Fishery stock assessments typically rely on biomass estimates derived from stratified random sampling, where a key assumption is a consistent spatial biomass distribution over time. However, climate-driven movements of marine species may be violating this assumption, potentially introducing biases into biomass estimates. To address this, we develop a spatially explicit data-driven mathematical modeling framework where species-specific movement is driven by environmental variables such as water temperature and geographic habitat preferences. To demonstrate this modeling approach we develop spatial simulations for three Atlantic fish species under several temperature scenarios and population trends. We then compute biomass estimates derived from the stratified random samples of the model output, and compare estimates derived from design-based stratified mean to those estimated from a spatio-temporal model-based approach that allows inclusion of environmental covariates. Our modeling framework produces spatial models that include climate-driven changes in biomass distributions, and resulting biomass estimates are impacted by species shifting their spatial densities over time. This framework has broad uses including evaluation of survey designs, management strategy evaluations, climate-driven biomass predictions, and conducting a rigorous statistical assessment for climate-induced bias of specific biomass estimation approaches.
Citation: Benjamin A. Levy, Christopher M. Legault, Timothy J. Miller, Elizabeth N. Brooks. A spatial modeling approach for evaluating impacts of climate-driven species movement on biomass estimation methods[J]. Mathematical Biosciences and Engineering, 2025, 22(9): 2434-2457. doi: 10.3934/mbe.2025089
Fishery stock assessments typically rely on biomass estimates derived from stratified random sampling, where a key assumption is a consistent spatial biomass distribution over time. However, climate-driven movements of marine species may be violating this assumption, potentially introducing biases into biomass estimates. To address this, we develop a spatially explicit data-driven mathematical modeling framework where species-specific movement is driven by environmental variables such as water temperature and geographic habitat preferences. To demonstrate this modeling approach we develop spatial simulations for three Atlantic fish species under several temperature scenarios and population trends. We then compute biomass estimates derived from the stratified random samples of the model output, and compare estimates derived from design-based stratified mean to those estimated from a spatio-temporal model-based approach that allows inclusion of environmental covariates. Our modeling framework produces spatial models that include climate-driven changes in biomass distributions, and resulting biomass estimates are impacted by species shifting their spatial densities over time. This framework has broad uses including evaluation of survey designs, management strategy evaluations, climate-driven biomass predictions, and conducting a rigorous statistical assessment for climate-induced bias of specific biomass estimation approaches.
| [1] | State of the Ecosystem Reports for the Northeast U.S. Shelf, 2024. Avaiable from: https://www.fisheries.noaa.gov/new-england-mid-atlantic/ecosystems/state-ecosystem-reports-northeast-us-shelf. |
| [2] | National Marine Fisheries Service (NMFS), Fisheries Economics of the United States, 2022, U.S. Department of Commerce, NOAA Tech. Memo, 2024. |
| [3] | T. R. Azarovitz, A brief historical review of the Woods Hole Laboratory trawl survey time series, (1981), 62–67. |
| [4] |
P. J. Politis, J. K. Galbraith, P. Kostovick, R. W. Brown, Northeast Fisheries Science Center bottom trawl survey protocols for the NOAA Ship Henry B. Bigelow, Natl. Oceanic Atmos. Adm., (2014). http://doi.org/10.7289/V5C53HVS doi: 10.7289/V5C53HVS
|
| [5] | J. C. Deville, C. E. Särndal, Calibration estimators in survey sampling, J. Am. stat. Assoc., 87 (1992), 376–382. |
| [6] |
S. D. Hoyle, R. A. Campbell, N. D. Ducharme-Barth, A. Grüss, B. R. Moore, J. T. Thorson, et al., Catch per unit effort modelling for stock assessment: A summary of good practices, Fish. Res., 269 (2024), 106860. https://doi.org/10.1016/j.fishres.2023.106860 doi: 10.1016/j.fishres.2023.106860
|
| [7] |
K. D. Baker, S. C. Anderson, D. R. J. Mullowney, W. Walkusz, K. R. Skanes, Moving away from a scale mismatch: Spatiotemporal modelling of striped shrimp (Pandalus montagui) density in Canada's subarctic, Fish. Res., 270 (2024), 106898. https://doi.org/10.1016/j.fishres.2023.106898 doi: 10.1016/j.fishres.2023.106898
|
| [8] |
A. C. Hansell, M. C. McManus, Integrating fisheries independent surveys to account for the spatiotemporal dynamics of spiny dogfish (Squalus acanthias) in US waters of the northwest Atlantic, Fish. Res., 281 (2025), 107173. https://doi.org/10.1016/j.fishres.2024.107173 doi: 10.1016/j.fishres.2024.107173
|
| [9] |
A. Grüss, R. L. O'Driscoll, J. T. Thorson, J. R. McKenzie, S. L. Ballara, A. R. Charsley, Impacts of different types of data integration on the predictions of spatio-temporal models: A fishery application and simulation experiment, Fish. Res., 284 (2025), 107321. https://doi.org/10.1016/j.fishres.2025.107321 doi: 10.1016/j.fishres.2025.107321
|
| [10] |
J. T. Thorson, Guidance for decisions using the vector autoregressive spatio-temporal (VAST) package in stock, ecosystem, habitat and climate assessments, Fish. Res., 210 (2019), 143–161. https://doi.org/10.1016/j.fishres.2018.10.013 doi: 10.1016/j.fishres.2018.10.013
|
| [11] |
J. T. Thorson, S. C. Anderson, P. Goddard, C. N. Rooper, TinyVAST: R package with an expressive interface to specify lagged and simultaneous effects in multivariate spatio-temporal models, Global Ecol. Biogeography, 34 (2025), e70035. https://doi.org/10.1111/geb.70035 doi: 10.1111/geb.70035
|
| [12] |
J. A. BiogeographyNye, J. S. Link, J. A. Hare, W. J. Overholtz, Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf, Mar. Ecol. Prog. Ser., 393 (2009), 111–129. https://doi.org/10.3354/meps08220 doi: 10.3354/meps08220
|
| [13] |
K. M. Kleisner, M. J. Fogarty, S. Fogarty, J. A. Fogarty, S. Moret, C. T. Perretti, et al., Marine species distribution shifts on the US Northeast Continental Shelf under continued ocean warming, Prog. Oceanogr., 153 (2017), 24–36. https://doi.org/10.1016/j.pocean.2017.04.001 doi: 10.1016/j.pocean.2017.04.001
|
| [14] |
M. E. Henderson, K. E. Mills, A. C. Thomas, A. J. Pershing, J. A. Nye, Effects of spring onset and summer duration on fish species distribution and biomass along the Northeast United States continental shelf, Rev. Fish Biol. Fish., 27 (2017), 411–424. https://doi.org/10.1007/s11160-017-9487-9 doi: 10.1007/s11160-017-9487-9
|
| [15] |
F. Arreguín-Sánchez, Catchability: A key parameter for fish stock assessment, Rev. Fish Biol. Fish., 6 (1996), 221–242. https://doi.org/10.1007/BF00182344 doi: 10.1007/BF00182344
|
| [16] |
J. A. Langan, G. Puggioni, C. A. Oviatt, M. E. Henderson, J. S. Collie, Climate alters the migration phenology of coastal marine species, Mar. Ecol. Prog. Ser., 660 (2021), 1–18. https://doi.org/10.3354/meps13612 doi: 10.3354/meps13612
|
| [17] |
E. S. Klein, S. L. Smith, J. P. Kritzer, Effects of climate change on four New England groundfish species, Rev. Fish Biol. Fish., 27 (2017), 317–338. https://doi.org/10.1007/s11160-016-9444-z doi: 10.1007/s11160-016-9444-z
|
| [18] |
L. Kerr, M. Barajas, J. Wiedenmann, Coherence and potential drivers of stock assessment uncertainty in Northeast US groundfish stocks, ICES J. Mar. Sci., 79 (2022), 2217–2230. https://doi.org/10.1093/icesjms/fsac140 doi: 10.1093/icesjms/fsac140
|
| [19] |
M. D. Mazur, J. Jesse, S. X. Cadrin, S. B. Truesdell, L. Kerr, Consequences of ignoring climate impacts on New England groundfish stock assessment and management, Fish. Res., 262 (2023), 106652. https://doi.org/10.1016/j.fishres.2023.106652 doi: 10.1016/j.fishres.2023.106652
|
| [20] |
P. J. Dolder, C. Minto, J. Guarini, J. J. Poos, Highly resolved spatiotemporal simulations for exploring mixed fishery dynamics, Ecol. Modell., 424 (2020), 109000. https://doi.org/10.1016/j.ecolmodel.2020.109000 doi: 10.1016/j.ecolmodel.2020.109000
|
| [21] |
J. T. Thorson, Predicting recruitment density dependence and intrinsic growth rate for all fishes worldwide using a data-integrated life-history model, Fish Fish., 21 (2020), 237–251. https://doi.org/10.1111/faf.12427 doi: 10.1111/faf.12427
|
| [22] | Management track assessments fall 2022, Northeast Fisheries Science Center (U.S.), 2022. Avaiable from: https://doi.org/10.25923/380j-t283. |
| [23] | I. D. Buller, Envi: Environmental interpolation using spatial kernel density estimation, 2022. Available from: https://github.com/lance-waller-lab/envi. |
| [24] |
C. Chen, R. C. Beardsley, G. Cowles, An unstructured grid, finite-volume coastal ocean model: FVCOM user manual, Oceanography, 19 (2006), 78. https://doi.org/10.5670/OCEANOG.2006.92 doi: 10.5670/OCEANOG.2006.92
|
| [25] |
L. J. Poppe, K. Y. McMullen, S. J. Williams, V. F. Paskevich, USGS east-coast sediment analysis: Procedures, database, and gis data, US Geological Survey Open-File Report, 2005. https://doi.org/10.3133/ofr20051001 doi: 10.3133/ofr20051001
|
| [26] |
P. Lafrance, M. Castonguay, D. Chabot, C. Audet, Ontogenetic changes in temperature preference of Atlantic cod, J. Fish Biol., 66 (2005), 553–567. https://doi.org/10.1111/j.0022-1112.2005.00623.x doi: 10.1111/j.0022-1112.2005.00623.x
|
| [27] | Vector autoregressive spatio-temporal (VAST) model wiki page, 2019. Available from: https://github.com/James-Thorson-NOAA/VAST/wiki. |
| [28] |
C. Cacciapaglia, E. N. Brooks, C. F. Adams, C. M. Legault, C. T. Perretti, D. Hart, Developing workflow and diagnostics for model selection of a vector autoregressive spatiotemporal (VAST) model in comparison to design-based indices, Fish. Res., 275 (2024), 107009. https://doi.org/10.1016/j.fishres.2024.107009 doi: 10.1016/j.fishres.2024.107009
|
mbe-22-09-089 supplyment.pdf |
![]() |