, P. K. Maini, S. J. Chapman, Mathematical modeling of cell population dynamics in the colonic crypt and in colorectal cancer, Proc. Natl. Acad. Sci., 104 (2007), 4008–4013. https://doi.org/10.1073/pnas.0611179104 doi: 10.1073/pnas.0611179104
    [20] S. A. M. Tonekaboni, A. Dhawan, M. Kohandel, Mathematical modelling of plasticity and phenotype switching in cancer cell populations, Math. Biosci., 283 (2017), 30–37. https://doi.org/10.1016/j.mbs.2016.11.008 doi: 10.1016/j.mbs.2016.11.008
    [21] A. Mahdipour-Shirayeh, K. Kaveh, M. Kohandel, S. Sivaloganathan, Phenotypic heterogeneity in modeling cancer evolution, PLoS ONE, 12 (2017), 0187000. https://doi.org/10.1371/journal.pone.0187000
    [22] D. Wodarz, Viruses as antitumor weapons: defining conditions for tumor remission, Cancer Res., 61 (2001), 3501–3507.
    [23] M. Agarwal, A. S. Bhadauria, Mathematical modeling and analysis of tumor therapy with oncolytic virus, Appl. Math., 2 (2011), 131–140. https://doi.org/10.4236/am.2011.21015 doi: 10.4236/am.2011.21015
    [24] S. Jahedi, L. Wang, J. A. Yorke, J. Watmough, Finding Hopf bifurcation islands and identifying thresholds for success or failure in oncolytic viral therapy, Math. Biosci., 376 (2024), 109275. https://doi.org/10.1016/j.mbs.2024.109275 doi: 10.1016/j.mbs.2024.109275
    [25] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [26] D. Dingli, A. Traulsen, F. Michor, (A) symmetric stem cell replication and cancer, PLoS Comput. Biol., 3 (2007), 83. https://doi.org/10.1371/journal.pcbi.0030053 doi: 10.1371/journal.pcbi.0030053
    [27] B. Werner, D. Dingli, T. Lenaerts, J. M. Pacheco, A. Traulsen, Dynamics of mutant cells in hierarchical organized tissues, PLoS Comput. Biol., 7 (2011), 1002290. https://doi.org/10.1371/journal.pcbi.1002290
    [28] T. Shibue, R. A. Weinberg, EMT, CSCs, and drug resistance: The mechanistic link and clinical implications, Nat. Rev. Clin. Oncol., 14 (2017), 611–629. https://doi.org/10.1038/nrclinonc.2017.44 doi: 10.1038/nrclinonc.2017.44
    [29] L. Vermeulen, E. Morrissey, M. van der Heijden, A. M. Nicholson, A. Sottoriva, S. Buczacki, et al., Defining stem cell dynamics in models of intestinal tumor initiation, Science, 342 (2013), 995–998. https://doi.org/10.1126/science.1243148 doi: 10.1126/science.1243148
    [30] M. van der Heijden, L. Vermeulen, Stem cells in homeostasis and cancer of the gut, Mol. Cancer, 18 (2019), 66. https://doi.org/10.1186/s12943-019-0962-x doi: 10.1186/s12943-019-0962-x
    [31] L. Ritsma, S. I. J. Ellenbroek, A. Zomer, H. J. Snippert, F. J. de Sauvage, B. D. Simons, et al., Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging, Nature, 507 (2014), 362–365. https://doi.org/10.1038/nature12972 doi: 10.1038/nature12972
    [32] L. Vermeulen, H. J. Snippert, Stem cell dynamics in homeostasis and cancer of the intestine, Nat. Rev. Cancer, 14 (2014), 468–480. https://doi.org/10.1038/nrc3744 doi: 10.1038/nrc3744
    [33] A. Humphries, N. A. Wright, Colonic crypt organization and tumorigenesis, Nat. Rev. Cancer, 8 (2008), 415–424. https://doi.org/10.1038/nrc2392 doi: 10.1038/nrc2392
    [34] H. Wang, N. G. Chen, B. R. Minev, A. A. Szalay, Oncolytic vaccinia virus GLV-1h68 strain shows enhanced replication in human breast cancer stem-like cells in comparison to breast cancer cells, J. Transl. Med., 10 (2012), 167. https://doi.org/10.1186/1479-5876-10-167 doi: 10.1186/1479-5876-10-167
    [35] S. Aref, A. Z. Castleton, K. Bailey, R. Burt, A. Dey, D. Leongamornlert, et al., Type 1 interferon responses underlie tumor-selective replication of oncolytic measles virus, Mol. Ther., 28 (2020), 1043–1055. https://doi.org/10.1016/j.ymthe.2020.01.027 doi: 10.1016/j.ymthe.2020.01.027
    [36] N. L. Komarova, D. Wodarz, Targeted Cancer Treatment in Silico: Small Molecule Inhibitors and Oncolytic Viruses, Birkhäuser, 2014. https://doi.org/10.1007/978-1-4614-8301-4
    [37] C. E. Meacham, S. J. Morrison, Tumour heterogeneity and cancer cell plasticity, Nature, 501 (2013), 328–337. https://doi.org/10.1038/nature12624 doi: 10.1038/nature12624
    [38] A. Marusyk, K. Polyak, Tumor heterogeneity: Causes and consequences, Biochim. Biophys. Acta-Rev. Cancer, 1805 (2010), 105–117. https://doi.org/10.1016/j.bbcan.2009.11.002 doi: 10.1016/j.bbcan.2009.11.002
    [39] S. Chaurasiya, N. G. Chen, S. G. Warner, Oncolytic virotherapy versus cancer stem cells: A review of approaches and mechanisms, Cancers, 10 (2018), 124. https://doi.org/10.3390/cancers10040124 doi: 10.3390/cancers10040124
    [40] S. Yano, H. Tazawa, Y. Hashimoto, Y. Shirakawa, S. Kuroda, M. Nishizaki, et al., A genetically engineered oncolytic adenovirus decoys and lethally traps quiescent cancer stem–like cells in S/G2/M phases, Clin. Cancer Res., 19 (2013), 6495–6505. https://doi.org/10.1158/1078-0432.CCR-13-0742 doi: 10.1158/1078-0432.CCR-13-0742
    [41] M. Aghi, T. Visted, R. A. DePinho, E. A. Chiocca, Oncolytic herpes virus with defective ICP6 specifically replicates in quiescent cells with homozygous genetic mutations in p16, Oncogene, 27 (2008), 4249–4254. https://doi.org/10.1038/onc.2008.53 doi: 10.1038/onc.2008.53
    [42] P. Bach, T. Abel, C. Hoffmann, Z. Gal, G. Braun, I. Voelker, et al., Specific elimination of CD133+ tumor cells with targeted oncolytic measles virus, Cancer Res., 73 (2013), 865–874. https://doi.org/10.1158/0008-5472.CAN-12-2221 doi: 10.1158/0008-5472.CAN-12-2221
    [43] Q. D. Chu, G. Sun, M. Pope, N. Luraguiz, D. T. Curiel, R. Kim, et al., Virotherapy using a novel chimeric oncolytic adenovirus prolongs survival in a human pancreatic cancer xenograft model, Surgery, 152 (2012), 441–448. https://doi.org/10.1016/j.surg.2012.05.040 doi: 10.1016/j.surg.2012.05.040
    [44] D. Grote, R. Cattaneo, A. K. Fielding, Neutrophils contribute to the measles virus-induced antitumor effect: enhancement by granulocyte macrophage colony-stimulating factor expression, Cancer Res., 63 (2003), 6463–6468.
    [45] N. L. Komarova, D. Wodarz, ODE models for oncolytic virus dynamics, J. Theor. Biol., 263 (2010), 530–543. https://doi.org/10.1016/j.jtbi.2010.01.009 doi: 10.1016/j.jtbi.2010.01.009
    [46] S. Jahedi, Assessing Oncolytic Viral Therapy and Its Barriers: A Mathematical Approach, Ph.D thesis, University of New Brunswick, 2022.
    [47] S. M. Al-Tuwairqi, N. O. Al-Johani, E. A. Simbawa, Modeling dynamics of cancer virotherapy with immune response, Adv. Differ. Equations, 2020 (2020), 438. https://doi.org/10.1186/s13662-020-02893-6 doi: 10.1186/s13662-020-02893-6
    [48] M. Liu, Z. Ji, V. Jain, V. L. Smith, E. Hocke, A. P. Patel, et al., Spatial transcriptomics reveals segregation of tumor cell states in glioblastoma and marked immunosuppression within the perinecrotic niche, Acta Neuropathol. Commun., 12 (2024), 64. https://doi.org/10.1186/s40478-024-01769-0 doi: 10.1186/s40478-024-01769-0
    [49] T. Beneteau, C. Selinger, M. T. Sofonea, S. Alizon, Episome partitioning and symmetric cell divisions: Quantifying the role of random events in the persistence of HPV infections, PLoS Comput. Biol., 17 (2021), 1009352. https://doi.org/10.1371/journal.pcbi.1009352 doi: 10.1371/journal.pcbi.1009352
    [50] T. D. Zaikos, V. H. Terry, N. T. S. Kettinger, J. Lubow, M. M. Painter, M. C. Virgilio, et al., Hematopoietic stem and progenitor cells are a distinct hiv reservoir that contributes to persistent viremia in suppressed patients, Cell Rep., 25 (2018), 3759–3773. https://doi.org/10.1016/j.celrep.2018.11.104 doi: 10.1016/j.celrep.2018.11.104
    [51] T. Tu, B. Zehnder, J. M. Wettengel, H. Zhang, S. Coulter, V. Ho, et al., Mitosis of hepatitis B virus-infected cells in vitro results in uninfected daughter cells, JHEP Rep., 4 (2022), 100514. https://doi.org/10.1016/j.jhepr.2022.100514 doi: 10.1016/j.jhepr.2022.100514
    [52] A. Goyal, R. M. Ribeiro, A. S. Perelson, The role of infected cell proliferation in the clearance of acute HBV infection in humans, Viruses, 9 (2017), 350. https://doi.org/10.3390/v9110350 doi: 10.3390/v9110350
    [53] B. Werner, J. G. Scott, A. Sottoriva, A. R. A. Anderson, A. Traulsen, P. M. Altrock, The cancer stem cell fraction in hierarchically organized tumors can be estimated using mathematical modeling and patient-specific treatment trajectories, Cancer Res., 76 (2016), 1705–1713. https://doi.org/10.1158/0008-5472.CAN-15-2069 doi: 10.1158/0008-5472.CAN-15-2069
    [54] C. D. Meyer, Matrix Analysis and Applied Linear Algebra, 2$^{nd}$ edition, Siam, 2023. https://doi.org/10.1137/1.9781611977448
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(761) PDF downloads(53) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog