Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Research article Special Issues

The p-Frobenius and p-Sylvester numbers for Fibonacci and Lucas triplets


  • In this paper we study a certain kind of generalized linear Diophantine problem of Frobenius. Let a1,a2,,al be positive integers such that their greatest common divisor is one. For a nonnegative integer p, denote the p-Frobenius number by gp(a1,a2,,al), which is the largest integer that can be represented at most p ways by a linear combination with nonnegative integer coefficients of a1,a2,,al. When p=0, the 0-Frobenius number is the classical Frobenius number. When l=2, the p-Frobenius number is explicitly given. However, when l=3 and even larger, even in special cases, it is not easy to give the Frobenius number explicitly. It is even more difficult when p>0, and no specific example has been known. However, very recently, we have succeeded in giving explicit formulas for the case where the sequence is of triangular numbers [1] or of repunits [2] for the case where l=3. In this paper, we show the explicit formula for the Fibonacci triple when p>0. In addition, we give an explicit formula for the p-Sylvester number, that is, the total number of nonnegative integers that can be represented in at most p ways. Furthermore, explicit formulas are shown concerning the Lucas triple.

    Citation: Takao Komatsu, Haotian Ying. The p-Frobenius and p-Sylvester numbers for Fibonacci and Lucas triplets[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 3455-3481. doi: 10.3934/mbe.2023162

    Related Papers:

    [1] Chii-Dong Ho, Gwo-Geng Lin, Thiam Leng Chew, Li-Pang Lin . Conjugated heat transfer of power-law fluids in double-pass concentric circular heat exchangers with sinusoidal wall fluxes. Mathematical Biosciences and Engineering, 2021, 18(5): 5592-5613. doi: 10.3934/mbe.2021282
    [2] Timothy C. Reluga, Jan Medlock, Alison Galvani . The discounted reproductive number for epidemiology. Mathematical Biosciences and Engineering, 2009, 6(2): 377-393. doi: 10.3934/mbe.2009.6.377
    [3] Baojun Song . Basic reinfection number and backward bifurcation. Mathematical Biosciences and Engineering, 2021, 18(6): 8064-8083. doi: 10.3934/mbe.2021400
    [4] Kazunori Sato . Basic reproduction number of SEIRS model on regular lattice. Mathematical Biosciences and Engineering, 2019, 16(6): 6708-6727. doi: 10.3934/mbe.2019335
    [5] Tom Burr, Gerardo Chowell . The reproduction number Rt in structured and nonstructured populations. Mathematical Biosciences and Engineering, 2009, 6(2): 239-259. doi: 10.3934/mbe.2009.6.239
    [6] Qixuan Wang, Hans G. Othmer . The performance of discrete models of low reynolds number swimmers. Mathematical Biosciences and Engineering, 2015, 12(6): 1303-1320. doi: 10.3934/mbe.2015.12.1303
    [7] Sergio Bermudo, Robinson A. Higuita, Juan Rada . k-domination and total k-domination numbers in catacondensed hexagonal systems. Mathematical Biosciences and Engineering, 2022, 19(7): 7138-7155. doi: 10.3934/mbe.2022337
    [8] Ali Moussaoui, Pierre Auger, Christophe Lett . Optimal number of sites in multi-site fisheries with fish stock dependent migrations. Mathematical Biosciences and Engineering, 2011, 8(3): 769-783. doi: 10.3934/mbe.2011.8.769
    [9] Chayu Yang, Jin Wang . Computation of the basic reproduction numbers for reaction-diffusion epidemic models. Mathematical Biosciences and Engineering, 2023, 20(8): 15201-15218. doi: 10.3934/mbe.2023680
    [10] José Ángel Juárez Morales, Jesús Romero Valencia, Raúl Juárez Morales, Gerardo Reyna Hernández . On the offensive alliance number for the zero divisor graph of Zn. Mathematical Biosciences and Engineering, 2023, 20(7): 12118-12129. doi: 10.3934/mbe.2023539
  • In this paper we study a certain kind of generalized linear Diophantine problem of Frobenius. Let a1,a2,,al be positive integers such that their greatest common divisor is one. For a nonnegative integer p, denote the p-Frobenius number by gp(a1,a2,,al), which is the largest integer that can be represented at most p ways by a linear combination with nonnegative integer coefficients of a1,a2,,al. When p=0, the 0-Frobenius number is the classical Frobenius number. When l=2, the p-Frobenius number is explicitly given. However, when l=3 and even larger, even in special cases, it is not easy to give the Frobenius number explicitly. It is even more difficult when p>0, and no specific example has been known. However, very recently, we have succeeded in giving explicit formulas for the case where the sequence is of triangular numbers [1] or of repunits [2] for the case where l=3. In this paper, we show the explicit formula for the Fibonacci triple when p>0. In addition, we give an explicit formula for the p-Sylvester number, that is, the total number of nonnegative integers that can be represented in at most p ways. Furthermore, explicit formulas are shown concerning the Lucas triple.



    The linear Diophantine problem of Frobenius is to find the largest integer which is not expressed by a nonnegative linear combination of given positive relatively prime integers a1,a2,,al. Such a largest integer is called the Frobenius number [3], denoted by g(A)=g(a1,a2,,al), where A={a1,a2,,al}. In the literature on the Frobenius problem, the Sylvester number or genus n(A)=n(a1,a2,,al), which is the total number of integers that cannot be represented as a nonnegative linear combination of a1,a2,,al [4].

    There are many aspects to studying the Frobenius problem. For example, there are algorithmic aspects to find the values or the bounds, complexity of computations, denumerants, numerical semigroup, applications to algebraic geometry and so on (see e.g., [5,6]). Nevertheless, one of the motivations for our p-generalizations originates in the number of representations d(n;a1,a2,,al) to a1x1+a2x2++alxl=n for a given positive integer n. This number is equal to the coefficient of xn in 1/(1xa1)(1xa2)(1xal) for positive integers a1,a2,,al with gcd(a1,a2,,al)=1 [4]. Sylvester [7] and Cayley [8] showed that d(n;a1,a2,,al) can be expressed as the sum of a polynomial in n of degree k1 and a periodic function of period a1a2al. In [9], the explicit formula for the polynomial part is derived by using Bernoulli numbers. For two variables, a formula for d(n;a1,a2) is obtained in [10]. For three variables in the pairwise coprime case d(n;a1,a2,a3). For three variables, in [11], the periodic function part is expressed in terms of trigonometric functions, and its results have been improved in [12] by using floor functions so that three variables case can be easily worked with-in the formula.

    In this paper, we are interested in one of the most general and most natural types of Frobenius numbers, which focuses on the number of representations. For a nonnegative integer p, the largest integer such that the number of expressions that can be represented by a1,a2,,al is at most p is denoted by gp(A)=gp(a1,a2,,al) and may be called the p-Frobenius number. That is, all integers larger than gp(A) have at least the number of representations of p+1 or more. This generalized Frobenius number gp(A) is called the p-Frobenius number [1,2], which is also called the k-Frobenius number [13] or the s-Frobenius number [14]. When p=0, g(A)=g0(A) is the original Frobenius number. One can consider the largest integer gp(a1,a2,,al) that has exactly p distinct representations (see e.g., [13,14]). However, in this case, the ordering g0g1 may not hold. For example, g17(2,5,7)=43>g18(2,5,7)=42. In addition, for some j, gj may not exist. For example, g22(2,5,7) does not exist because there is no positive integer whose number of representations is exactly 22. Therefore, in this paper we do not study gp(A) but gp(A).

    Similarly to the p-Frobenius number, the p-Sylvester number or the p-genus np(A)=np(a1,a2,,al) is defined by the cardinality of the set of integers which can be represented by a1,a2,,al at most p ways. When p=0, n(A)=n0(A) is the original Sylvester number.

    In this paper, we are interested in one of the most crucial topics, that is, to find explicit formulas of indicators, in particular, of p-Frobenius numbers and p-Sylvester numbers. In the classical case, that is, for p=0, explicit formulas of g(a1,a2) and n(a1,a2) are shown when l=2 [3,4]. However, for l3, g(A) cannot be given by any set of closed formulas which can be reduced to a finite set of certain polynomials [15]. For l=3, there are several useful algorithms to obtain the Frobenius number (see e.g., [16,17,18]). For the concretely given three positive integers, if the conditions are met, the Frobenius number can be completely determined by the method of case-dividing by A. Tripathi [19]. Although it is possible to find the Frobenius number by using the results in [19], it is another question whether the Frobenius number can be given by a closed explicit expression for some special triplets, and special considerations are required. Only for some special cases, explicit closed formulas have been found, including arithmetic, geometric, Mersenne, repunits and triangular (see [20,21,22] and references therein).

    For p>0, if l=2, explicit formulas of gp(a1,a2) and np(a1,a2) are still given without any difficulty (see e.g., [23]). However, if l3, no explicit formula had been given even in a special case. However, quite recently, we have succeeded in giving explicit formulas for the case where the sequence is of triangular numbers [1] or of repunits [2] for the case where l=3.

    In this paper, we give an explicit formula for the p-Frobenius number for the Fibonacci number triple (Fi,Fi+2,Fi+k) (i,k3). Here, the n-th Fibonacci number Fn is defined by Fn=Fn1+Fn2 (n2) with F1=1 and F0=0. Our main result (Theorem 6.1 below) is a kind of generalizations of [24,Theorem 1] when p=0. However, when p>0, the exact situation is not completely similar to the case where p=0, and the case by case discussion is necessary. As analogues, we also show explicit formulas of gp(Li,Li+2,Li+k) for Lucas numbers Ln with i,k3. Here, Lucas numbers Ln satisfy the recurrence relation Ln=Ln1+Ln2 (n2) with L0=2 and L1=1. By using our constructed framework, we can also find explicit formulas of the p-Sylvester numbers np(Fi,Fi+2,Fi+k) and np(Li,Li+2,Li+k). Our result (Theorem 13) can extend the result in [24,Corollary 2]. The main idea is to find the explicit structure of the elements of an Apéry set [25]. In addition, we use a complete residue system, studied initially by Selmer [26]. By using Apéry sets, we construct the first least set of the complete residue system, then the second least set of the complete residue system, and the third, and so on. As a basic framework, we use a similar structure in [2]. We can safely say that one of our theorems (Theorem 6.1 below) is a kind of generalization of [24,Theorem 1]. Nevertheless, for each nonnegative integer p, the exact situation is not completely similar, but the case by case discussion is necessary.

    Without loss of generality, we assume that a1=min{a1,a2,,al}. For each 0ia11, we introduce the positive integer m(p)i congruent to i modulo a1 such that the number of representations of m(p)i is bigger than or equal to p+1, and that of mia1 is less than or equal to p. Note that m(0)0 is defined to be 0. The set

    Ap(A;p)=Ap(a1,a2,,al;p)={m(p)0,m(p)1,,m(p)a11},

    is called the p-Apéry set of A={a1,a2,,al} for a nonnegative integer p, which is congruent to the set

    {0,1,,a11}(moda1).

    When p=0, the 0-Apéry set is the original Apéry set [25].

    It is hard to find any explicit formula of gp(a1,a2,,al) when l3. Nevertheless, the following convenient formulas are known (see [28]). After finding the structure of m(p)j, we can obtain p-Frobenius or p-Sylvester numbers for triple (Fi,Fi+2,Fi+k).

    Lemma 1. Let k, p and μ be integers with k2, p0 and μ1. Assume that gcd(a1,a2,,al)=1. We have

    gp(a1,a2,,al)=max0ja11m(p)ja1, (2.1)
    np(a1,a2,,al)=1a1a11j=0m(p)ja112. (2.2)

    Remark. When p=0, (2.1) is the formula by Brauer and Shockley [27]:

    g(a1,a2,,al)=(max1ja11mj)a1, (2.3)

    where mj=m(0)j (1ja11) with m0=0. When p=0, (2.2) is the formula by Selmer [26]:

    n(a1,a2,,al)=1a1a11j=1mja112. (2.4)

    Note that m0=m(0)0=0. A more general form by using Bernoulli numbers is given in [28], as well as the concept of weighted sums [29,30].

    It is necessary to find the exact situation of 0-Apéry set Ap(Fi,0), the least complete residue system, which was initially studied in [26]. Concerning Fibonacci numbers, we use the framework in [24].

    Throughout this paper, for a fixed integer i, we write

    Ap(Fi;p)={m(p)0,m(p)1,,m(p)Fi1}

    for short. Then, we shall construct the set of the least complete residue system Ap(Fi;0). That is, mj ( 0\le j < h\le F_i-1 ), and if for a positive integer M , M\equiv j and M\ne m_j ( 0\le j\le F_i-1 ), then M > m_j . Then, for the case p = 1 we shall construct the second set of the least complete residue system {\rm Ap} (F_i; 1) . That is, m_j^{(1)}\not\equiv m_h^{(1)}\pmod{F_i} ( 0\le j < h\le F_i-1 ), m_j^{(1)}\equiv m_j\pmod{F_i} ( 0\le j\le F_i-1 ), and there does not exist an integer M such that m_j^{(1)} > M > m_j and M\equiv j\pmod{F_i} . Similarly, for p = 2 , we shall construct the third set of the least complete residue system {\rm Ap} (F_i; 2) . That is, m_j^{(2)}\not\equiv m_h^{(2)}\pmod{F_i} ( 0\le j < h\le F_i-1 ), m_j^{(2)}\equiv m_j^{(1)}\pmod{F_i} ( 0\le j\le F_i-1 ), and there does not exist an integer M such that m_j^{(2)} > M > m_j^{(1)} and M\equiv j\pmod{F_i} .

    By using a similar frame as in [24], we first show an analogous result about Lucas triple (L_i, L_{i+2}, L_{i+k}) when p = 0 . As a preparation we shall show the result when p = 0 , with a sketch of the proof. The results about Fibonacci numbers can be applied to get those about Lucas numbers. When p = 0 , by setting integers r and \ell as L_i-1 = r F_k+\ell with r\ge 0 and 0\le\ell\le F_k-1 and by using the identity L_n = L_m F_{n-m+1}+L_{m-1}F_{n-m} , we can get an analogous identity of the Fibonacci one in [24,Theorem 1].

    Theorem 1. For integers i, k\ge 3 and r = \left\lfloor{(L_i-1)/F_k}\right\rfloor , we have

    \begin{align*} &g_0(L_i, L_{i+2}, L_{i+k})\\ & = \left\{ \begin{alignedat}{2} & (L_i-1)L_{i+2}-L_i(r F_{k-2}+1) &\quad& {{if\ r = 0 , \ or\ r\ge 1\ and}} \\ &&&{{ (L_i-r F_k)L_{i+2} > F_{k-2}L_i }}, \\ & (r F_k-1)L_{i+2}-L_i\bigl((r-1)F_{k-2}+1\bigr) & & {{otherwise}}\, . \end{alignedat} \right. \end{align*}

    Proof. Consider the linear representation

    \begin{align*} t_{x, y}:& = x L_{i+2}+y L_{i+k}\\ & = (x+y F_k)L_{i+2}-y F_{k-2}L_i\quad(x, y\ge 0)\, . \end{align*}

    Then, by \gcd(L_i, L_{i+2}) = 1 , we can prove that the above table represents the least complete residue system \{0, 1, \dots, L_i-1\}\pmod{L_i} .

    That is, we can prove that none of two elements among this set is not congruent modulo F_i , and if there exists an element congruent to any of the elements among this set, then such an element is bigger and not in this set.

    When r = 0 , the largest element among all the t_{x, y} 's in this table is t_{\ell, 0} . When r\ge 1 , the largest element is either t_{F_k-1, r-1} or t_{\ell, r} . Since t_{F_k-1, r-1} < t_{\ell, r} is equivalent to F_{k-2}L_i < (L_i-r F_k)L_{i+2} , the result is followed by the identity (2.3). The first case is given by t_{\ell, r}-L_i , and the second is given by t_{F_k-1, r-1}-L_i .

    Now, let us begin to consider the case p\ge 1 . We shall obtain the Frobenius number using Lemma 1 (2.1). For this it is necessary to know the structure of the elements of the p -Apéry set, and the structure of the elements of the p -Apéry set depends on the structure of the elements of the ( p-1 )-Apéry set. Therefore, in the case of p = 1 , the structure of the elements of the 1 -Apéry set is analyzed from the structure of the elements of the 0 -Apéry set, which is the original Apéry set, thereby obtaining the 1 -Frobenius number. When p = 1 , we have the following.

    Theorem 2. For i\ge 3 , we have

    \begin{align} g_1(F_i, F_{i+2}, F_{i+k})& = (2 F_i-1)F_{i+2}-F_i\quad(k\ge i+2)\, , \end{align} (3.1)
    \begin{align} g_1(F_i, F_{i+2}, F_{2 i+1})& = (F_{i-2}-1)F_{i+2}+F_{2 i+1}-F_i\, , \end{align} (3.2)
    \begin{align} g_1(F_i, F_{i+2}, F_{2 i})& = (F_{i}-1)F_{i+2}+F_{2 i}-F_i\, . \end{align} (3.3)

    When r = \left\lfloor{(F_i-1)/F_k}\right\rfloor\ge 1 , that is, k\le i-1 , we have

    \begin{align} &g_1(F_i, F_{i+2}, F_{i+k})\\ & = \begin{cases} (F_i-r F_k-1)F_{i+2}+(r+1)F_{i+k}-F_i&{{if\ (F_i-r F_k)F_{i+2}\ge F_{k-2}F_i }}, \\ (F_k-1)F_{i+2}+r F_{i+k}-F_i&{{if \ (F_i-r F_k)F_{i+2} < F_{k-2}F_i }}. \end{cases} \end{align} (3.4)

    Remark. When r\ge1 and k = i-1, i-2, i-3, i-4, i-5 , we have more explicit formulas.

    \begin{align*} g_1(F_i, F_{i+2}, F_{2 i-1})& = (F_{i-2}-1)F_{i+2}+2 F_{2 i-1}-F_i\quad(i\ge 4)\, , \\ g_1(F_i, F_{i+2}, F_{2 i-2})& = (F_{i-3}-1)F_{i+2}+3 F_{2 i-2}-F_i\quad(i\ge 5)\, , \\ g_1(F_i, F_{i+2}, F_{2 i-3})& = \begin{cases} (F_{i-6}-1)F_{i+2}+5 F_{2 i-3}-F_i&{ (i\ge 7) }\\ F_{i+2}+4 F_{2 i-3}-F_i( = 149)&{ (i = 6) }\, , \end{cases} \\ g_1(F_i, F_{i+2}, F_{2 i-4})& = (F_{i-5}+F_{i-7}-1)F_{i+2}+7 F_{2 i-4}-F_i\, , \\ g_1(F_i, F_{i+2}, F_{2 i-5})& = \begin{cases} (F_{i-5}-1)F_{i+2}+11 F_{2 i-5}-F_i&{ (i\ge 10) }\\ 12 F_{2 i-5}-F_i&{ (i = 9) }\\ 11 F_{2 i-5}-F_i&{ (i = 8) } \, . \end{cases} \end{align*}

    Proof. Put the linear representation

    \begin{align*} t_{x, y}:& = x F_{i+2}+y F_{i+k}\\ & = (x+y F_k)F_{i+2}-y F_{k-2}F_i\quad(x, y\ge 0)\, . \end{align*}

    For given F_i and F_k , integers r and \ell are determined uniquely as F_i-1 = r F_k+\ell with 0\le\ell\le F_k-1 .

    Table 1.  {\rm Ap}(F_i;0) and {\rm Ap}(F_i;1) for r\ge 1.

     | Show Table
    DownLoad: CSV

    The second set {\rm Ap} (F_i; 1) can be yielded from the first set {\rm Ap}(F_i; 0) as follows. Assume that r\ge 1 . Only the first line \{t_{0, 0}, t_{1, 0}, \dots, t_{F_k-1, 0}\} moves to fill the last gap in the ( r+1 )-st line, and the rest continue to the next ( r+2 )-nd line. Everything else from the second line shifts up by 1 and moves to the next right block (When r = 1 , the new right block consists of only one line t_{F_k, 0}, \cdots, t_{F_k+\ell, 0} , but this does not affect the final result).

    \begin{align*} t_{0, 1}&\equiv t_{F_k, 0}, &t_{1, 1}&\equiv t_{F_k+1, 0}, &\quad\dots, \quad t_{F_k-1, 1}&\equiv t_{2 F_k-1, 0}, \\ t_{0, 2}&\equiv t_{F_k, 1}, &t_{1, 2}&\equiv t_{F_k+1, 1}, &\quad\dots, \quad t_{F_k-1, 2}&\equiv t_{2 F_k-1, 1}, \\ \dots\\ t_{0, r-1}&\equiv t_{F_k, r-2}, &t_{1, r-1}&\equiv t_{F_k+1, r-2}, &\quad\dots, \quad t_{F_k-1, r-1}&\equiv t_{2 F_k-1, r-2}, \\ t_{0, r}&\equiv t_{F_k, r-1}, &\!\!\!\!\quad\dots, &\!\!\!\!&t_{\ell, r}\equiv t_{F_k+\ell, r-1}, && \end{align*}
    \qquad\qquad\qquad\qquad t_{0, 0}\equiv t_{\ell+1, r}, \quad\dots, \quad t_{F_k-\ell-2, 0}\equiv t_{F_k-1, r},
    t_{F_k-\ell-1, 0}\equiv t_{0, r+1}, \quad\dots, \quad t_{F_k-1, 0}\equiv t_{\ell, r+1}.

    The first group is summarized as

    t_{x, y}\equiv t_{F_k+x, y-1}\pmod{F_i}

    for 0\le x\le F_k-1 and 1\le y\le r-1 or 0\le x\le\ell and y = r . This congruence is valid because

    \begin{align*} &t_{x, y} = (x+y F_k)F_{i+2}-y F_{k-2}F_i\\ &\equiv(F_k+x+(y-1)F_k)F_{i+2}-(y-1)F_{k-2}F_i = t_{F_k+x, y-1}\pmod{F_i}\, . \end{align*}

    The second group is valid because for 0\le x\le F_k-\ell-2 ,

    \begin{align*} t_{x, 0}& = x F_{i+2}\\ &\equiv(\ell+1+x+r F_k)F_{i+2}-r F_{k-2}F_i = t_{\ell+1+x, r}\pmod{F_i}\, . \end{align*}

    The third group is valid because for 0\le x\le \ell ,

    \begin{align*} t_{F_k-\ell-1+x, 0}& = (F_k-\ell-1+x)F_{i+2}\\ &\equiv(x+(r+1)F_k)F_{i+2}-(r+1)F_{k-2}F_i = t_{x, r+1}\pmod{F_i}\, . \end{align*}
    Table 2.  {\rm Ap}(F_i;0) and {\rm Ap}(F_i;1) for r=0 and 2\ell+1\ge F_k.

     | Show Table
    DownLoad: CSV

    Assume that r = 0 . The first set {\rm Ap}(F_i; 0) consists of only the first line. If 2\ell+1\ge F_k , then the second set {\rm Ap}(F_i; 1) can be yielded by moving to fill the last gap in the line, the rest continuing to the next line.

    \begin{align*} t_{0, 0}&\equiv t_{\ell+1, 0}, \quad &&\dots, &\quad t_{F_k-\ell-2, 0}&\equiv t_{F_k-1, 0}\, , \\ t_{F_k-\ell-1, 0}&\equiv t_{0, 1}, \quad &&\dots, &\quad t_{\ell, 0}&\equiv t_{2\ell+1-F_k, 1}\pmod{F_i}\, . \end{align*}

    They are valid because for 0\le j\le F_k-\ell-2 ,

    \begin{align*} t_{j, 0}& = j F_{i+2}\equiv(F_i+j)F_{i+2}\\ & = (\ell+1-j)F_{i+2} = t_{\ell+1-j, 0}\pmod{F_i}, \end{align*}

    and for 0\le j\le 2\ell+1-F_k ,

    \begin{align*} t_{F_k-\ell-1+j, 0}& = (F_k-\ell-1+j)F_{i+2}\\ &\equiv(j+F_k)F_{i+2}-F_{k-2}F_i = t_{j, 1}\pmod{F_i}\, . \end{align*}
    Table 3.  {\rm Ap}(F_i;0) and {\rm Ap}(F_i;1) for r=0 and 2\ell+1\le F_k-1.

     | Show Table
    DownLoad: CSV

    If 2\ell+1\le F_k-1 , then the second set {\rm Ap}(F_i; 1) can be yielded by moving to fill the last gap in the line only.

    t_{0, 0}\equiv t_{\ell+1, 0}, \quad\dots, \quad t_{\ell, 0}\equiv t_{2\ell+1, 0}\pmod{F_i}\, .

    They are valid because for 0\le j\le\ell ,

    \begin{align*} t_{j, 0}& = j F_{i+2}\equiv(F_i+j)F_{i+2}\\ & = (\ell+j+1)F_{i+2} = t_{\ell+j+1, 0}\pmod{F_i}\, . \end{align*}

    Next, we shall decide the maximal element in the second set {\rm Ap}(F_i; 1) (and also in the first set {\rm Ap}(F_i; 0) ).

    Case 1 (1) Assume that r = 0 and 2\ell+1\le F_k-1 . The second condition is equivalent to 2 F_i\le F_k , which is equivalent to i\le k-2 . The largest element in the second set {\rm Ap}(F_i; 1) , which is congruent to \{0, 1, \dots, F_i-1\}\pmod{F_i} , is given by t_{2\ell+1, 0} = (2 F_i-1)F_{i+2} .

    Case 1 (2) Assume that r = 0 and 2\ell+1\ge F_k . The second condition is equivalent to 2 F_i-1\ge F_k , which is equivalent to i\ge k-1\ge 3 . In this case there are two possibilities for the largest element in the second set {\rm Ap}(F_i; 1) : t_{F_k-1, 0} = (F_k-1)F_{i+2} or t_{2\ell+1-F_k, 1} = (2 F_i-1)F_{i+2}-F_{k-2}F_i . However, because of i\ge k-1\ge 3 , always t_{F_k-1, 0} < t_{2\ell+1-F_k, 1} .

    Case 2 Assume that r\ge 1 . This condition is equivalent to F_i-1\ge F_k , which is equivalent to i\ge k+1 .

    In this case there are four possibilities for the largest element in the second set {\rm Ap}(F_i; 1) :

    \begin{align*} t_{2 F_k-1, r-2}& = (r F_k-1)F_{i+2}-(r-2)F_{k-2}F_i, \\ t_{F_k+\ell, r-1}& = (F_i-1)F_{i+2}-(r-1)F_{k-2}F_i, \\ t_{F_k-1, r}& = \bigl((r+1)F_k-1\bigr)F_{i+2}-r F_{k-2}F_i, \\ t_{\ell, r+1}& = (F_i+F_k-1)F_{i+2}-(r+1)F_{k-2}F_i. \end{align*}

    However, it is clear that t_{2 F_k-1, r-2} < t_{F_k-1, r} . Because i\ge k+1 , t_{F_k+\ell, r-1} < t_{F_k-1, r} . Thus, the only necessity is to compare t_{F_k-1, r} and t_{\ell, r+1} , and t_{F_k-1, r} > t_{\ell, r+1} is equivalent to (F_i-r F_k)F_{i+2} > F_{k-2}F_i .

    Finally, rewriting the forms in terms of F_{i+2} and F_{i+k} and applying Lemma 1 (2.1), we get the result. Namely, the formula (3.1) comes from Case 1 (1). The formulas (3.2) and (3.3) come from Case 1 (2) when k = i+1 and k = i , respectively. The general formula (3.4) comes from Case 2.

    When p = 2 , we have the following.

    Theorem 3. For i\ge 3 , we have

    \begin{align} g_2(F_i, F_{i+2}, F_{i+k})& = (3 F_i-1)F_{i+2}-F_i\quad(k\ge i+3)\, , \end{align} (4.1)
    \begin{align} g_2(F_i, F_{i+2}, F_{2 i+2})& = \begin{cases} (F_{i-2}-1)F_{i+2}+F_{2 i+2}-F_i&{{ (i\ is\ odd ) }}\\ (F_{i+2}-1)F_{i+2}-F_i&{{ (i\ is \ even ) }}\, , \end{cases} \end{align} (4.2)
    \begin{align} g_2(F_i, F_{i+2}, F_{2 i+1})& = (F_{i}-1)F_{i+2}+F_{2 i+1}-F_i\, , \end{align} (4.3)
    \begin{align} g_2(F_i, F_{i+2}, F_{2 i})& = (2 F_{i}-1)F_{i+2}-F_i\, , \end{align} (4.4)
    \begin{align} g_2(F_i, F_{i+2}, F_{2 i-1})& = \begin{cases} (F_{i-4}-1)F_{i+2}+3 F_{2 i-1}-F_i&{{ (i\ge 5) }}\\ F_{i+2}+2 F_{2 i-1}-F_i( = 31)&{{ (i = 4) }}\, . \end{cases} \end{align} (4.5)

    When r = \left\lfloor{(F_i-1)/F_k}\right\rfloor\ge 2 , that is, k\le i-2 , we have

    \begin{align} &g_2(F_i, F_{i+2}, F_{i+k})\\ & = \begin{cases} (F_i-r F_k-1)F_{i+2}+(r+2)F_{i+k}-F_i&{{if \ (F_i-r F_k)F_{i+2}\ge F_{k-2}F_i }};\\ (F_k-1)F_{i+2}+(r+1)F_{i+k}-F_i&{{if\ (F_i-r F_k)F_{i+2} < F_{k-2}F_i }}\, . \end{cases} \end{align} (4.6)

    Remark. When k = i-2 and k = i-3 , we can write this more explicitly as

    \begin{align} g_2(F_i, F_{i+2}, F_{2 i-2})& = (F_{i-3}-1)F_{i+2}+4 F_{2 i-2}-F_i\quad(i\ge 5)\, , \end{align} (4.7)
    \begin{align} g_2(F_i, F_{i+2}, F_{2 i-3})& = \begin{cases} (F_{i-6}-1)F_{i+2}+6 F_{2 i-3}-F_i&{ (i\ge 7) }\\ F_{i+2}+5 F_{2 i-3}-F_i( = 183)&{ (i = 6) }\, , \end{cases} \end{align} (4.8)

    respectively. The formulas (4.7) and (4.8) hold when r = 2 and r = 4 , respectively.

    Proof. When p = 2 , the third least complete residue system {\rm Ap}(F_i; 2) is determined from the second least complete residue system {\rm Ap}(F_i; 1) . When r\ge 2 , some elements go to the third block.

    Table 4.  {\rm Ap}(F_i;p) (p=0,1,2) for r=0 and F_k\ge 3\ell+3.

     | Show Table
    DownLoad: CSV

    Case 1 (1) Let r = 0 and F_k\ge 3\ell+3 = 3 F_i . Since for \ell+1\le j\le 2\ell+1 ,

    \begin{align*} t_{j, 0}& = j F_{i+2}\equiv(F_i+j)F_{i+2}\\ & = (\ell+j+1)F_{i+2} = t_{\ell+j+1, 0}\pmod{F_i}\, , \end{align*}

    the third set {\rm Ap}(F_i; 2) is given by

    \{t_{2\ell+1, 0}, \dots, t_{3\ell+2, 0}\}\pmod{F_i}\, .

    As the maximal element is t_{3\ell+2, 0} , by (2.1), we have

    g_2(F_i, F_{i+2}, F_{i+k}) = (3 F_i-1)F_{i+2}-F_i\, .
    Table 5.  {\rm Ap}(F_i;p) (p=0,1,2) for r=0 and 2\ell+2\le F_k\le 3\ell+2.

     | Show Table
    DownLoad: CSV

    Case 1 (2) Let r = 0 and 2 F_i = 2\ell+2\le F_k\le 3\ell+2 = 3 F_i-1 . Since t_{j, 0}\equiv t_{\ell+j+1, 0}\pmod{F_i} ( \ell+1\le j\le F_k-\ell-2 ), and for 0\le j\le 3\ell+2-F_k ,

    \begin{align*} t_{F_k-\ell-1+j, 0}& = (F_k-\ell-1+j)F_{i+2} = (F_k-F_i+j)F_{i+2}\\ &\equiv(F_k+j)F_{i+2}\equiv(j+F_k)F_{i+2}+F_{k-2}F_i = t_{j, 1}\pmod{F_i}\, , \end{align*}

    the third set {\rm Ap}(F_i; 2) is

    \{t_{2\ell+1, 0}, \dots, t_{F_k-1, 0}, t_{0, 1}, \dots, t_{3\ell+2-F_k, 1}\}\pmod{F_i}\, .
    Table 6.  {\rm Ap}(F_i;p) (p=0,1,2) for r=0 and F_k\le 2\ell+1.

     | Show Table
    DownLoad: CSV

    The first elements t_{2\ell+1, 0}, \dots, t_{F_k-1, 0} are in the last of the first line, and the last elements t_{0, 1}, , \dots, t_{3\ell+2-F_k, 1} are in the first part of the second line. Hence, the maximal element is t_{F_k-1, 0} = (F_k-1)F_{i+2} or t_{3\ell+2-F_k, 1} = (3 F_i-1)F_{i+2}-F_{k-2}F_i . Therefore, when (3 F_i-F_k)F_{i+2}\ge F_{k-2}F_i , g_2(F_i, F_{i+2}, F_{i+k}) = (3 F_i-1)F_{i+2}-(F_{k-2}+1)F_i . When (3 F_i-F_k)F_{i+2} < F_{k-2}F_i , g_2(F_i, F_{i+2}, F_{i+k}) = (F_k-1)F_{i+2}-F_i .

    Case 1 (3) Let r = 0 and F_k\le 2\ell+1 = 2 F_i-1 . Since for \ell+1\le j\le F_k-1

    \begin{align*} t_{j, 0}& = j F_{i+2}\equiv(F_i+j)F_{i+2}\\ &\equiv(\ell+1+j)F_{i+2}-F_{k-2}F_i = t_{\ell-F_k+1+j, 1}\pmod{F_i}, \end{align*}

    and for 0\le j\le 2\ell+1-F_k

    \begin{align*} t_{j, 1}& = (j+F_k)F_{i-2}-F_{k-2}F_i\\ &\equiv(F_k+j)F_{i+2} = t_{F_k+j, 0}\pmod{F_i}\, , \end{align*}

    the third set {\rm Ap}(F_i; 2) is

    \{t_{2\ell+2-F_k, 1}, \dots, t_{\ell, 1}, t_{F_k, 0}, \dots, t_{2\ell+1, 0}\}\pmod{F_i}\, .

    The first elements t_{2\ell+2-F_k, 1}, \dots, t_{\ell, 1} are in the second line of the first block, and the last elements are t_{F_k, 0}, \dots, t_{2\ell+1, 0} in the first line of the second block. So, the maximal element is t_{\ell, 1} = (F_i+F_k-1)F_{i+2}-F_{k-2}F_i or t_{2\ell+1, 0} = (2 F_i-1)F_{i+2} . Since F_k\le 2 F_i-1 , only when k = i+1 , we have g_2(F_i, F_{i+2}, F_{i+k}) = (F_i+F_k-1)F_{i+2}-(F_{k-2}+1)F_i . When k\le i , we have g_2(F_i, F_{i+2}, F_{i+k}) = (2 F_i-1)F_{i+2}-F_i .

    Table 7.  {\rm Ap}(F_i;p) (p=0,1,2) for r=1 and F_k\ge 2\ell+2.

     | Show Table
    DownLoad: CSV

    Case 2 (1) Let r = 1 and 2\ell+2\le F_k , that is, \frac{2}{3}F_i\le F_k\le F_i-1 . This case happens only when i = 4 and k = 3 . Since for \ell+1\le j\le F_k-1

    \begin{align*} t_{j, 1}& = (j+F_k)F_{i+2}-F_{k-2}F_i\\ &\equiv(F_k+j)F_{i+2} = t_{F_k+j, 0}\pmod{F_i}\, , \end{align*}

    for 0\le j\le\ell

    \begin{align*} t_{j, 2}& = (j+2 F_k)F_{i+2}-2 F_{k-2}F_i\\ &\equiv(F_k+j+F_k)F_{i+2}-F_{k-2}F_i = t_{F_k+j, 1}\pmod{F_i}\, , \end{align*}

    and for 0\le j\le\ell

    \begin{align*} t_{F_k+j, 0}& = (F_k+j)F_{i+2}\equiv(F_i+j+F_k)F_{i+2}\\ &\equiv(\ell+1+j+2 F_k)F_{i+2}-2 F_{k-2}F_i = t_{\ell+1+j, 2}\pmod{F_i}\, , \end{align*}

    the third set {\rm Ap}(F_i; 2) is

    \{t_{F_k+\ell+1, 0}, \dots, t_{2 F_k-1, 0}, t_{F_k, 1}, \dots, t_{F_k+\ell, 1}, t_{\ell+1, 2}, \dots, t_{2\ell+1, 2}\}\pmod{F_i}\, .

    The first elements t_{F_k+\ell+1, 0}, \dots, t_{2 F_k-1, 0} are in the first line of the second block, the second elements t_{F_k, 1}, \dots, t_{F_k+\ell, 1} are in the second line of the second block, and the last elements t_{\ell+1, 2}, \dots, t_{2\ell+1, 2} in the third line of the first block. So, the maximal element is one of t_{2 F_k-1, 0} = (2 F_k-1)F_{i+2} , t_{F_k+\ell, 1} = (F_i+F_k-1)F_{i+2}-F_{k-2}F_i or t_{2\ell+1, 2} = (2 F_i-1)F_{i+2}-2 F_{k-2}F_i . As i = 4 and k = 3 , t_{2\ell+1, 2} = 34 is the largest. Hence, g_2(F_i, F_{i+2}, F_{i+k}) = (2 F_i-1)F_{i+2}-(2 F_{k-2}+1)F_i , that is, g_2(F_4, F_6, F_7) = 34-F_4 = 31 .

    Table 8.  {\rm Ap}(F_i;p) (p=0,1,2) for r=1 and F_k\le 2\ell+1.

     | Show Table
    DownLoad: CSV

    Case 2 (2) Let r = 1 and 2\ell+1\ge F_k , that is, (F_i-1)/2 < F_k\le(2F_i-1)/3 . This relation holds only when k = i-1\ge 4 . Since t_{j, 1}\equiv t_{F_k+j, 0}\pmod{F_i} ( \ell+1\le j\le F_k-1 ), t_{j, 2}\equiv t_{F_k+j, 1}\pmod{F_i} ( 0\le j\le\ell ), t_{F_k+j, 0}\equiv t_{\ell+1+j, 2}\pmod{F_i} ( 0\le j\le F_k-\ell-2 ), and for 0\le j\le 2\ell+1-F_k

    \begin{align*} t_{2 F_k-\ell-1+j, 0}& = (2 F_k-\ell-1+j)F_{i+2}\equiv(3 F_k-F_i+j)F_{i+2}\\ &\equiv(j+3 F_k)F_{i+2}-3 F_{k-2}F_i = t_{j, 3}\pmod{F_i}\, , \end{align*}

    the third set {\rm Ap}(F_i; 2) is

    \begin{eqnarray} \{t_{F_k+\ell+1, 0}, \dots, t_{2 F_k-1, 0}, t_{F_k, 1}, \dots, t_{F_k+\ell, 1}, \\ t_{\ell+1, 2}, \dots, t_{F_k-1, 2}, t_{0, 3}, \dots, t_{2\ell+1-F_k, 3}\}\pmod{F_i}\, . \end{eqnarray}

    So, the maximal element is one of t_{2 F_k-1, 0} = (2 F_k-1)F_{i+2} , t_{F_k+\ell, 1} = (F_i+F_k-1)F_{i+2}-F_{k-2}F_i , t_{F_k-1, 2} = (3 F_k-1)F_{i+2}-2 F_{k-2}F_i or t_{2\ell+1-F_k, 3} = (2 F_i-1)F_{i+2}-3 F_{k-2}F_i . As k = i-1\ge 4 , t_{2\ell+1-F_k, 3} = (2 F_i-1)F_{i+2}-3 F_{i-3}F_i is the largest. Hence, g_2(F_i, F_{i+2}, F_{2 i-1}) = (2 F_i-1)F_{i+2}-(3 F_{i-3}+1)F_i .

    Case 3 Let r\ge 2 . The part

    t_{F_k, 1}, \dots, t_{2 F_k-1, 1}, \dots, t_{F_k, r-2}, \dots, t_{2 F_k-1, r-2}, t_{F_k, r-1}, \dots, t_{F_k+\ell, r-1}

    in the second block among the second set {\rm Ap}(F_i; 1) corresponds to the part

    t_{2 F_k, 0}, \dots, t_{3 F_k-1, 0}, \dots, t_{2 F_k, r-3}, \dots, t_{3 F_k-1, r-3}, t_{2 F_k, r-2}, \dots, t_{2 F_k+\ell, r-2}

    in the third block among the third least set {\rm Ap}(F_i; 2) * because

    *When r = 2 , only the last shorter line remains, and t_{3 F_k-1, r-3} in table 9 does not appear. However, this does not affect the result.

    \begin{align*} t_{F_k+j, h}& = (F_k+j+h F_k)F_{i+2}-h F_{k-2}F_i\\ &\equiv\bigl(2 F_k+j+(h-1)F_k\bigr)F_{i+2}-(h-1)F_{k-2}F_i\\ & = t_{2 F_k+j, h-1}\pmod{F_i} \end{align*}
    Table 9.  {\rm Ap}(F_i;p) (p=0,1,2) for r\ge 2.

     | Show Table
    DownLoad: CSV

    for 0\le j\le F_k-1 and 1\le h\le r-2 or 0\le j\le\ell and h = r-1 . The part t_{\ell+1, r}, \dots, t_{F_k-1, r} in the first block among the second set {\rm Ap}(F_i; 1) corresponds to the part t_{F_k+\ell+1, r-1}, \dots, t_{2 F_k-1, r-1} in the second block among the third set {\rm Ap}(F_i; 2) because for ell+1\le j\le F_k-1

    \begin{align*} t_{j, r}& = (j+r F_k)F_{i+2}-r F_{k-2}F_i\\ &\equiv\bigl(F_k+j+(r-1)F_k\bigr)F_{i+2}-(r-1)F_{k-2}F_i\\ & = t_{F_k+j, r-1}\pmod{F_i}\, . \end{align*}

    The part t_{0, r+1}, \dots, t_{\ell, r+1} in the first block among the second set {\rm Ap}(F_i; 1) corresponds to the part t_{F_k, r}, \dots, t_{F_k+\ell, r} in the second block among the third set {\rm Ap}(F_i; 2) because for 0\le j\le\ell

    \begin{align*} t_{j, r+1}& = \bigl(j+(r+1)F_k\bigr)F_{i+2}-(r+1)F_{k-2}F_i\\ &\equiv(F_k+j+r F_k)F_{i+2}-r F_{k-2}F_i\\ & = t_{F_k+j, r}\pmod{F_i}\, . \end{align*}

    The first line t_{F_k, 0}, \dots, t_{2 F_k-\ell-2}, t_{2 F_k-\ell-1}, \dots, t_{2 F_k-1, 0} in the second block among the second set {\rm Ap}(F_i; 1) corresponds to two parts t_{\ell+1, r+1}, \dots, t_{F_k-1, r+1} and t_{0, r+2}, \dots, t_{\ell, r+2} in the first block among the third set {\rm Ap}(F_i; 2) because for 0\le j\le F_k-\ell-2

    \begin{align*} t_{F_k+j, 0}& = (F_k+j)F_{i+2}\equiv(F_i+F_k+j)F_{i+2}-(r+1)F_{k-2}F_i\\ & = \bigl(\ell+1+j+(r+1)F_k\bigr)F_{i+2}-(r+1)F_{k-2}F_i\\ & = t_{\ell+1+j, r+1}\pmod{F_i}, \end{align*}

    and for 0\le j\le\ell ,

    \begin{align*} t_{2 F_k-\ell-1+j, 0}& = (2 F_k-\ell-1+j)F_{i+2} = (2 F_k-F_i+r F_k+j)F_{i+2}\\ &\equiv\bigl(j+(r+2)F_k\bigr)F_{i+2}-(r+2)F_{k-2}F_i\\ & = t_{j, r+2}\pmod{F_i}\, . \end{align*}

    Hence, the third set {\rm Ap}(F_i; 2) is given by

    \begin{eqnarray} \{t_{2 F_k, 0}, \dots, t_{3 F_k-1, 0}, \dots, t_{2 F_k, r-3}, \dots, t_{3 F_k-1, r-3}, t_{2 F_k, r-2}, \dots, t_{2 F_k+\ell, r-2}, \\ t_{F_k+\ell+1, r-1}, \dots, t_{2 F_k-1, r-1}, t_{F_k, r}, \dots, t_{F_k+\ell, r}, \\ t_{\ell+1, r+1}, \dots, t_{F_k-1, r+1}, t_{0, r+2}, \dots, t_{\ell, r+2}\}\pmod{F_i}\, . \end{eqnarray}

    There are six candidates for the maximal element:

    \begin{align*} t_{3 F_k-1, r-3}& = (r F_k-1)F_{i+2}-(r-3)F_{k-2}F_i\, , \\ t_{2 F_k+\ell, r-2}& = (F_i-1)F_{i+2}-(r-2)F_{k-2}F_i\, , \\ t_{2 F_k-1, r-1}& = \bigl((r+1)F_k-1\bigr)F_{i+2}-(r-1)F_{k-2}F_i\, , \\ t_{F_k+\ell, r}& = (F_i+F_k-1)F_{i+2}-r F_{k-2}F_i\, , \\ t_{F_k-1, r+1}& = \bigl((r+2)F_k-1\bigr)F_{i+2}-(r+1)F_{k-2}F_i\, , \\ t_{\ell, r+2}& = (F_i+2 F_k-1)F_{i+2}-(r+2)F_{k-2}F_i\, . \end{align*}

    However, it is easy to see that the first four values are less than the last two. Hence, if (F_i-r F_k)F_{i+2}\ge F_{k-2}F_i , then g_2(F_i, F_{i+2}, F_{i+k}) = t_{\ell, r+2}-F_i = (F_i+2 F_k-1)F_{i+2}-\bigl((r+2)F_{k-2}+1\bigr)F_i . If (F_i-r F_k)F_{i+2} < F_{k-2}F_i , then g_2(F_i, F_{i+2}, F_{i+k}) = t_{F_k-1, r+1}-F_i = \bigl((r+2)F_k-1\bigr)F_{i+2}-\bigl((r+1)+1\bigr)F_{k-2}F_i .

    Finally, we rewrite the form as the linear combination of F_{i+2} and F_{i+k} and apply Lemma 1 (2.1). The formula (4.1) comes from Case 1 (1). The formula (4.2) comes from Case 1 (2). The formulas (4.3) and (4.4) come from Case 1 (3). The formula (4.5) comes from Case 2 (1) (2). The general formula (4.6) comes from Case 3.

    When p = 3 , we have the following.

    Theorem 4. For i\ge 3 , we have

    \begin{align} g_3(F_i, F_{i+2}, F_{i+k})& = (4 F_i-1)F_{i+2}-F_i\quad(k\ge i+3)\, , \end{align} (5.1)
    \begin{align} g_3(F_i, F_{i+2}, F_{2 i+2})& = (F_{i}-1)F_{i+2}+F_{2 i+2}-F_i\, , \\ g_3(F_i, F_{i+2}, F_{2 i+1})& = (F_{i}+F_{i-2}-1)F_{i+2}+F_{2 i+1}-F_i\, , \\ g_3(F_i, F_{i+2}, F_{2 i})& = (F_{i}-1)F_{i+2}+2 F_{2 i}-F_i\, , \\ g_3(F_i, F_{i+2}, F_{2 i-1})& = (F_{i-2}-1)F_{i+2}+3 F_{2 i-1}-F_i\quad(i\ge 4)\, , \\ g_3(F_i, F_{i+2}, F_{2 i-2})& = \begin{cases} (F_{i-5}-1)F_{i+2}+5 F_{2 i-2}-F_i&{{ (i\ge 6) }}\\ F_{i+2}+4 F_{2 i-2}-F_i( = 92)&{{ (i = 5) }}\, . \end{cases} \end{align} (5.2)

    When r = \left\lfloor{(F_i-1)/F_k}\right\rfloor\ge 3 , that is, k\le i-3 , we have

    \begin{align} &g_3(F_i, F_{i+2}, F_{i+k})\\ & = \begin{cases} (F_i-r F_k-1)F_{i+2}+(r+3)F_{i+k}-F_i&{{if\ (F_i-r F_k)F_{i+2}\ge F_{k-2}F_i }};\\ (F_k-1)F_{i+2}+(r+2)F_{i+k}-F_i&{{if \ (F_i-r F_k)F_{i+2} < F_{k-2}F_i }}\, . \end{cases} \end{align} (5.3)
    Table 10.  {\rm Ap}(F_i;p) (p=0,1,2,3) for r\ge 3.

     | Show Table
    DownLoad: CSV

    Proof. When p = 3 , the fourth least complete residue system {\rm Ap}(F_i; 3) is determined from the third least complete residue system {\rm Ap}(F_i; 2) . When r\ge 3 , some elements go to the fourth block. The proof of the cases r = 0, 1, 2 is similar to that of Theorem 3 and needs more case-by-case discussions, and it is omitted.

    In the table, denotes the area of the n -th least set of the complete residue system {\rm Ap} (F_i; n-1) . Here, each m_j^{(n-1)} , satisfying m_j^{(n-1)}\equiv j\pmod{F_i} ( 0\le j\le F_i-1 ), can be expressed in at least n ways, but m_j^{(n-1)}-F_i can be expressed in at most n-1 ways. As illustrated in the proof of Theorem 4.1, two areas (lines) of ④ in the first block correspond to the first line of ③ in the third block, two areas (lines) of ④ in the second block correspond to two areas (lines) of ③ in the first block, two areas (lines) of ④ in the third block correspond to two areas (lines) of ③ in the second block, and the area of ④ in the fourth block correspond to the area of ③ in the third block except the first line. Eventually, the maximal element of the fourth set of the complete residue system is from the first block, that is, t_{F_k-1, r+2} = \bigl((r+3)F_k-1\bigr)F_{i+2}-(r+2)F_{k-2}F_i or t_{\ell, r+3} = (F_i+3 F_k-1)F_{i+2}-(r+3)F_{k-2}F_i . Hence, if (F_i-r F_k)F_{i+2}\ge F_{k-2}F_i , then g_3(F_i, F_{i+2}, F_{i+k}) = t_{\ell, r+3}-F_i = (F_i+3 F_k-1)F_{i+2}-\bigl((r+3)F_{k-2}+1\bigr)F_i . If (F_i-r F_k)F_{i+2} < F_{k-2}F_i , then g_3(F_i, F_{i+2}, F_{i+k}) = t_{F_k-1, r+2}-F_i = \bigl((r+3)F_k-1\bigr)F_{i+2}-\bigl((r+2)F_{k-2}+1\bigr)F_i . Notice that r\ge 3 implies that k\le i-3 .

    Repeating the same process, when r is big enough that r\ge p , that is, k is comparatively smaller than i , as a generalization of (3.4), (4.6) and (5.3), we can have an explicit formula.

    Theorem 5. Let i\ge 3 and p be a nonnegative integer. When r = \left\lfloor{(F_i-1)/F_k}\right\rfloor\ge p with (r, p)\ne(0, 0) , we have

    \begin{align*} &g_p(F_i, F_{i+2}, F_{i+k})\notag\\ & = \begin{cases} (F_i-r F_k-1)F_{i+2}+(r+p)F_{i+k}-F_i&{{if\ (F_i-r F_k)F_{i+2}\ge F_{k-2}F_i }};\\ (F_k-1)F_{i+2}+(r+p-1)F_{i+k}-F_i&{{if\ (F_i-r F_k)F_{i+2} < F_{k-2}F_i }}\, . \end{cases} \end{align*}

    Remark. When p = 0 , Theorem 5 reduces to [24,Theorem 1] except r = 0 .

    On the other hand, k is comparatively larger than i . As a generalization of (3.1), (4.1) and (5.1), we can also have the following formula.

    Proposition 1. For i, k\ge 3 , we have

    g_p(F_i, F_{i+2}, F_{i+k}) = g_p(F_i, F_{i+2})\quad(k\ge i+h)

    when (p, h) = (3, 4) , (4, 4) , (5, 5) , (6, 5) , (7, 5) , (8, 5) , (9, 6) , (10, 6) , (11, 6) , (12, 6) , (13, 6) , (14, 6) , (15, 7) , (16, 7) , (17, 7) , (18, 7) , (19, 7) , (20, 7) , (21, 7) , (22, 7) , (23, 7) , (24, 8) , \dots .

    The proof depends on the fact

    (p+1)F_i F_{i+2}-F_i-F_{i+2} < F_{2 i+h}\quad(i\ge 3)\, .

    Nevertheless, such h 's are not necessarily sharp because even if (p+1)F_i F_{i+2}-F_i-F_{i+2} > F_{2 i+h} , it is possible to have g_p(F_i, F_{i+2}, F_{i+k}) = g_p(F_i, F_{i+2}) ( k\ge i+h ).

    The formulas about Fibonacci numbers can be applied to obtain those about Lucas numbers. The discussion is similar, though the value \left\lfloor{(L_i-1)/F_k}\right\rfloor is different from \left\lfloor{(F_i-1)/F_k}\right\rfloor . So, we list the results only.

    When p = 1 , we have the following.

    Theorem 6. For i\ge 3 , we have

    \begin{align*} g_1(L_i, L_{i+2}, L_{i+k})& = (2 L_i-1)L_{i+2}-L_i\quad(k\ge i+4)\, , \\ g_1(L_i, L_{i+2}, L_{2 i+3})& = (F_{i+3}-1)L_{i+2}-L_i\, , \\ g_1(L_i, L_{i+2}, L_{2 i+2})& = (3 F_{i-1}-1)L_{i+2}+L_{2 i+2}-L_i\, . \end{align*}

    When r = \left\lfloor{(L_i-1)/F_k}\right\rfloor\ge 1 , that is, k\le i+1 , we have

    \begin{align*} &g_1(L_i, L_{i+2}, L_{i+k})\\ & = \begin{cases} (L_i-r F_k-1)L_{i+2}+(r+1)L_{i+k}-L_i&{{if\ (L_i-r F_k)L_{i+2}\ge F_{k-2}L_i }}, \\ (F_k-1)L_{i+2}+r L_{i+k}-L_i&{{if\ (L_i-r F_k)L_{i+2} < F_{k-2}L_i }}. \end{cases} \end{align*}

    When p = 2 , we have the following.

    Theorem 7. For i\ge 3 , we have

    \begin{align*} g_2(L_i, L_{i+2}, L_{i+k})& = (3 L_i-1)L_{i+2}-L_i\quad(k\ge i+4)\, , \\ g_2(L_i, L_{i+2}, L_{2 i+3})& = (L_{i}-1)L_{i+2}+L_{2 i+3}-L_i\, , \\ g_2(L_i, L_{i+2}, L_{2 i+2})& = \begin{cases} (L_{i}-1)L_{i+2}+L_{2 i+2}-L_i&{{ (i \ is\ odd ) }}\\ (2 L_{i}-1)L_{i+2}-L_i&{{ (i \ is\ even ) }}\, , \end{cases} \\ g_2(L_i, L_{i+2}, L_{2 i+1})& = (2 F_{i-1}-1)L_{i+2}+2 L_{2 i+1}-L_i\, , \\ g_2(L_i, L_{i+2}, L_{2 i})& = L_{i+2}+3 L_{2 i}-L_i( = 61)\quad(i = 3)\, . \end{align*}

    When r = \left\lfloor{(L_i-1)/F_k}\right\rfloor\ge 2 , that is, k\le i except i = k = 3 , we have

    \begin{align*} &g_2(L_i, L_{i+2}, L_{i+k})\\ & = \begin{cases} (L_i-r F_k-1)L_{i+2}+(r+2)L_{i+k}-L_i&{{if\ (L_i-r F_k)L_{i+2}\ge F_{k-2}L_i }}, \\ (F_k-1)L_{i+2}+(r+1)L_{i+k}-L_i&{{if\ (L_i-r F_k)L_{i+2} < F_{k-2}L_i }}. \end{cases} \end{align*}

    When p = 3 , we have the following.

    Theorem 8. For i\ge 3 , we have

    \begin{align*} g_3(L_i, L_{i+2}, L_{i+k})& = (4 L_i-1)L_{i+2}-L_i\quad(k\ge i+5)\, , \\ g_3(L_i, L_{i+2}, L_{2 i+4})& = (4 F_{i-1}-F_{i-2}-1)L_{i+2}+L_{2 i+4}-L_i\, , \\ g_3(L_i, L_{i+2}, L_{2 i+3})& = (4 F_{i+1}-1)L_{i+2}-L_i\, , \\ g_3(L_i, L_{i+2}, L_{2 i+2})& = (F_{i}+2 F_{i-3}-1)L_{i+2}+2 L_{2 i+2}-L_i\, , \\ g_3(L_i, L_{i+2}, L_{2 i+1})& = (F_{i-1}-1)L_{i+2}+3 L_{2 i+1}-L_i\, , \\ g_3(L_i, L_{i+2}, L_{2 i})& = \begin{cases} (2 F_{i-3}-1)L_{i+2}+4 L_{2 i}-L_i&\mathit{\rm{ (i\ge 4) }}\\ 3 L_{i+2}+2 L_{2 i}-L_i( = 69)&\mathit{\rm{ (i = 3) }}\, . \end{cases} \end{align*}

    When r = \left\lfloor{(L_i-1)/F_k}\right\rfloor\ge 3 , that is, k\le i-1 , we have

    \begin{align*} &g_3(L_i, L_{i+2}, L_{i+k})\\ & = \begin{cases} (L_i-r F_k-1)L_{i+2}+(r+3)L_{i+k}-L_i&{{if\ (L_i-r F_k)L_{i+2}\ge F_{k-2}L_i }}, \\ (F_k-1)L_{i+2}+(r+2)L_{i+k}-L_i&{{if\ (L_i-r F_k)L_{i+2} < F_{k-2}L_i }}. \end{cases} \end{align*}

    For general p , when r is not less than p , we have an explicit formula.

    Theorem 9. Let i\ge 3 and p be a nonnegative integer. When r = \left\lfloor{(L_i-1)/F_k}\right\rfloor\ge p with (r, p)\ne(0, 0) , we have

    \begin{align*} &g_p(L_i, L_{i+2}, L_{i+k})\notag\\ & = \begin{cases} (L_i-r F_k-1)L_{i+2}+(r+p)L_{i+k}-L_i&{{if\ (L_i-r F_k)L_{i+2}\ge F_{k-2}L_i }};\\ (F_k-1)L_{i+2}+(r+p-1)L_{i+k}-L_i&{{if\ (L_i-r F_k)L_{i+2} < F_{k-2}L_i }}\, . \end{cases} \end{align*}

    By using the table of complete residue systems, we can also find explicit formulas of the p -Sylvester number, which is the total number of nonnegative integers that can only be expressed in at most p ways. When p = 0 , such a number is often called the Sylvester number.

    When p = 1 , we have the following.

    Theorem 10. For i\ge 3 , we have

    \begin{align} n_1(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(3 F_i F_{i+2}-F_i-F_{i+2}+1)\quad(k\ge i+2)\, , \end{align} (8.1)
    \begin{align} n_1(F_i, F_{i+2}, F_{2 i+1})& = \frac{1}{2}(3 F_i F_{i+2}-F_i-F_{i+2}+1)-(2 F_i-F_k)F_{k-2}\, , \\ &\qquad\qquad\qquad\qquad\qquad(k = i, i+1)\, . \end{align} (8.2)

    When r = \left\lfloor{(F_i-1)/F_k}\right\rfloor\ge 1 , that is, k\le i-1 , we have

    \begin{align} &n_1(F_i, F_{i+2}, F_{i+k})\\ & = \frac{1}{2}\bigl(F_i+2 F_k-1)F_{i+2}-F_i+1\bigr)-\left(r F_i-\frac{(r-1)(r+2)}{2}F_k\right)F_{k-2}\, . \end{align} (8.3)

    Proof. When r = 0 and 2\ell+1\le F_k-1 , by F_i-1 = \ell ,

    \begin{align*} \sum\limits_{j = 0}^{F_i-1}m_j^{(1)}& = t_{\ell+1, 0}+\cdots+t_{2\ell+1, 0}\\ & = \left(\frac{(2\ell+1)(2\ell+2)}{2}-\frac{\ell(\ell+1)}{2}\right)F_{i+2}\\ & = \frac{(3 F_i-1)F_i F_{i+2}}{2}\, . \end{align*}

    Hence, by Lemma 1 (2.2), we have

    \begin{align*} n_1(F_i, F_{i+2}, F_{i+k})& = \frac{(3 F_i-1)F_{i+2}}{2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}(3 F_i F_{i+2}-F_i-F_{i+2}+1)\, , \end{align*}

    which is (8.1).

    When r = 0 and 2\ell+1\ge F_k , by F_i-1 = \ell ,

    \begin{align*} \sum\limits_{j = 0}^{F_i-1}m_j^{(1)}& = (t_{\ell+1, 0}+\cdots+t_{F_k-1, 0})+(t_{0, 1}+\cdots+t_{2\ell+1-F_k, 1})\\ & = \left(\frac{(F_k-1)F_k}{2}-\frac{\ell(\ell+1)}{2}\right)F_{i+2}\\ &\quad +\frac{(2\ell+1-F_k)(2\ell+2-F_k)}{2}F_{i+2}+(2\ell+2-F_k)F_{i+k}\\ & = \left(\frac{(3 F_i-1)F_i}{2}-2 F_i F_k+F_k^2\right)F_{i+2}+(2 F_i-F_k)F_{i+k}\, . \end{align*}

    Since F_{i+k} = F_{i+2}F_k-F_i F_{k-2} ,

    \sum\limits_{j = 0}^{F_i-1}m_j^{(1)} = \left(\frac{(3 F_i-1)F_{i+2}}{2}-(2 F_i-F_k)F_{k-2}\right)F_i\, .

    Hence, by Lemma 1 (2.2), we have

    \begin{align*} n_1(F_i, F_{i+2}, F_{i+k})& = \frac{(3 F_i-1)F_{i+2}}{2}-(2 F_i-F_k)F_{k-2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}(3 F_i F_{i+2}-F_i-F_{i+2}+1)-(2 F_i-F_k)F_{k-2}\, , \end{align*}

    which is (8.2).

    When r\ge 1 , by F_i-1 = r F_k+\ell , we have

    \begin{align*} &\sum\limits_{j = 0}^{F_i-1}m_j^{(1)}\\ & = \sum\limits_{h = 0}^{r-2}(t_{F_k, h}+\cdots+t_{2 F_k-1, h}) +(t_{F_k, r-1}+\cdots+t_{F_k+\ell, r-1})\\ &\quad +(t_{\ell+1, r}+\cdots+t_{F_k-1, r})+(t_{0, r+1}+\cdots+t_{\ell, r+1})\\ & = (r-1)\left(\frac{(2 F_k-1)(2 F_k)}{2}-\frac{(F_k-1)F_k}{2}\right)F_{i+2}+\frac{(r-2)(r-1)}{2}F_k F_{i+k}\\ &\quad +\left(\frac{(F_k+\ell)(F_k+\ell+1)}{2}-\frac{(F_k-1)F_k}{2}\right)F_{i+2}+(\ell+1)(r-1)F_{i+k}\\ &\quad +\left(\frac{(F_k-1)F_k}{2}-\frac{\ell(\ell+1)}{2}\right)F_{i+2}+(F_k-1-\ell)r F_{i+k}\\ &\quad +\frac{\ell(\ell+1)}{2}F_{i+2}+(\ell+1)(r+1)F_{i+k}\\ & = \frac{1}{2}\left((r-1)(3 F_k-1)F_k+\bigl(F_i-(r-1)F_k-1\bigr)\bigl(F_i-(r-1)F_k\bigr)\right)F_{i+2}\\ &\quad +\left(\frac{(r-2)(r-1)}{2}F_k+r\bigl(F_i-(r-1)F_k\bigr)\right)F_{i+k}\\ & = \frac{1}{2}(F_i+2 F_k-1)F_i F_{i+2}\\ &\quad -\left(r F_i-\frac{(r-1)(r+2)}{2}F_k\bigr)\right)F_{k-2}F_i\, . \end{align*}

    Hence, by Lemma 1 (2.2), we have

    \begin{align*} &n_1(F_i, F_{i+2}, F_{i+k})\\ & = \frac{1}{2}(F_i+2 F_k-1)F_{i+2}-\left(r F_i-\frac{(r-1)(r+2)}{2}F_k\right)F_{k-2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}\bigl((F_i+2 F_k-1)F_{i+2}-F_i+1\bigr)-\left(r F_i-\frac{(r-1)(r+2)}{2}F_k\right)F_{k-2}\, , \end{align*}

    which is (8.3).

    When p = 2 , we have the following.

    Theorem 11. For i\ge 3 , we have

    \begin{align} n_2(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(5 F_i F_{i+2}-F_i-F_{i+2}+1)\quad(k\ge i+3)\, , \end{align} (8.4)
    \begin{align} n_2(F_i, F_{i+2}, F_{2 i+2})& = \frac{1}{2}\bigl((7 F_{i+2}-6 F_i-1)F_{i}-F_{i+2}+1\bigr)\, , \end{align} (8.5)
    \begin{align} n_2(F_i, F_{i+2}, F_{2 i+1})& = \frac{1}{2}\bigl((7 F_{i+2}-8 F_i-1)F_{i}-F_{i+2}+1\bigr)\, , \end{align} (8.6)
    \begin{align} n_2(F_i, F_{i+2}, F_{2 i})& = \frac{1}{2}(3 F_i F_{i+2}-F_i-F_{i+2}+1)\, , \end{align} (8.7)
    \begin{align} n_2(F_i, F_{i+2}, F_{2 i-1})& = \frac{1}{2}\bigl((170 F_i-1)F_i+(24 F_{i+2}-125 F_i-1)F_{i+2}+1\bigr)\, . \end{align} (8.8)

    When r = \left\lfloor{(F_i-1)/F_k}\right\rfloor\ge 2 , that is, k\le i-2 , we have

    \begin{align} &n_2(F_i, F_{i+2}, F_{i+k})\\ & = \frac{1}{2}\bigl((F_i+4 F_k-1)F_{i+2}-F_i+1\bigr)-\frac{1}{2}\bigl(2 r F_i-(r+3)(r-2)F_k\bigr)F_{k-2}\, . \end{align} (8.9)

    Proof. When r = 0 and F_k\ge 3\ell+3 , by F_i-1 = \ell , we have

    \begin{align*} \sum\limits_{j = 0}^{F_i-1}m_j^{(2)} & = t_{2\ell+2, 0}+\cdots+t_{3\ell+2, 0}\\ & = \left(\frac{(3\ell+2)(3\ell+3)}{2}-\frac{(2\ell+1)(2\ell+2)}{2}\right)F_{i+2}\\ & = \frac{1}{2}(5 F_i-1)F_i F_{i+2}\, . \end{align*}

    Hence, by Lemma 1 (2.2), we have

    \begin{align*} n_2(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(5 F_i-1)F_{i+2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}(5 F_i F_{i+2}-F_i-F_{i+2}+1)\, , \end{align*}

    which is (8.4).

    When r = 0 and 2\ell+2\le F_k\le 3\ell+2 , by F_{i+k} = F_{i+2}F_k-F_i F_{k-2} , we have

    \begin{align*} &\sum\limits_{j = 0}^{F_i-1}m_j^{(2)}\\ & = (t_{2\ell+2, 0}+\cdots+t_{F_k-1, 0})+(t_{0, 1}+\cdots+t_{3\ell+2-F_k, 1})\\ & = \left(\frac{(F_k-1)F_k}{2}-\frac{(2\ell+1)(2\ell+2)}{2}\right)F_{i+2}\\ &\quad +\frac{(3\ell+2-F_k)(3\ell+3-F_k)}{2}F_{i+2}+(3\ell+3-F_k)F_{i+k}\\ & = \frac{1}{2}(5 F_i-1)F_i F_{i+2}-(3 F_i-F_k)F_i F_{k-2}\, . \end{align*}

    Hence, we have

    \begin{align*} n_2(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(5 F_i-1)F_{i+2}-(3 F_i-F_k)F_{k-2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}(5 F_i F_{i+2}-F_i-F_{i+2}+1)-(3 F_i-F_k)F_{k-2}\, . \end{align*}

    This case occurs only when k = i+2 . Hence, we get (8.5).

    When r = 0 and F_k\le 2\ell+1 , we have

    \begin{align*} &\sum\limits_{j = 0}^{F_i-1}m_j^{(2)} = (t_{F_k, 0}+\cdots+t_{2\ell+1, 0})+(t_{2\ell+2-F_k, 1}+\cdots+t_{\ell, 1})\\ & = \left(\frac{(2\ell+1)(2\ell+2)}{2}-\frac{(F_k-1)F_k}{2}\right)F_{i+2}\\ &\quad +\left(\frac{\ell(\ell+1)}{2}-\frac{(2\ell+1-F_k)(2\ell+2-F_k)}{2}\right)F_{i+2}+(F_k-\ell-1)F_{i+k}\\ & = \frac{1}{2}(F_i+2 F_k-1)F_i F_{i+2}-(F_k-F_i)F_i F_{k-2}\, . \end{align*}

    Hence, we have

    \begin{align*} n_2(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(F_i+2 F_k-1)F_{i+2}-(F_k-F_i)F_{k-2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}\bigl((F_i+2 F_k-1)F_{i+2}-F_i+1\bigr)-(F_k-F_i)F_{k-2}\, . \end{align*}

    This case occurs only when k = i+1 . Hence, by rewriting we get (8.6).

    When r = 1 and 2\ell+2\le F_k , by F_i-1 = F_k+\ell , we have

    \begin{align*} &\sum\limits_{j = 0}^{F_i-1}m_j^{(2)}\\ & = (t_{F_k+\ell+1, 0}+\cdots+t_{2 F_k-1, 0})+(t_{F_k, 1}+\cdots+t_{F_k+\ell, 1})\\ &\quad +(t_{\ell+1, 2}+\cdots+t_{2\ell+1, 2})\\ & = \left(\frac{(2 F_k-1)(2 F_k)}{2}-\frac{(F_k+\ell)(F_k+\ell+1)}{2}\right)F_{i+2}\\ &\quad +\left(\frac{(F_k+\ell)(F_k+\ell+1)}{2}-\frac{(F_k-1)F_k}{2}\right)F_{i+2}+(\ell+1)F_{i+k}\\ &\quad +\left(\frac{(2\ell+1)(2\ell+2)}{2}-\frac{\ell(\ell+1)}{2}\right)F_{i+2}+2(\ell+1)F_{i+k}\\ & = \frac{1}{2}(3 F_i-1)F_i F_{i+2}-3(F_i-F_k)F_i F_{k-2}\, . \end{align*}

    Hence, we have

    \begin{align*} n_2(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(3 F_i-1)F_{i+2}-3(F_i-F_k)F_{k-2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}\bigl(3 F_i F_{i+2}-F_i-F_{i+2}+1\bigr)-3(F_i-F_k)F_{k-2}\, . \end{align*}

    This case occurs only when k = i . Hence, we get (8.7).

    When r = 1 and 2\ell+1\ge F_k , we have

    \begin{align*} &\sum\limits_{j = 0}^{F_i-1}m_j^{(2)}\\ & = (t_{F_k+\ell+1, 0}+\cdots+t_{2 F_k-1, 0})+(t_{F_k, 1}+\cdots+t_{F_k+\ell, 1})\\ &\quad +(t_{\ell+1, 2}+\cdots+t_{F_k-1, 2})+(t_{0, 3}+\cdots+t_{2\ell+1-F_k, 3})\\ & = \left(\frac{(2 F_k-1)(2 F_k)}{2}-\frac{(F_k+\ell)(F_k+\ell+1)}{2}\right)F_{i+2}\\ &\quad +\left(\frac{(F_k+\ell)(F_k+\ell+1)}{2}-\frac{(F_k-1)F_k}{2}\right)F_{i+2}+(\ell+1)F_{i+k}\\ &\quad +\left(\frac{(F_k-1)F_k}{2}-\frac{\ell(\ell+1)}{2}\right)F_{i+2}+2(F_k-\ell-1)F_{i+k}\\ &\quad +\frac{(2\ell+1-F_k)(2\ell+2-F_k)}{2}F_{i+2}+3(2\ell+2-F_k)F_{i+k}\\ & = \frac{1}{2}(3 F_i-1)F_i F_{i+2}-(5 F_i-6 F_k)F_i F_{k-2}\, . \end{align*}

    Hence, we have

    \begin{align*} n_2(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(3 F_i-1)F_{i+2}-(5 F_i-6 F_k)F_{k-2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}\bigl(3 F_i F_{i+2}-F_i-F_{i+2}+1\bigr)-(5 F_i-6 F_k)F_{k-2}\, . \end{align*}

    This case occurs only when k = i-1 . Hence, after rewriting, we get (8.8).

    When r\ge 2 , by F_i-1 = r F_k+\ell , we have

    \begin{align*} &\sum\limits_{j = 0}^{F_i-1}m_j^{(2)}\\ & = \sum\limits_{h = 0}^{r-3}(t_{2 F_k, h}+\cdots+t_{3 F_k-1, h}) +(t_{2 F_k, r-2}+\cdots+t_{2 F_k+\ell, r-2})\\ &\quad +(t_{F_k+\ell+1, r-1}+\cdots+t_{2 F_k-1, r-1})+(t_{F_k, r}+\cdots+t_{F_k+\ell, r})\\ &\quad +(t_{\ell+1, r+1}+\cdots+t_{F_k-1, r+1})+(t_{0, r+2}+\cdots+t_{\ell, r+2})\\ & = (r-2)\left(\frac{(3 F_k-1)(3 F_k)}{2}-\frac{(2 F_k-1)(2 F_k)}{2}\right)F_{i+2}+\frac{(r-3)(r-2)}{2}F_k F_{i+k}\\ &\quad +\left(\frac{(2 F_k+\ell)(2 F_k+\ell+1)}{2}-\frac{(2 F_k-1)(2 F_k)}{2}\right)F_{i+2}+(\ell+1)(r-2)F_{i+k}\\ &\quad +\left(\frac{(2 F_k-1)(2 F_k)}{2}-\frac{(F_k+\ell)(F_k+\ell+1)}{2}\right)F_{i+2}+(F_k-\ell-1)(r-1)F_{i+k}\\ &\quad +\left(\frac{(F_k+\ell)(F_k+\ell+1)}{2}-\frac{(F_k-1)F_k}{2}\right)F_{i+2}+(\ell+1)r F_{i+k}\\ &\quad +\left(\frac{(F_k-1)F_k}{2}-\frac{\ell(\ell+1)}{2}\right)F_{i+2}+(F_k-\ell-1)(r+1)F_{i+k}\\ &\quad +\frac{\ell(\ell+1)}{2}F_{i+2}+(\ell+1)(r+2)F_{i+k}\\ & = \frac{1}{2}(F_i+4 F_k-1)F_i F_{i+2}-\frac{1}{2}\bigl(2 r F_i-(r+3)(r-2)F_k\bigr)F_i F_{k-2}\, . \end{align*}

    Hence, by Lemma 1 (2.2), we have

    \begin{align*} &n_2(F_i, F_{i+2}, F_{i+k})\\ & = \frac{1}{2}(F_i+4 F_k-1)F_{i+2}-\frac{1}{2}\bigl(2 r F_i-(r+3)(r-2)F_k\bigr)F_{k-2} -\frac{F_i-1}{2}\\ & = \frac{1}{2}\bigl((F_i+4 F_k-1)F_{i+2}-F_i+1\bigr)-\frac{1}{2}\bigl(2 r F_i-(r+3)(r-2)F_k\bigr)F_{k-2}\, , \end{align*}

    which is (8.9).

    When p = 3 , we have the following. The process is similar, and the proof is omitted.

    Theorem 12. For i\ge 3 , we have

    \begin{align} n_3(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(7 F_i F_{i+2}-F_i-F_{i+2}+1)\quad(k\ge i+3)\, , \\ n_3(F_i, F_{i+2}, F_{2 i+2})& = (F_{i}-1)F_{i+2}+F_{2 i+2}-F_i\, , \\ n_3(F_i, F_{i+2}, F_{2 i+1})& = (F_{i}+F_{i-2}-1)F_{i+2}+F_{2 i+1}-F_i\, , \\ n_3(F_i, F_{i+2}, F_{2 i})& = \frac{1}{2}\bigl((5 F_i-1)F_{i+2}-F_i+1\bigr)-2 F_{i}F_{i-2}\, , \\ n_3(F_i, F_{i+2}, F_{2 i-1})& = \frac{1}{2}\bigl((F_i+4 F_{i-1}-1)F_{i+2}-F_i+1\bigr)-2 F_{i-1}F_{i-3}\quad(i\ge 4)\, , \\ n_3(F_i, F_{i+2}, F_{2 i-2})& = \frac{1}{2}\bigl((3 F_i-1)F_{i+2}-F_i+1\bigr)-(8 F_i-15 F_{i-2})F_{i-4}\quad(i\ge 5)\, . \end{align} (8.10)

    When r = \left\lfloor{(F_i-1)/F_k}\right\rfloor\ge 3 , that is, k\le i-3 , we have

    \begin{align*} &n_3(F_i, F_{i+2}, F_{i+k})\notag\\ & = \frac{1}{2}\bigl((F_i+6 F_k-1)F_{i+2}-F_i+1\bigr)-\frac{1}{2}\bigl(2 r F_i-(r+4)(r-3)F_k\bigr)F_{k-2}\, . \end{align*}

    We can continue to obtain explicit formulas of n_p(F_i, F_{i+2}, F_{i+k}) for p = 4, 5, \dots . However, the situation becomes more complicated. We need more case-by-case discussions.

    For general p , when r\ge p , we can have an explicit formula.

    Theorem 13. Let i\ge 3 and p be a nonnegative integer. When r = \left\lfloor{(F_i-1)/F_k}\right\rfloor\ge p , we have

    \begin{align} &n_p(F_i, F_{i+2}, F_{i+k})\\ & = \frac{1}{2}\bigl((F_i+2 p F_k-1)F_{i+2}-F_i+1\bigr)-\frac{1}{2}\bigl(2 r F_i-(r+p+1)(r-p)F_k\bigr)F_{k-2}\, . \end{align} (8.11)

    Remark. When p = 0 , Theorem 13 reduces to [24,Corollary 2].

    Sketch of the proof of Theorem 13. We have

    \begin{align*} &\sum\limits_{j = 0}^{F_i-1}m_j^{(p)}\\ & = \sum\limits_{h = 0}^{r-p-1}(t_{p F_k, h}+\cdots+t_{(p+1)F_k-1, h})\\ &\quad +(t_{p F_k, r-p}+\cdots+t_{p F_k+\ell, r-p})\\ &\quad +(t_{(p-1)F_k+\ell+1, r-p+1}+\cdots+t_{(p-1)F_k-1, r-p+1})\\ &\quad +(t_{(p-1)F_k, r-p+2}+\cdots+t_{(p-1)F_k+\ell, r-p+2})\\ &\quad +\cdots\\ &\quad +(t_{\ell+1, r+p-1}+\cdots+t_{F_k-1, r+p-1})+(t_{0, r+p}+\cdots+t_{\ell, r+p})\\ & = \frac{1}{2}\bigl((r-p)((2 p+1)F_k-1)F_k+(F_i-(r-p)F_k-1)(F_i-(r-p)F_k)\bigr)F_{i+2}\\ &\quad +\left(\frac{(r-p-1)(r-p)}{2}F_k+r(F_i-(r-p)F_k)\right)F_{i+k}\\ & = \frac{1}{2}(F_i+2 p F_k-1)F_i F_{i+2}-\frac{1}{2}\bigl(2 r F_i-(r+p+1)(r-p)F_k\bigr)F_i F_{k-2}\, . \end{align*}

    Hence, by Lemma 1 (2.2), we have

    \begin{align*} &n_p(F_i, F_{i+2}, F_{i+k})\\ & = \frac{1}{2}(F_i+2 p F_k-1)F_{i+2}-\frac{1}{2}\bigl(2 r F_i-(r+p+1)(r-p)F_k\bigr)F_{k-2} -\frac{F_i-1}{2}\\ & = \frac{1}{2}\bigl((F_i+2 p F_k-1)F_{i+2}-F_i+1\bigr)-\frac{1}{2}\bigl(2 r F_i-(r+p+1)(r-p)F_k\bigr)F_{k-2}\, , \end{align*}

    which is (8.11).

    Consider the Fibonacci triple (F_6, F_8, F_{10}) . Since F_6-1 = 2 F_4+1 , we see that r = 2 and \ell = 1 . Then, we can construct the first least set, the second least and 3rd, 4th and 5th least sets of the complete residue systems as follows.

    \begin{align*} ①{\rm Ap} (F_6;0)& = \{0, 21, 42, 55, 76, 97,110,131\}\pmod{F_6}\, , \\ ②{\rm Ap} (F_6;1)& = \{63, 84,105,118,139,152,165,186\}\pmod{F_6}\, , \\ ③{\rm Ap} (F_6;2)& = \{126,147,160,173,194,207,220,241\}\pmod{F_6}\, , \\ ④{\rm Ap} (F_6;3)& = \{168,181,202,215,228,249,262,275\}\pmod{F_6}\, , \\ ⑤{\rm Ap} (F_6;4)& = \{189,210,223,236,257,270,283,296\}\pmod{F_6}\, .\\ \end{align*}
    Table 11.  {\rm Ap}(F_6,j) (j=0,1,2,3,4).

     | Show Table
    DownLoad: CSV

    Therefore, by Lemma 1 (2.1) with (2.3), we obtain that

    \begin{align*} g_0(F_6, F_8, F_{10})& = 131-8 = 123\, , \\ g_1(F_6, F_8, F_{10})& = 186-8 = 178\, , \\ g_2(F_6, F_8, F_{10})& = 241-8 = 233\, , \\ g_3(F_6, F_8, F_{10})& = 275-8 = 267\, , \\ g_4(F_6, F_8, F_{10})& = 296-8 = 288\, . \end{align*}

    By Lemma 1 (2.2) with (2.4), we obtain that

    \begin{align*} n_0(F_6, F_8, F_{10})& = \frac{0+21+\cdots+131}{8}-\frac{8-1}{2} = 63\, , \\ n_1(F_6, F_8, F_{10})& = \frac{63+84+\cdots+186}{8}-\frac{8-1}{2} = 123\, , \\ n_2(F_6, F_8, F_{10})& = \frac{126+147+\cdots+241}{8}-\frac{8-1}{2} = 180\, , \\ n_3(F_6, F_8, F_{10})& = \frac{168+181+\cdots+275}{8}-\frac{8-1}{2} = 219\, , \\ n_4(F_6, F_8, F_{10})& = \frac{189+210+\cdots+296}{8}-\frac{8-1}{2} = 242\, . \end{align*}

    On the other hand, from (3.4), by (F_6-2 F_4)F_8 > F_2 F_6 , we get

    \begin{align*} g_1(F_6, F_8, F_{10})& = (F_6-2 F_4-1)F_{8}+3 F_{10}-F_6\\ & = 178\, . \end{align*}

    From (4.6) and (5.2), we get

    \begin{align*} g_2(F_6, F_8, F_{10})& = (F_6-2 F_4-1)F_{8}+4 F_{10}-F_6\\ & = 233\, , \\ g_3(F_6, F_8, F_{10})& = (F_{1}-1)F_{8}+5 F_{10}-F_6\\ & = 267\, , \end{align*}

    respectively. From (8.3), (8.9) and (8.10), we get

    \begin{align*} &n_1(F_6, F_8, F_{10})\\ & = \frac{1}{2}\bigl(F_6+2 F_4-1)F_{8}-F_6+1\bigr)-\left(2 F_6-\frac{(2-1)(2+2)}{2}F_4\right)F_{2}\\ & = 123\, , \\ &n_2(F_6, F_8, F_{10})\\ & = \frac{1}{2}\bigl((F_6+4 F_4-1)F_{8}-F_6+1\bigr)-\frac{1}{2}\bigl(4 F_6-(2+3)(2-2)F_4\bigr)F_{2}\\ & = 180\, , \\ &n_3(F_6, F_8, F_{10})\\ & = \frac{1}{2}\bigl((3 F_6-1)F_{8}-F_6+1\bigr)-(8 F_6-15 F_{4})F_{2}\\ & = 219\, , \end{align*}

    respectively.

    In [31], a more general triple g(F_a, F_b, F_c) is studied for distinct Fibonacci numbers with a, b, c\ge 3 . In [32], the Frobenius number g(a, a+b, 2 a+3 b, \dots, F_{2k-1}a+F_{2 k}b) is given for relatively prime integers a and b . Will we be able to say anything in terms of these p -Frobenius numbers?

    The authors thank the anonymous referees for careful reading of this manuscript.

    The authors declare there is no conflict of interest.



    [1] T. Komatsu, The Frobenius number for sequences of triangular numbers associated with number of solutions, Ann. Comb., 26 (2022), 757–779. https://doi.org/10.1007/s00026-022-00594-3 doi: 10.1007/s00026-022-00594-3
    [2] T. Komatsu, The Frobenius number associated with the number of representations for sequences of repunits, C. R. Math. Acad. Sci. Paris, (in press).
    [3] J. J. Sylvester, Mathematical questions with their solutions, Educ. Times, 41 (1884), 21.
    [4] J. Sylvester, On subinvariants, i.e. semi-invariants to binary quantics of an unlimited order, Am. J. Math., 5 (1882), 119–136.
    [5] A. Assi, M. D'Anna, P. A. Garcia-Sanchez, Numerical Semigroups and Applications, 2^{nd} edition, RSME Springer Series, Springer, Cham, 2020.
    [6] J. L. Ramírez Alfonsín, The Diophantine Frobenius Problem, Oxford University Press, Oxford, 2005.
    [7] J. J. Sylvester, On the partition of numbers, Quart. J. Pure Appl. Math., 1 (1857), 141–152.
    [8] A. Cayley, On a problem of double partitions, Philos. Mag., 20 (1860), 337–341. https://doi.org/10.1080/14786446008642957 doi: 10.1080/14786446008642957
    [9] M. Beck, I. M. Gessel, T. Komatsu, The polynomial part of a restricted partition function related to the Frobenius problem, arXiv preprint, (2001), arXiv: math/0306036. https://doi.org/10.48550/arXiv.math/0306036
    [10] A. Tripathi, The number of solutions to a x+b y = n, Fibonacci Q., 38 (2000), 290–293.
    [11] T. Komatsu, On the number of solutions of the Diophantine equation of Frobenius–General case, Math. Commun., 8 (2003), 195–206.
    [12] D. S. Binner, The number of solutions to a x+b y+c z = n and its relation to quadratic residues, J. Integer Seq., 23 (2020).
    [13] A. Brown, E. Dannenberg, J. Fox, J. Hanna, K. Keck, A. Moore, et al., On a generalization of the Frobenius number, arXiv preprint, (2010), arXiv: 1001.0207v2. https://doi.org/10.48550/arXiv.1001.0207
    [14] L. Fukshansky, A. Schurmann, Bounds on generalized Frobenius numbers, Eur. J. Comb., 32 (2011), 361–368. https://doi.org/10.1016/j.ejc.2010.11.001 doi: 10.1016/j.ejc.2010.11.001
    [15] F. Curtis, On formulas for the Frobenius number of a numerical semigroup, Math. Scand., 67 (1990), 190–192.
    [16] L. G. Fel, Frobenius problem for semigroups S(d_1, d_2, d_3), Funct. Anal. Other Math., 1 (2006), 119–157. https://doi.org/10.1007/s11853-007-0009-5 doi: 10.1007/s11853-007-0009-5
    [17] S. M. Johnson, A linear Diophantine problem, Canad. J. Math., 12 (1960), 390–398.
    [18] Ø. J. Rødseth, On a linear Diophantine problem of Frobenius, J. Reine Angew. Math., 301 (1978), 171–178. https://doi.org/10.1515/crll.1978.301.171 doi: 10.1515/crll.1978.301.171
    [19] A. Tripathi, Formulae for the Frobenius number in three variables, J. Number Theory, 170 (2017), 368–389. https://doi.org/10.1016/j.jnt.2016.05.027 doi: 10.1016/j.jnt.2016.05.027
    [20] A. M. Robles-Pérez, J. C. Rosales, The Frobenius number for sequences of triangular and tetrahedral numbers, J. Number Theory, 186 (2018), 473–492. https://doi.org/10.1016/j.jnt.2017.10.014 doi: 10.1016/j.jnt.2017.10.014
    [21] J. C. Rosales, M. B. Branco, D. Torrão, The Frobenius problem for Thabit numerical semigroups, J. Number Theory, 155 (2015), 85–99. https://doi.org/10.1016/j.jnt.2015.03.006 doi: 10.1016/j.jnt.2015.03.006
    [22] J. C. Rosales, M. B. Branco, D. Torrão, The Frobenius problem for Mersenne numerical semigroups, Math. Z., 286 (2017), 741–749. https://doi.org/10.1007/s00209-016-1781-z doi: 10.1007/s00209-016-1781-z
    [23] M. Beck, C. Kifer, An extreme family of generalized Frobenius numbers, Integers, 11 (2011), 639–645. https://doi.org/10.1515/integ.2011.048 doi: 10.1515/integ.2011.048
    [24] J. M. Marin, J. Alfonsin, M. P. Revuelta, On the Frobenius number of Fibonacci numerical semigroups, arXiv preprint, (2006), arXiv: math/0606717. https://doi.org/10.48550/arXiv.math/0606717
    [25] R. Apéry, Sur les branches superlinéaires des courbes algébriques, C. R. Acad. Sci. Paris, 222 (1946), 1198–1200.
    [26] E. S. Selmer, On the linear diophantine problem of Frobenius, J. Reine Angew. Math., 1977 (1977), 1–17.
    [27] A. Brauer, B. M. Shockley, On a problem of Frobenius, J. Reine. Angew. Math., 211 (1962), 215–220.
    [28] T. Komatsu, Sylvester power and weighted sums on the Frobenius set in arithmetic progression, Discrete Appl. Math., 315 (2022), 110–126. https://doi.org/10.1016/j.dam.2022.03.011 doi: 10.1016/j.dam.2022.03.011
    [29] T. Komatsu, Y. Zhang, Weighted Sylvester sums on the Frobenius set, arXiv preprint, (2021), arXiv: 2105.08274. https://doi.org/10.48550/arXiv.2105.08274
    [30] T. Komatsu, Y. Zhang, Weighted Sylvester sums on the Frobenius set in more variables, arXiv preprint, 2021, arXiv: 2101.04298. https://doi.org/10.48550/arXiv.2101.04298
    [31] L. G. Fel, Symmetric numerical semigroups generated by Fibonacci and Lucas triples, Integers, 9 (2009), 107–116. https://doi.org/10.1515/INTEG.2009.010 doi: 10.1515/INTEG.2009.010
    [32] S. S. Batra, N. Kumar, A. Tripathi, On a linear Diophantine problem involving the Fibonacci and Lucas sequences, Integers, 15 (2015).
  • This article has been cited by:

    1. Takao Komatsu, Claudio Pita-Ruiz, The Frobenius Number for Jacobsthal Triples Associated with Number of Solutions, 2023, 12, 2075-1680, 98, 10.3390/axioms12020098
    2. Takao Komatsu, Shanta Laishram, Pooja Punyani, p-Numerical Semigroups of Generalized Fibonacci Triples, 2023, 15, 2073-8994, 852, 10.3390/sym15040852
    3. Takao Komatsu, Haotian Ying, p-Numerical semigroups with p-symmetric properties, 2024, 23, 0219-4988, 10.1142/S0219498824502165
    4. Takao Komatsu, Haotian Ying, The p-Numerical Semigroup of the Triple of Arithmetic Progressions, 2023, 15, 2073-8994, 1328, 10.3390/sym15071328
    5. Takao Komatsu, On the determination of p-Frobenius and related numbers using the p-Apéry set, 2024, 118, 1578-7303, 10.1007/s13398-024-01556-5
    6. Takao Komatsu, Ruze Yin, 2024, Chapter 2, 978-3-031-49217-4, 15, 10.1007/978-3-031-49218-1_2
    7. Takao Komatsu, Vichian Laohakosol, The p-Frobenius Problems for the Sequence of Generalized Repunits, 2024, 79, 1422-6383, 10.1007/s00025-023-02055-6
    8. Ruze Yin, Takao Komatsu, Frobenius Numbers Associated with Diophantine Triples of x2-y2=zr, 2024, 16, 2073-8994, 855, 10.3390/sym16070855
    9. Ruze Yin, Jiaxin Mu, Takao Komatsu, The p-Frobenius Number for the Triple of the Generalized Star Numbers, 2024, 16, 2073-8994, 1090, 10.3390/sym16081090
    10. Evelia R. García Barroso, Juan I. García-García, Luis José Santana Sánchez, Alberto Vigneron-Tenorio, On p-Frobenius of Affine Semigroups, 2024, 21, 1660-5446, 10.1007/s00009-024-02625-0
    11. TAKAO KOMATSU, NEHA GUPTA, MANOJ UPRETI, FROBENIUS NUMBERS ASSOCIATED WITH DIOPHANTINE TRIPLES OF x^2+y^2=z^3 , 2024, 0004-9727, 1, 10.1017/S0004972724000960
    12. Jiaxin Mu, Takao Komatsu, p-Numerical Semigroups of Triples from the Three-Term Recurrence Relations, 2024, 13, 2075-1680, 608, 10.3390/axioms13090608
    13. Takao Komatsu, Fatih Yilmaz, The p-Frobenius number for the triple of certain quadratic numbers, 2024, 1367-0751, 10.1093/jigpal/jzae125
    14. Takao Komatsu, Tapas Chatterjee, Frobenius numbers associated with Diophantine triples of x^2+3 y^2=z^3, 2025, 119, 1578-7303, 10.1007/s13398-025-01725-0
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2065) PDF downloads(86) Cited by(14)

Figures and Tables

Tables(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog