Tuberculosis stands as the leading cause of death worldwide, driven by infection from a single bacterial agent, and has been recognized as a global public health concern by the World Health Organization. Recent studies highlight that the innate immune response has a central role in controlling the initial spread of Mycobacterium tuberculosis (Mtb) within the host, and triggers adaptive immune response. We developed and analyzed a model examining the interactions among macrophages, innate cells, and Mtb to determine whether the infection is controlled by the innate immune response or whether a specific adaptive response is triggered. Findings suggest that if an individual infected by Mtb has an adequate immunological state to prevent bacteria from infecting the macrophage population (that is, if the external bacteria engulfed by macrophages are eliminated by them, or if their capacity to replicate inside them is limited), then the innate immune response will effectively control the primary infection.
Citation: Eduardo Ibargüen-Mondragón, Sandra P. Hidalgo-Bonilla, Miller Cerón Gómez. On macrophage response to primary Mycobacterium tuberculosis in humans[J]. Mathematical Biosciences and Engineering, 2025, 22(9): 2506-2525. doi: 10.3934/mbe.2025092
Tuberculosis stands as the leading cause of death worldwide, driven by infection from a single bacterial agent, and has been recognized as a global public health concern by the World Health Organization. Recent studies highlight that the innate immune response has a central role in controlling the initial spread of Mycobacterium tuberculosis (Mtb) within the host, and triggers adaptive immune response. We developed and analyzed a model examining the interactions among macrophages, innate cells, and Mtb to determine whether the infection is controlled by the innate immune response or whether a specific adaptive response is triggered. Findings suggest that if an individual infected by Mtb has an adequate immunological state to prevent bacteria from infecting the macrophage population (that is, if the external bacteria engulfed by macrophages are eliminated by them, or if their capacity to replicate inside them is limited), then the innate immune response will effectively control the primary infection.
| [1] | World Health Organization, Global tuberculosis report, 2023. Available from: https://www.who.int/publications/i/item/9789240083851. |
| [2] | D. Maher, The natural history of Mycobacterium tuberculosis infection in adults, in Tuberculosis: A Comprehensive Clinical Reference, (2009), 129–132. https://doi.org/10.1016/b978-1-4160-3988-4.00013-5 |
| [3] |
J. S. Schorey, L. S. Schlesinger, Innate immune responses to tuberculosis, Microbiol. Spectrum, 4 (2016), 1–27. https://doi.org/10.1128/microbiolspec.TBTB2-0010-2016 doi: 10.1128/microbiolspec.TBTB2-0010-2016
|
| [4] |
R. E. Maphasa, M. Meyer, A. Dube, The macrophage response to Mycobacterium tuberculosis and opportunities for autophagy inducing nanomedicines for tuberculosis therapy, Front. Cell. Infect. Microbiol., 10 (2021), 1–11. https://doi.org/10.3389/fcimb.2020.618414 doi: 10.3389/fcimb.2020.618414
|
| [5] |
D. D. Chaplin, Overview of the immune response, J. Allergy Clin. Immunol., 125 (2010), S3–S23. https://doi.org/10.1016/j.jaci.2009.12.980 doi: 10.1016/j.jaci.2009.12.980
|
| [6] |
P. Sankar, B. B. Mishra, Early innate cell interactions with Mycobacterium tuberculosis in protection and pathology of tuberculosis, Front. Immunol., 14 (2023), 1–21. https://doi.org/10.3389/fimmu.2023.1260859 doi: 10.3389/fimmu.2023.1260859
|
| [7] |
S. H. E. Kaufmann, How can immunology contribuite to the control of tuberculosis, Nat. Rev. Immunol., 1 (2001), 20–30. https://doi.org/10.1038/35095558 doi: 10.1038/35095558
|
| [8] |
J. Pieters, Mycobacterium tuberculosis and the macrophage: Maintaining a balance, Cell Host Microbe, 3 (2008), 399–407. https://doi.org/10.1016/j.chom.2008.05.006 doi: 10.1016/j.chom.2008.05.006
|
| [9] |
D. Kirschner, E. Pienaar, S. Marino, J. J. Linderman, A review of computational and mathematical modeling contributions to our understanding of Mycobacterium tuberculosis within-host infection and treatment, Curr. Opin. Syst. Biol., 3 (2017), 170–185. https://doi.org/10.1016/j.coisb.2017.05.014 doi: 10.1016/j.coisb.2017.05.014
|
| [10] |
D. Chakraborty, S. Batabyal, V. V. Ganusov, A brief overview of mathematical modeling of the within-host dynamics of Mycobacterium tuberculosis, Front. Appl. Math. Stat., 10 (2024). https://doi.org/10.3389/fams.2024.1355373 doi: 10.3389/fams.2024.1355373
|
| [11] |
E. Ibargüen-Mondragón, L. Esteva, L. Chávez-Galán, A mathematical model for cellular immunology of tuberculosis, Math. Biosci. Eng., 11 (2011), 973–986. https://doi.org/10.3934/mbe.2011.8.973 doi: 10.3934/mbe.2011.8.973
|
| [12] |
E. Ibargüen-Mondragón, L. Esteva, E. M. Burbano-Rosero, Mathematical model for the growth of Mycobacterium tuberculosis in the granuloma, Math. Biosci. Eng., 15 (2018), 407–428. https://doi.org/10.3934/mbe.2018018 doi: 10.3934/mbe.2018018
|
| [13] |
G. Pedruzzi, K. V. Rao, S. Chatterjee, Mathematical model of mycobacterium–host interaction describes physiology of persistence, J. Theor. Biol., 376 (2015), 105–117. https://doi.org/10.1016/j.jtbi.2015.03.031 doi: 10.1016/j.jtbi.2015.03.031
|
| [14] |
D. Gammack, C. R. Doering, D. E. Kirschner, Macrophage response to Mycobacterium tuberculosis infection, J. Math. Biol., 48 (2004), 218–242. https://doi.org/10.1007/s00285-003-0232-8 doi: 10.1007/s00285-003-0232-8
|
| [15] |
F. Clarelli, R. Natalini, A pressure model of immune response to Mycobacterium tuberculosis infection in several space dimensions, Math. Biosci. Eng., 7 (2004), 277–300. https://doi.org/10.3934/mbe.2010.7.277 doi: 10.3934/mbe.2010.7.277
|
| [16] |
E. Pienaar, M. Lerm, A mathematical model of the initial interaction between Mycobacterium tuberculosis and macrophages, J. Theor. Biol., 342 (2014), 23–32. http://dx.doi.org/10.1016/j.jtbi.2013.09.029 doi: 10.1016/j.jtbi.2013.09.029
|
| [17] |
R. V. Carvalho, J. Kleijn, A. H. Meijer, F. J. Verbeek, Modeling innate immune response to early mycobacterium infection, Comput. Math. Methods Med., 2012 (2012), 1–12. https://doi.org/10.1155/2012/790482 doi: 10.1155/2012/790482
|
| [18] |
L. R. Joslyn, J. J. Linderman, D. E. Kirschner, A virtual host model of Mycobacterium tuberculosis infection identifies early immune events as predictive of infection outcomes, J. Theor. Biol., 539 (2022), 1–15. https://doi.org/10.1016/j.jtbi.2022.111042 doi: 10.1016/j.jtbi.2022.111042
|
| [19] |
B. Cooper, The origins of bone marrow as the seedbed of our blood: From antiquity to the time of Osler, Bayl. Univ. Med. Cent. Proc., 24 (2011), 115–118. https://doi.org/10.1080/08998280.2011.11928697 doi: 10.1080/08998280.2011.11928697
|
| [20] |
M. J. Pittet, M. Nahrendorf, F. K. Swirski, The journey from stem cell to macrophage, Ann. N. Y. Acad. Sci., 1319 (2014), 1–18. https://doi.org/10.1111/nyas.12393 doi: 10.1111/nyas.12393
|
| [21] |
C. Rosales, E. Uribe-Querol, Phagocytosis: A fundamental process in immunity, Biomed Res Int., 2017 (2017), 1–18. https://doi.org/10.1155/2017/9042851 doi: 10.1155/2017/9042851
|
| [22] |
J. Lee, M. Hartman, H. Kornfeld, Macrophage apoptosis in tuberculosis, Yonsei Med, J., 50 (2009), 1–11. https://doi.org/10.3349/ymj.2009.50.1.1 doi: 10.3349/ymj.2009.50.1.1
|
| [23] |
A. Nisa, F. C. Kipper, D. Panigrahy, S. Tiwari, A. Kupz, S. Subbian, Different modalities of host cell death and their impact on Mycobacterium tuberculosis infection, Am. J. Physiol. Cell Physiol., 323 (2022), C1444–C1474. https://doi.org/10.1152/ajpcell.00246.2022 doi: 10.1152/ajpcell.00246.2022
|
| [24] | L. Perko, Differential Equations and Dynamical Systems, 2$^{nd}$ edition, Springer Science & Business Media, New York, 2013. https://doi.org/10.1007/978-1-4613-0003-8 |
| [25] |
M. Nagumo, Über die lage der integralkurven gewöhnlicher differentialgleichungen, Proc. Phys.-Math. Soc. Jpn., 24 (1942), 551–559. https://doi.org/10.11429/ppmsj1919.24.0_551 doi: 10.11429/ppmsj1919.24.0_551
|
| [26] |
E. Ibargüen-Mondragón, L. Esteva, On the interactions of sensitive and resistant Mycobacterium tuberculosis to antibiotics, Math. Biosci., 246 (2013), 84–93. https://doi.org/10.1016/j.mbs.2013.08.005 doi: 10.1016/j.mbs.2013.08.005
|
| [27] | M. A. Nowak, R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology, 1$^{st}$ edition, Oxford University Pree, London, 2000. https://doi.org/10.1093/oso/9780198504184.001.0001 |
| [28] | E. Ibargüen-Mondragón, L. Esteva, Un modelo matemático sobre la dinámica del Mycobacterium tuberculosis en el granuloma, Rev. Colomb. Mat., 46 (2013), 39–65. |
| [29] |
D. Sud, C. Bigbee, J. L. Flynn, D. E. Kirschner, Contribution of CD8+ T cells to control of Mycobacterium tuberculosis infection, J. Immunol., 176 (2006), 4296–4314. https://doi.org/10.4049/jimmunol.176.7.4296 doi: 10.4049/jimmunol.176.7.4296
|
| [30] |
C. L. Sershen, S. J. Plimpton, E. E. May, Oxygen modulates the effectiveness of granuloma mediated host response to Mycobacterium tuberculosis: A multiscale computational biology approach, Front. Cell. Infect. Microbiol., 6 (2016), 1–25. https://doi.org/10.3389/fcimb.2016.00006 doi: 10.3389/fcimb.2016.00006
|
| [31] |
F. Krombach, S. Münzing, A. M. Allmeling, J. T. Gerlach, J. Behr, M. Dörger, Cell size of alveolar macrophages: An interspecies comparison, Environ. Health Perspect., 105 (1997), 1261–1263. https://doi.org/10.1289/ehp.97105s51261 doi: 10.1289/ehp.97105s51261
|
| [32] |
J. Monod, The growth of bacterial cultures, Annu. Rev. Microbiol., 3 (1949), 371–394. https://doi.org/10.1146/annurev.mi.03.100149.002103 doi: 10.1146/annurev.mi.03.100149.002103
|
| [33] |
M. M. Ravesloot-Chávez, E. Van Dis, S. A. Stanley, The innate immune responseto Mycobacterium tuberculosis infection, Annu. Rev. Immunol., 39 (2021), 611–637. https://doi.org/10.1146/annurev-immunol-093019-010426 doi: 10.1146/annurev-immunol-093019-010426
|