Research article Special Issues

Self-organizing map based differential evolution with dynamic selection strategy for multimodal optimization problems


  • Many real-world problems can be classified as multimodal optimization problems (MMOPs), which require to locate global optima as more as possible and refine the accuracy of found optima as high as possible. When dealing with MMOPs, how to divide population and obtain effective niches is a key to balance population diversity and convergence during evolution. In this paper, a self-organizing map (SOM) based differential evolution with dynamic selection strategy (SOMDE-DS) is proposed to improve the performance of differential evolution (DE) in solving MMOPs. Firstly, a SOM based method is introduced as a niching technique to divide population reasonably by using the similarity information among different individuals. Secondly, a variable neighborhood search (VNS) strategy is proposed to locate more possible optimal regions by expanding the search space. Thirdly, a dynamic selection (DS) strategy is designed to balance exploration and exploitation of the population by taking advantages of both local search strategy and global search strategy. The proposed SOMDE-DS is compared with several widely used multimodal optimization algorithms on benchmark CEC'2013. The experimental results show that SOMDE-DS is superior or competitive with the compared algorithms.

    Citation: Shihao Yuan, Hong Zhao, Jing Liu, Binjie Song. Self-organizing map based differential evolution with dynamic selection strategy for multimodal optimization problems[J]. Mathematical Biosciences and Engineering, 2022, 19(6): 5968-5997. doi: 10.3934/mbe.2022279

    Related Papers:

    [1] Hüseyin Budak, Fatma Ertuğral, Muhammad Aamir Ali, Candan Can Bilişik, Mehmet Zeki Sarikaya, Kamsing Nonlaopon . On generalizations of trapezoid and Bullen type inequalities based on generalized fractional integrals. AIMS Mathematics, 2023, 8(1): 1833-1847. doi: 10.3934/math.2023094
    [2] Sabir Hussain, Javairiya Khalid, Yu Ming Chu . Some generalized fractional integral Simpson’s type inequalities with applications. AIMS Mathematics, 2020, 5(6): 5859-5883. doi: 10.3934/math.2020375
    [3] Rabah Debbar, Abdelkader Moumen, Hamid Boulares, Badreddine Meftah, Mohamed Bouye . Some fractional integral type inequalities for differentiable convex functions. AIMS Mathematics, 2025, 10(5): 11899-11917. doi: 10.3934/math.2025537
    [4] Muhammad Tariq, Hijaz Ahmad, Soubhagya Kumar Sahoo, Artion Kashuri, Taher A. Nofal, Ching-Hsien Hsu . Inequalities of Simpson-Mercer-type including Atangana-Baleanu fractional operators and their applications. AIMS Mathematics, 2022, 7(8): 15159-15181. doi: 10.3934/math.2022831
    [5] Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814
    [6] Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441
    [7] Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(4): 3352-3377. doi: 10.3934/math.2021201
    [8] Saima Rashid, Ahmet Ocak Akdemir, Fahd Jarad, Muhammad Aslam Noor, Khalida Inayat Noor . Simpson’s type integral inequalities for ĸ-fractional integrals and their applications. AIMS Mathematics, 2019, 4(4): 1087-1100. doi: 10.3934/math.2019.4.1087
    [9] Sabir Hussain, Rida Khaliq, Sobia Rafeeq, Azhar Ali, Jongsuk Ro . Some fractional integral inequalities involving extended Mittag-Leffler function with applications. AIMS Mathematics, 2024, 9(12): 35599-35625. doi: 10.3934/math.20241689
    [10] Hari M. Srivastava, Artion Kashuri, Pshtiwan Othman Mohammed, Abdullah M. Alsharif, Juan L. G. Guirao . New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel. AIMS Mathematics, 2021, 6(10): 11167-11186. doi: 10.3934/math.2021648
  • Many real-world problems can be classified as multimodal optimization problems (MMOPs), which require to locate global optima as more as possible and refine the accuracy of found optima as high as possible. When dealing with MMOPs, how to divide population and obtain effective niches is a key to balance population diversity and convergence during evolution. In this paper, a self-organizing map (SOM) based differential evolution with dynamic selection strategy (SOMDE-DS) is proposed to improve the performance of differential evolution (DE) in solving MMOPs. Firstly, a SOM based method is introduced as a niching technique to divide population reasonably by using the similarity information among different individuals. Secondly, a variable neighborhood search (VNS) strategy is proposed to locate more possible optimal regions by expanding the search space. Thirdly, a dynamic selection (DS) strategy is designed to balance exploration and exploitation of the population by taking advantages of both local search strategy and global search strategy. The proposed SOMDE-DS is compared with several widely used multimodal optimization algorithms on benchmark CEC'2013. The experimental results show that SOMDE-DS is superior or competitive with the compared algorithms.



    Fractional calculus began with a legend in the 1800s there were two famous mathematicians, L' Hopital and Leibniz, who were discussing how to evaluate dnfdxn when n=12. In the 17th century, Leibniz published his book "Introductory Calculus", in which he talked about how to take derivatives of any function. After this brief discussion, the subject did not pick up much attention until 1819. Therefore, there was another time point when another famous mathematician by the name of Lacroix wrote another book; the book was on fractional calculus, where he started to develop the formulation for evaluating these derivatives. More specifically, Lacroix developed the fractional formula dαxmdxα for α and m being fractions. As a result, he found an answer to the famous question raised by L' Hopital and Leibniz, namely, what is the fractional derivative of a function of the order 12. The discussion did not end there, although Lacroix has shown an initial way to evaluate fractional derivatives, which has some problems. To mitigate the problems, there was another mathematician by the name of Liouville who extended the Lacroix definition. Liouville developed the formula for dαdxα(n=0cnexp(anx)) for Re(an)>0,cnR, and α being a fraction. Liouville also developed the formula for dαxmdxα for m<0 and α being a fraction.

    Fractional calculus has proven to be a potent and effective mathematical tool in recent years, helping to define the intricate dynamics of real-world issues from a variety of scientific and engineering disciplines [1,2,3,4,5,6,7]. Every traditional fractional differential operator has a distinct kernel and can be applied to certain problems. For example, the Caputo-Fabrizio fractional operator is used in the linear viscoelasticity framework. The most popular operator for computing a fractional-order integral among a number of operators is the Riemann-Liouville fractional integral. It is basically just a straightforward adaptation of the Cauchy formula from classical calculus for repeated integration. However, over the past half decade, a number of operators for fractional-order integrals and derivatives have been put out. These new operators are believed to arise because of the singularity in the kernel of the Riemann-Liouville integral at one endpoint of the integration interval [0,T]. It originates from the new fractional operator, in which the integral involves the non-singular kernel.

    The main motivation of the Caputo-Fabrizio integral and derivative operator is that it is a generalization of classical integral and derivative. One of the characteristics that sets the operator apart from others is its kernel, which is essentially a real power transformed into an integral using the Laplace transform. As a result, finding an accurate answer to many issues is simple. An increasing number of mathematicians working in the applied sciences are using the Caputo-Fabrizio fractional integral operator to model their problems. For additional details, see [8,9,10,11]. The main benefit of the Caputo-Fabrizio integral operator is its ability to admit the same form for the boundary condition of fractional differential equations with Caputo-Fabrizio derivatives as it does for differential equations of integer order. For studying fractional differential equation solutions, fractional integral inequalities are crucial, particularly for determining the uniqueness of initial value problems. Using a function's convexity is one of the most effective techniques to establish integral inequalities. In fact, advances in the theory of convex functions are closely related to the development of mathematical inequalities. Convexity theory provides a powerful and efficient way to address a wide range of problems in different fields of pure and applied mathematics. The most well-known and fascinating outcome of the convex function is the Hermite-Hadamard integral inequality. The classical Hermite-Hadamard inequality, which provides us with an estimation of the mean value of a convex function f:IRR for a1,a2I with a1<a2,

    f(a1+a22)1a2a1a2a1f(x)dxf(a1)+f(a2)2.

    The geometrical relevance of this inequality led to its expansion, generalization, or improvement through the application of basic analytical procedures. Over the last few years, many mathematicians who have researched in this field have contributed to its development and made attempts to strengthen its modification in many ways [12,13,14,15].

    Bullen [16] proved the inequality by giving the bound for the mean value of a convex function f:IRR for a1,a2I with a1<a2,

    1a2a1a2a1f(x)dx12[f(a1+a22)+f(a1)+f(a2)2].

    We can observe that the right side of the Hermite-Hadamard inequality should be viewed as an extension of Bullen's inequality. Bullen's inequality holds a significant position in theory, as do other classical inequalities like Jensen, Ostrowski, and Hermite-Hadamard. Numerous fields, including numerical integration, midpoints, and trapezoidal quadrature rules, can benefit from its application. For more current findings about the extension and improvement of Bullen-type inequality, see [17,18,19,20,21].

    The paper is organized in the following way: After this introduction in Section 2 we have discussed some basic related concepts, in Section 3 main results, in Section 4 numerically solved examples and their graph, in Section 5 applications to some extent, and in the last Section 6 conclusion of the whole paper.

    Some foundational ideas that are useful in understanding our main results are covered in this section.

    Definition 1. [22] Let fH1(m1,m2), α[0,1], then the fractional integrals in the sense of Caputo and Fabrizio are defined by:

    (CFm1+Iαf)(t):=1αB(α)f(t)+αB(α)tm1f(x)dx,
    (CFm2Iαf)(t):=1αB(α)f(t)+αB(α)m2tf(x)dx,

    provided that, B(α)>0 is a normalization function satisfying B(0)=B(1)=1.

    Theorem 1. [23] Let f:[m1,m2]RR be a convex function on [m1,m2] such that xi[m1,m2], αi[0,1] with ki=1αi=1, 1ik, then

    f(m1+m2ki=1αixi)f(m1)+f(m2)ki=1αif(xi). (2.1)

    Proposition 1. [24] Let f:[m1,m2]RR+ be a logconvex function on [m1,m2] such that xi[m1,m2], αi[0,1] with ki=1αi=1, 1ik, then Jensen-Mercer inequality is defined by:

    f(m1+m2ni=1αixi)f(m1)f(m2)ki=1fαi(xi). (2.2)

    Before going on, we make the following assumption:

    Iv,i(h;m1,m2;u1,u2):=10(td)h((vi1){m1tm1+m22(1t)u1}+i{m2tu2(1t)(m1+m2)2}+w)dt. (2.3)

    Lemma 1. Let h:IR+R be a differentiable function on I (the interior of I), where m1,m2I with m1<m2, vN; let w[u1,u2]; u1,u2[m1,m2] such that u1m1+m22u2, ς(0,1], d[0,1]. If hL1[m1,m2], then

    Jv(h;m1,m2;u1,u2):=v1i=0[(1v)(2u1m1m2)+i(2u1+2u22m12m2)4Iv,i(h;m1,m2;u1,u2)+(1ς)h(2(v1)(m1u1)+i(m23m1+2u1)+2w2)ς[(1v)(2u1m1m2)+i(2u1+2u22m12m2)]]=12v1i=0[(d1)h((v1)(m1m2)+i(3m2m12u2)+2w2)dh(2(v1)(m1u1)+i(m23m1+2u1)+2w2)]+B(ς)ςv1i=0CF(v1)(m1m2)+i(3m2m12u2)+2w2+Iςh(2(v1)(m1u1)+i(m23m1+2u1)+2w2)(1v)(2u1m1m2)+i(2u1+2u22m12m2). (3.1)

    Proof. Integrating by parts the identity (2.3)

    Iv,i(h;m1,m2;u1,u2)=(td)h((vi1){m1tm1+m22(1t)u1}+i{m2tu2(1t)(m1+m2)2}+w)(v1)[u1m1+m22]i(u1+u2m1m2)|1010h((vi1){m1tm1+m22(1t)u1}+i{m2tu2(1t)(m1+m2)2}+w)(v1)[u1m1+m22]i(u1+u2m1m2)dt,

    setting z=(vi1){m1tm1+m22(1t)u1}+i{m2tu2(1t)(m1+m2)2}+w, so that dt=dz(vi1)(u1m1+m22)+i(m1+m22u2), and when t=0, z=(vi1)(m1u1)+i(m2m1+m22)+w, and when t=1, z=(vi1)(m1m1+m22)+i(m2u2)+w.

    Iv,i(h;m1,m2;u1,u2)=2(1d)h((v1)(m1m2)+i(3m2m12u2)+2w2)+2dh(2(v1)(m1u1)+i(m23m1+2u1)+2w2)(v1)(2u1m1m2)i(2u1+2u22m12m2)4[(v1)(2u1m1m2)i(2u1+2u22m12m2)]2(v1)(m1m2)+i(3m2m12u2)+2w22(v1)(m1u1)+i(m23m1+2u1)+2w2h(z)dz
    (1v)(2u1m1m2)+i(2u1+2u22m12m2)4 Iv,i(h;m1,m2;u1,u2)=(d1)h((v1)(m1m2)+i(3m2m12u2)+2w2)dh(2(v1)(m1u1)+i(m23m1+2u1)+2w2)21(1v)(2u1m1m2)+i(2u1+2u22m12m2)(v1)(m1m2)+i(3m2m12u2)+2w22(v1)(m1u1)+i(m23m1+2u1)+2w2h(z)dz.

    Multiplying both sides by ς((1v)(2u1m1m2)+i(2u1+2u22m12m2))B(ς) and adding 1ςB(ς)h(2(v1)(m1u1)+i(m23m1+2u1)+2w2)

    ς[(1v)(2u1m1m2)+i(2u1+2u22m12m2)]24B(ς) Iv,i(h;m1,m2;u1,u2)+1ςB(ς)h(2(v1)(m1u1)+i(m23m1+2u1)+2w2)=ς[(1v)(2u1m1m2)+i(2u1+2u22m12m2)]B(ς)×(d1)h((v1)(m1m2)+i(3m2m12u2)+2w2)dh(2(v1)(m1u1)+i(m23m1+2u1)+2w2)2+ςB(ς)2(v1)(m1u1)+i(m23m1+2u1)+2w2(v1)(m1m2)+i(3m2m12u2)+2w2h(z)dz+1ςB(ς)h(2(v1)(m1u1)+i(m23m1+2u1)+2w2).

    Now by the definition of Caputo-Fabrizio fractional operator

    (1v)(2u1m1m2)+i(2u1+2u22m12m2)4Iv,i(h;m1,m2;u1,u2)+(1ς)h(2(v1)(m1u1)+i(m23m1+2u1)+2w2)ς[(1v)(2u1m1m2)+i(2u1+2u22m12m2)]=(d1)h((v1)(m1m2)+i(3m2m12u2)+2w2)dh(2(v1)(m1u1)+i(m23m1+2u1)+2w2)2+B(ς)CF(v1)(m1m2)+i(3m2m12u2)+2w2+Iςh(2(v1)(m1u1)+i(m23m1+2u1)+2w2)ς[(1v)(2u1m1m2)+i(2u1+2u22m12m2)],

    which completes the proof of (3.1).

    Remark 1. In particular for v=2, identity (3.1) in Lemma 1 reduces to the following identity:

    m1+m22u14I2,0(h;m1,m2;u1)+2u2m1m24I2,1(h;m1,m2;u2)=(1d)h(m2+wu2)+h(m1m2+2w2)2+dh(m1+wu1)+h(m2m1+2w2)2B(ς)ς{CFm1m2+2w2+Iςh(m1u1+w)m1+m22u1+CF(wu2+m2)+Iςh(m2m1+2w2)2u2m1m2}+1ςς[h(m2m1+2w2)2u2m1m2+h(m1+wu1)m1+m22u1], (3.2)

    provided that

    I2,0(h;m1,m2;u1):=10(dt)h(m1+wtm1+m22(1t)u1)dt,
    I2,1(h;m1,m2;u2):=10(dt)h(m2+wtu2(1t)(m1+m2)2)dt.

    Moreover, for u1=m1, u2=m2, w=m1+m22 and d=12, it reduces to the following identity:

    m2m18I(h;m1,m2)=12[h(m1)+h(m2)2+h(m1+m22)]B(ς)ς(m2m1)×{CFm1+Iςh(m1+m22)+CFm1+m22+Iςh(m2)}+1ςςh(m2)+h(m1+m22)m2m1,I(h;m1,m2):=10(12t){h(tm1+(1t)m1+m22)+h(tm1+m22+(1t)m2)}dt, (3.3)

    and further for ς=1, it reduces to Lemma 2.1 of Xi and Qi[25].

    Theorem 2. Let h:IR+R be a differentiable function on I (the interior of I), where m1,m2I with m1<m2; let w[u1,u2], u1,u2[m1,m2] such that u1m1+m22u2, ς(0,1], d[0,1]. If |h|a is convex and hL1[m1,m2], a1, then

    |(1d)h(m2+wu2)+h(m1m2+2w2)2+dh(m1+wu1)+h(m2m1+2w2)2B(ς)ς{CFm1m2+2w2+Iςh(m1u1+w)m1+m22u1+CF(wu2+m2)+Iςh(m2m1+2w2)2u2m1m2}+1ςς[h(m2m1+2w2)2u2m1m2+h(m1+wu1)m1+m22u1]|d2[2u2m1m24{(a+2)(|h(m2)|a+|h(w)|a)(2d+a)|h(m1+m22)|ad|h(u2)|a(a+1)(a+2)}1a+m1+m22u14{(a+2)(|h(m1)|a+|h(w)|a)(2d+a)|h(u1)|ad|h(m1+m22)|a(a+1)(a+2)}1a]+(1d)2[2u2m1m24{(a+2)(|h(m2)|a+|h(w)|a)(1+d+a)|h(u2)|a(1d)|h(m1+m22)|a(a+1)(a+2)}1a+m1+m22u14{(a+2)(|h(m1)|a+|h(w)|a)(1+d+a)|h(m1+m22)|a(1d)|h(u1)|a(a+1)(a+2)}1a]. (3.4)

    Proof. For a>1, by using the basic properties of modulus, Hölder integral inequality, convexity of |h|a, and relation (2.1) in Theorem 1 to identity defined by (3.2), we have

    |I2,0(h;m1,m2;u1)|=|10(dt)h(m1+wtm1+m22(1t)u1)dt|da1a{d0(dt)a|h(m1+wtm1+m22(1t)u1)|adt}1a+(1d)a1a{1d(td)a|h(m1+wtm1+m22(1t)u1)|adt}1ada1a{d0(dt)a(|h(m1)|a+|h(w)|at|h(m1+m22)|a(1t)|h(u1)|a)dt}1a+(1d)a1a{1d(td)a(|h(m1)|a+|h(w)|at|h(m1+m22)|a(1t)|h(u1)|a)dt}1a=d2{(a+2)(|h(m1)|a+|h(w)|a)(2d+a)|h(u1)|ad|h(m1+m22)|a(a+1)(a+2)}1a+(1d)2{(a+2)(|h(m1)|a+|h(w)|a)(1+d+a)|h(m1+m22)|a(1d)|h(u1)|a(a+1)(a+2)}1a (3.5)

    Similarly

    |I2,1(h;m1,m2;u2)|=|10(dt)h(m2+w(1t)m1+m22tu2)dt|da1a{d0(dt)a|h(m2+w(1t)m1+m22tu2)|adt}1a+(1d)a1a{1d(td)a|h(m2+w(1t)m1+m22tu2)|adt}1ada1a{d0(dt)a(|h(m2)|a+|h(w)|a(1t)|h(m1+m22)|at|h(u2)|a)dt}1a+(1d)a1a{1d(td)a(|h(m2)|a+|h(w)|a(1t)|h(m1+m22)|at|h(u2)|a)dt}1a=d2{(a+2)(|h(m2)|a+|h(w)|a)(2d+a)|h(m1+m22)|ad|h(u2)|a(a+1)(a+2)}1a+(1d)2{(a+2)(|h(m2)|a+|h(w)|a)(1+d+a)|h(u2)|a(1d)|h(m1+m22)|a(a+1)(a+2)}1a (3.6)

    Multiplying (3.5) and (3.6) by, respectively, m1+m22u14 and 2u2m1m24, then addition yields

    |(1d)h(m2+wu2)+h(m1m2+2w2)2+dh(m1+wu1)+h(m2m1+2w2)2B(ς)ς{CFm1m2+2w2+Iςh(m1u1+w)m1+m22u1+CF(wu2+m2)+Iςh(m2m1+2w2)2u2m1m2}+1ςς[h(m2m1+2w2)2u2m1m2+h(m1+wu1)m1+m22u1]|d2[2u2m1m24{(a+2)(|h(m2)|a+|h(w)|a)(2d+a)|h(m1+m22)|ad|h(u2)|a(a+1)(a+2)}1a+m1+m22u14{(a+2)(|h(m1)|a+|h(w)|a)(2d+a)|h(u1)|ad|h(m1+m22)|a(a+1)(a+2)}1a]+(1d)2[2u2m1m24{(a+2)(|h(m2)|a+|h(w)|a)(1+d+a)|h(u2)|a(1d)|h(m1+m22)|a(a+1)(a+2)}1a+m1+m22u14{(a+2)(|h(m1)|a+|h(w)|a)(1+d+a)|h(m1+m22)|a(1d)|h(u1)|a(a+1)(a+2)}1a]. (3.7)

    For a=1, by using basic properties of modulus, convexity of |h|, and relation (2.1) in Theorem 1 to identity defined by (3.2), we have

    |I2,0(h;m1,m2;u1)|=|10(dt)h(m1+wtm1+m22(1t)u1)dt|d0(dt)a|h(m1+wtm1+m22(1t)u1)|dt+1d(td)|h(m1+wtm1+m22(1t)u1)|dtd0(dt)(|h(m1)|+|h(w)|t|h(m1+m22)|(1t)|h(u1)|)dt+1d(td)(|h(m1)|+|h(w)|t|h(m1+m22)|(1t)|h(u1)|)dt=d2(3(|h(m1)|+|h(w)|)(3d)|h(u1)|d|h(m1+m22)|6+(1d)23(|h(m1)|+|h(w)|)(2+d)|h(m1+m22)|(1d)|h(u1)|6. (3.8)

    Similarly

    |I2,1(h;m1,m2;u2)|=|10(dt)h(m2+w(1t)m1+m22tu2)dt|d0(dt)|h(m2+w(1t)m1+m22tu2)|dt+1d(td)|h(m2+w(1t)m1+m22tu2)|dtd0(dt)(|h(m2)|+|h(w)|(1t)|h(m1+m22)|t|h(u2)|)dt+1d(td)(|h(m2)|+|h(w)|(1t)|h(m1+m22)|t|h(u2)|)dt=d23(|h(m2)|+|h(w)|)(3d)|h(m1+m22)|d|h(u2)|6+(1d)23(|h(m2)|+|h(w)|)(2+d)|h(u2)|(1d)|h(m1+m22)|6. (3.9)

    Multiplying (3.8) and (3.9) by, respectively, m1+m22u14 and 2u2m1m24, then addition yields

    |(1d)h(m2+wu2)+h(m1m2+2w2)2+dh(m1+wu1)+h(m2m1+2w2)2B(ς)ς{CFm1m2+2w2+Iςh(m1u1+w)m1+m22u1+CF(wu2+m2)+Iςh(m2m1+2w2)2u2m1m2}+1ςς[h(m2m1+2w2)2u2m1m2+h(m1+wu1)m1+m22u1]|d2{(2u2m1m2)3(|h(m2)|+|h(w)|)(3d)|h(m1+m22)|d|h(u2)|24+(m1+m22u1)3(|h(m1)|+|h(w)|)(3d)|h(u1)|d|h(m1+m22)|24}+(1d)2{(2u2m1m2)3(|h(m2)|+|h(w)|)(2+d)|h(u2)|(1d)|h(m1+m22)|24+(m1+m22u1)3(|h(m1)|+|h(w)|)(2+d)|h(m1+m22)|(1d)|h(u1)|24}. (3.10)

    A combination of (3.7) and (3.10), yields the desired result (3.4). This completes the desired result.

    Theorem 3. Let h:IR+R be a differentiable function on I (the interior of I), where m1,m2I with m1<m2; let w[m1,m2], ς(0,1], d[0,1]. If |h|a is log-convex and hL1[m1,m2], a1, then

    |(1d)h(m1m2+2w2)+dh(m2m1+2w2)+2(1ς)ς(m2m1){h(m2m1+2w2)+h(w)}+h(w)2B(ς)ς(m2m1){CFm1m2+2w2+Iςh(w)+CFw+Iςh(m2m1+2w2)}|(1+aα)(m2m1)|h(w)|{(d22)a1a(h1(d,α))1a+((1d)22)a1a(h2(d,α))1a}2aα, (3.11)

    provided that α=|h(m1)h(m2)|a2,

    h1(d,α):={dlnα+αd1(lnα)2,α1;d22,α=1.,   h2(d,α):={α(1d)lnα+αdα(lnα)2,α1;(1d)22,α=1.

    Proof. By power mean inequality and logconvexity of |h|a to identity defined by (3.2), we have

    |I2,0(h;m1,m2;m1)|=|10(dt)h(m1+wtm1+m22(1t)m1)dt|d0(dt)|h(m1+w2t2m1t2m2)|dt+1d(td)|h(m1+w2t2m1t2m2)|dt{d0(dt)dt}a1a{d0(dt)|h(m1+w2t2m1t2m2)|adt}1a+{1d(td)dt}a1a{1d(td)|h(m1+w2t2m1t2m2)|adt}1a(d22)a1a{d0(dt)|h(m1)|a|h(w)|a|h(m1)|a(2t)2|h(m2)|at2dt}1a+((1d)22)a1a{1d(td)|h(m1)|a|h(w)|a|h(m1)|a(2t)2|h(m2)|at2dt}1a=(d22)a1a|h(w)|{d0(dt)|h(m1)h(m2)|at2dt}1a+((1d)22)a1a|h(w)|{1d(td)|h(m1)h(m2)|at2dt}1a=|h(w)|[(d22)a1a{d0(dt)αtdt}1a+((1d)22)a1a{1d(td)αtdt}1a]=|h(w)|{(d22)a1a(h1(d,α))1a+((1d)22)a1a(h2(d,α))1a}. (3.12)

    Similarly

    |I2,1(h;m1,m2;m2)|=|10(dt)h(m2+wtm2(m1+m2)(1t)2)dt|d0(dt)|h(m2+w1+t2m21t2m1)|dt+1d(td)|h(m2+w1+t2m21t2m1)|dt{d0(dt)dt}a1a{d0(dt)|h(m2+w1+t2m21t2m1)|adt}1a+{1d(td)dt}a1a{1d(td)|h(m2+w1+t2m21t2m1)|adt}1a(d22)a1a{d0(dt)|h(m2)|a|h(w)|a|h(m1)|a(1t)2|h(m2)|a(1+t)2dt}1a+((1d)22)a1a{1d(td)|h(m2)|a|h(w)|a|h(m1)|a(1t)2|h(m2)|a(1+t)2dt}1a=(d22)a1a|h(w)||h(m2)h(m1)|12{d0(dt)|h(m1)h(m2)|at2dt}1a+((1d)22)a1a|h(w)||h(m2)h(m1)|12{1d(td)|h(m1)h(m2)|at2dt}1a=|h(w)|aα[(d22)a1a{d0(dt)αtdt}1a+((1d)22)a1a{1d(td)αtdt}1a]=|h(w)|aα{(d22)a1a(h1(d,α))1a+((1d)22)a1a(h2(d,α))1a}. (3.13)

    Multiplying both (3.12) and (3.13) by m2m14, yields the desired result.

    An observation about the equality of the functional value of the the mean position and mean position of the functional values comes to mind, that is, for a real valued function h:[m1,m2]RR

    h(m1+m22)=h(m1)+h(m2)2. (3.14)

    The affirmative answer about the validity of (3.14) was given by Xi and Qi [25] by the function h(t)=±t39t2+27t3, t[1,5].

    Corollary 1. Let h:IR+R be a differentiable function on I (the interior of I), where m1,m2I with m1<m2. If |h|a is convex and hL1[m1,m2], a1, then

    |12{h(m1)+h(m2)2+h(m1+m22)}+(1ς){h(m2)+h(m1+m22)}ς(m2m1)B(ς){CFm1+Iςh(m1+m22)+CFm1+m22+Iςh(m2)}ς(m2m1)|m2m1a42a+1(a+1)(a+2)(a(2a+5)|h(m1)|a+(2a+3)|h(m2)|a+a|h(m1)|a+(4a+7)|h(m2)|a+a(4a+7)|h(m1)|a+|h(m2)|a+a(2a+3)|h(m1)|a+(2a+5)|h(m2)|a). (3.15)

    Proof. The proof directly follows by setting u1=m1, u2=m2, d=12, w=m1+m22 in Theorem 2.

    Corollary 2. Let h:IR+R be a differentiable function on I (the interior of I), where m1,m2I with m1<m2. If |h|a is logconvex and hL1[m1,m2], a1, then

    |12{h(m1)+h(m2)2+h(m1+m22)}+(1ς){h(m2)+h(m1+m22)}ς(m2m1)B(ς){CFm1+Iςh(m1+m22)+CFm1+m22+Iςh(m2)}ς(m2m1)|(1+aα)(m2m1)|h(m1)||h(m2)|{ah1(12,α)+ah2(12,α)}25a3aaα. (3.16)

    Proof. The proof directly follows by setting u1=m1, u2=m2, d=12, w=m1+m22 in Theorem 3.

    Remark 2. For ς=1, Corollaries 1 and 2 coincides with Theorems 3.2 and 3.7 of Xi and Qi [25] respectively.

    In particular, under the relation (3.14), the left sides in (3.15) and (3.16) can be replaced by the relations either (3.17) or (3.18) to get trapezoidal type inequality or midpoint type inequality

    |h(m1)+h(m2)2+(1ς){h(m2)+h(m1+m22)}B(ς){CFm1+Iςh(m1+m22)+CFm1+m22+Iςh(m2)}ς(m2m1)|, (3.17)
    |h(m1+m22)+(1ς){h(m2)+h(m1+m22)}B(ς){CFm1+Iςh(m1+m22)+CFm1+m22+Iςh(m2)}ς(m2m1)|. (3.18)

    In order to better grasp the theoretical results, we go over the numerical and graphical analysis of our main results in this part. Tables and figures in each example are unrelated to one another. Both sets of statistics were selected at random. The table and graphic in each case demonstrate that the inequality's left-hand side is less than or equal to its right-hand side, according to the corresponding theorem.

    Example 1. Let h(t)=25t5 be such that t[0,) and ς=a=1. In Table 1, we compute the values from result (3.4) of Theorem 2. Furthermore, the validity of result (3.4) of Theorem 2 is graphically shown in Figure 1 by considering h(t) with the following values: m1=3, u1=5, w=18, u2=20, 20m230, 0d1, a=7.

    Table 1.  Comparison of values in result of Theorem 2.
    m1 u1 w u2 m2 d LHS of (3.4) RHS of (3.4)
    5 6 15 15 16 0 123.6568 127.9318
    23 33 33 44 50 0.2 339.7169 401.0339
    11 11 47 75 100 0.4 208.3972 2.5144e+03
    63 80 90 100 129 0.6 826.1879 1.8423e+03
    2 3 30 40 60 0.8 1.0376e+03 1.1879e+03
    101 102 106 107 111 0.99 1.3199e+03 1.3204e+03
    20 30 40 75 75 1 3.6029e+03 3.7572e+03

     | Show Table
    DownLoad: CSV
    Figure 1.  Validity of inequality (3.4) in Theorem 3.

    Example 2. Let h(t)=expt be such that t(0,) and ς=1. In Table 2, we compute the values from result (3.11) of Theorem 3. Furthermore, the validity of result (3.11) of Theorem 3 is graphically shown in Figure 2 by considering h(t) with the following values: m1=9, 9w12, m2=12, a=3, 0d1.

    Table 2.  Comparison of values in result of Theorem 3.
    m1 w m2 a d LHS of (3.11) RHS of (3.11)
    1 4 7 2 0 307.3219 3.9033e+03
    12 12 30 11 0.2 1.1739e+08 1.8195e+12
    21 40 40 7 0.3 6.1262e+20 1.1768e+25
    7 10 11 3 0.5 2.5007e+04 2.1551e+05
    30 31 52 4 0.8 1.2333e+18 1.4996e+23
    22 29 43 5 0.99 1.2775e+17 1.2082e+22
    99 150 171 6 1 5.8417e+80 1.9028e+97

     | Show Table
    DownLoad: CSV
    Figure 2.  Validity of inequality (3.11) in Theorem 3.

    The modified Bessel functions of first and second kind are defined, respectively by Watson [26]

    Iρ(ξ)=n=0(ξ2)ρ+2nn!Γ(ρ+n+1);   Kρ(ξ)=π2Iρ(ξ)Iρ(ξ)sinπρ.

    Watson also defined the functions Jρ,Lρ:R[1,) by

    Jρ(ξ)=Γ(ρ+1)(ξ2)ρIρ(ξ);  Lρ(ξ)=Γ(ρ+1)(ξ2)ρKρ(ξ)  ξR, ρ>1,

    differentiating with respect to ξ twice yields: Jρ(ξ)=ξJρ+1(ξ)2(ρ+1); Jρ(ξ)=ξ2Jρ+2(ξ)+2(ρ+2)Jρ+1(ξ)4(ρ+1)(ρ+2) and Lρ(ξ)=ξLρ+1(ξ)2(ρ+1), Lρ(ξ)=ξ2Lρ+2(ξ)+2(ρ+2)Lρ+1(ξ)4(ρ+1)(ρ+2). Convexities of Jρ(ξ) and Lρ(ξ) directly follows from here. We incorporate this function as a result.

    Proposition 2. For h(t)=Jρ(t); a=1 in Theorem 2, we have

    |(1d)2(m2+wu2)Jρ+1(m2+wu2)+(m1m2+2w)Jρ+1(m1m2+2w2)8(ρ+1)+d2(m1+wu1)Jρ+1(m1+wu1)+(m2m1+2w)Jρ+1(m2m1+2w2)8(ρ+1)+Jρ(m1m2+2w2)Jρ(m1+wu1)m1+m22u1+Jρ(m2+wu2)Jρ(m2m1+2w2)2u2m1m2|(2d22d+1)(m1+m22u1)32(ρ+1)(ρ+2)(m21Jρ+2(m1)+2(ρ+2)Jρ+1(m1))+(2d22d+1)(2u2m1m2)32(ρ+1)(ρ+2)(m22Jρ+2(m2)+2(ρ+2)Jρ+1(m2))+(2d22d+1)(u2u1)16(ρ+1)(ρ+2)(w2Jρ+2(w)+2(ρ+2)Jρ+1(w))+(2d36d2+3d1)(m1+m22u1)96(ρ+1)(ρ+2)(u21Jρ+2(u1)+2(ρ+2)Jρ+1(u1))+(2d3+3d2)(2u2m1m2)96(ρ+1)(ρ+2)(u22Jρ+2(u2)+2(ρ+2)Jρ+1(u2))+(2d36d2+3d1)(2u2m1m2)(2d33d+2)(m1+m22u1)384(ρ+1)(ρ+2)×((m1+m2)2Jρ+2(m1+m22)+8(ρ+2)Jρ+1(m1+m22)).

    Proposition 3. For h(t)=Lρ(t); a=1 in Theorem 2, we have

    |(1d)2(m2+wu2)Lρ+1(m2+wu2)+(m1m2+2w)Lρ+1(m1m2+2w2)8(ρ+1)+d2(m1+wu1)Lρ+1(m1+wu1)+(m2m1+2w)Lρ+1(m2m1+2w2)8(ρ+1)+Lρ(m1m2+2w2)Lρ(m1+wu1)m1+m22u1+Lρ(m2+wu2)Lρ(m2m1+2w2)2u2m1m2|(2d22d+1)(m1+m22u1)32(ρ+1)(ρ+2)(m21Lρ+2(m1)+2(ρ+2)Lρ+1(m1))+(2d22d+1)(2u2m1m2)32(ρ+1)(ρ+2)(m22Lρ+2(m2)+2(ρ+2)Lρ+1(m2))+(2d22d+1)(u2u1)16(ρ+1)(ρ+2)(w2Lρ+2(w)+2(ρ+2)Lρ+1(w))+(2d36d2+3d1)(m1+m22u1)96(ρ+1)(ρ+2)(u21Lρ+2(u1)+2(ρ+2)Lρ+1(u1))+(2d3+3d2)(2u2m1m2)96(ρ+1)(ρ+2)(u22Lρ+2(u2)+2(ρ+2)Lρ+1(u2))+(2d36d2+3d1)(2u2m1m2)(2d33d+2)(m1+m22u1)384(ρ+1)(ρ+2)×((m1+m2)2Lρ+2(m1+m22)+8(ρ+2)Lρ+1(m1+m22)).

    Let the set ϕ and the σ finite measure μ be given, and let the set of all probability densities on μ be defined on Ω:={χ|χ:ϕR,χ(ϖ)>0,ϕχ(ϖ)dμ(ϖ)=1}. Let h:R+R be given mapping and consider Dh(χ,ψ) defined by:

    Dh(χ,ψ):=ϕχ(ϖ)h(ψ(ϖ)χ(ϖ))dμ(ϖ),  χ,ψΩ. (5.1)

    If h is convex, then (5.1) is called Csisźar h-divergence. Consider the following Hermite-Hadamard (HH) divergence:

    DhHH(χ,ψ):=ϕχ(ϖ)ψ(ϖ)χ(ϖ)1h(t)dtψ(ϖ)χ(ϖ)1dμ(ϖ),  χ,ψΩ, (5.2)

    where h is convex on R+ with h(1)=0. Consider Dv(χ,ψ) defined by:

    Dv(χ,ψ)=ϕ|χ(ϖ)ψ(ϖ)|dμ(ϖ), (5.3)

    so-called variation distance. Note that DhHH(χ,ψ)0 with equality holds if and only if χ=ψ.

    Proposition 4. Let h:IR+R be a differentiable function on I, interior of I, m1,m2I such that |h| is convex and h(1)=0, then

    |2Dh(χ,ψ+χ2)+Dh(χ,ψ)4DhHH(χ,ψ)||h(1)|Dv(χ,ψ)32+ϕ|ψ(ϖ)χ(ϖ)|{|h(ψ(ϖ)χ(ϖ))|+2|h(ψ(ϖ)+χ(ϖ)2χ(ϖ))|}32dμ(ϖ). (5.4)

    Proof. Let Φ1:={ϖϕ:ψ(ϖ)>χ(ϖ)}; Φ2:={ϖϕ:ψ(ϖ)<χ(ϖ)} and Φ3:={ϖϕ:ψ(ϖ)=χ(ϖ)}. Obviously, if ϖΦ3, then equality holds in (5.4). Now, if ϖΦ1, then for u1=m1, w=m1+m22; m1=a=1; u2=m2=ψ(ϖ)χ(ϖ); d=12 in Theorem 2, multiplying both sides by the obtained result by χ(ϖ) and integrating over Φ1, we have

    |12Φ1χ(ϖ)h(ψ(ϖ)+χ(ϖ)2χ(ϖ))dμ(ϖ)+14Φ1χ(ϖ)h(ψ(ϖ)χ(ϖ))dμ(ϖ)Φ1χ(ϖ)ψ(ϖ)χ(ϖ)1h(t)dtψ(ϖ)χ(ϖ)1dμ(ϖ)|Φ1ψ(ϖ)χ(ϖ)32{|h(1)|+|h(ψ(ϖ)χ(ϖ))|+2|h(ψ(ϖ)+χ(ϖ)2χ(ϖ))|}dμ(ϖ). (5.5)

    Similarly, if ϖΦ2, then for u1=m1=ψ(ϖ)χ(ϖ), w=m1+m22; a=1; u2=m2=1; d=12 in Theorem 2, multiplying both sides by the obtained result by χ(ϖ) and integrating over Φ2, we have

    |12Φ2χ(ϖ)h(ψ(ϖ)+χ(ϖ)2χ(ϖ))dμ(ϖ)+14Φ2χ(ϖ)h(ψ(ϖ)χ(ϖ))dμ(ϖ)Φ2χ(ϖ)ψ(ϖ)χ(ϖ)1h(t)dtψ(ϖ)χ(ϖ)1dμ(ϖ)|Φ2χ(ϖ)ψ(ϖ)32{|h(1)|+|h(ψ(ϖ)χ(ϖ))|+2|h(ψ(ϖ)+χ(ϖ)2χ(ϖ))|}dμ(ϖ). (5.6)

    Adding inequalities (5.5) and (5.6) and utilizing triangular inequality, we obtain the desired result (5.4).

    Let f:[m1,m2][0,1] be the probability density function of m continuous random variable X with the cumulative distribution function, F, given by:

    F(ϱ)=Pr(Xϱ)=ϱm1f(t)dt  and E(X)=m2m1tdF(t)=m2m2m1F(t)dt.

    Then, from Theorem 2 for a=1, we have the following result:

    |(1d)[Pr(Xm2+wu2)+Pr(Xm1m2+2w2)]2+d[Pr(Xm1+wu1)+Pr(Xm2m1+2w2)]2Pr(Xm1+wu1)Pr(Xm1m2+2w2)m1+m22u1+Pr(Xm2+wu2)Pr(Xm2m1+2w2)2u2m1m2|(2d22d+1){(m1+m22u1)|f(m1)|+(2u2m1m2)|f(m2)|+2(u2u1)|f(w)|}8+(2d36d2+3d1)(m1+m22u1)|f(u1)|+(2d3+3d2)(2u2m1m2)|f(u2)|24+(2d36d2+3d1)(2u2m1m2)(2d33d+2)(m1+m22u1)24|f(m1+m22)|. (5.7)

    In particular, for u1=m1, u2=m2, d=12 and w=m1+m22, (5.7) reduces to

    |Pr(Xm1)+Pr(Xm2)+2Pr(Xm1+m22)4m2E(X)m2m1|(m2m1)(|f(m1)|+|f(m2)|+2|f(m1+m22)|)32.

    By constructing a multi-parameter fractional integral identity in the form of the Caputo-Fabrizio fractional integral operator, we have generated some new generalized estimates for fractional Bullen-type inequalities by using convexity, log-convexity, Hölder inequality, and power mean inequality. We have also included numerical and graphical examples to demonstrate the correctness of the generated results. Additionally, modified Bessel functions, h-divergence measures, and probability density functions are given as implementations of the resulting conclusions. It is anticipated that the paper's findings will pique readers's interest.

    Sabir Hussain and Jongsuk Ro: Conceptualization, formal analysis; Sobia Rafeeq and Sabir Hussain: Methodology, writing-original draft preparation, validation; Sobia Rafeeq: Software, investigation; Jongsuk Ro: Resources; Sobia Rafeeq, Sabir Hussain and Jongsuk Ro: Writing-review and editing; Sobia Rafeeq and Jongsuk Ro: Visualization. All authors have read and agreed to the published version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. NRF-2022R1A2C2004874). This work was also supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. NRF-2022R1A2C2004874).

    The authors declare no conflict of interest.



    [1] R. Tanabe, H. Ishibuchi, A review of evolutionary multimodal multiobjective optimization, IEEE Trans. Evol. Comput., 24 (2020), 193-200. https://doi.org/10.1109/TEVC.2019.2909744 doi: 10.1109/TEVC.2019.2909744
    [2] D. Chen, Y. Li, A development on multimodal optimization technique and its application in structural damage detection, Appl. Soft Comput., 91 (2020), 106264. https://doi.org/10.1016/j.asoc.2020.106264 doi: 10.1016/j.asoc.2020.106264
    [3] K. Wang, J. Zheng, F. Lu, H. Gao, A. Palanisamy, S. Zhuang, Varied-line-spacing switchable holographic grating using polymer-dispersed liquid crystal, Appl. Opt., 55 (2016), 4952-4957. https://doi.org/10.1364/AO.55.004952 doi: 10.1364/AO.55.004952
    [4] A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, et al., Improved protein structure prediction using potentials from deep learning, Nature, 577 (2020), 706-710. https://doi.org/10.1038/s41586-019-1923-7
    [5] J. Zhang, G. Ding, Y. Zou, S. Qin, J. Fu, Review of job shop scheduling research and its new perspectives under Industry 4.0, J. Intell. Manuf., 30 (2019), 1809-1830. https://doi.org/10.1007/s10845-017-1350-2 doi: 10.1007/s10845-017-1350-2
    [6] A. Lambora, K. Gupta, K. Chopra, Genetic algorithm—a literature review, in 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing, 2019. https://doi.org/10.1109/COMITCon.2019.8862255
    [7] Bilal, M. Pant, H. Zaheer, L. Garcia-Hernandez, A. Abraham, Differential Evolution: a review of more than two decades of research, Eng. Appl. Artif. Intell., 90 (2020), 103479. https://doi.org/10.1016/j.engappai.2020.103479 doi: 10.1016/j.engappai.2020.103479
    [8] H. Zhao, Z. H. Zhan, Y. Lin, X. F. Chen, X. N. Luo, J. Zhang, et al., Local binary pattern based adaptive differential evolution for multimodal optimization problems, IEEE Trans. Cybern., 50 (2020), 3343-3357. https://doi.org/10.1109/TCYB.2019.2927780
    [9] H. Zhao, Z. H. Zhan, J. Zhang, Adaptive guidance-based differential evolution with archive strategy for multimodal optimization problems, in Proceedings IEEE Congress on Evolutionary Computation, (2020), 1-8. https://doi.org/10.1109/CEC48606.2020.9185582
    [10] K. E. Parsopoulos, M. N. Vrahatis, Unified particle swarm optimization for solving constrained engineering optimization problems, in Advances in Natural Computation (eds. L. Wang, K. Chen, and Y. S. Ong), Springer Berlin Heidelberg, (2005), 582-591. https://doi.org/10.1007/11539902_71
    [11] J. Liang, S. Ge, B. Y. Qu, K. Yu, F. Liu, H. Yang, et al., Classified perturbation mutation based particle swarm optimization algorithm for parameters extraction of photovoltaic models, Energy Convers. Manag., 203 (2020), 112138. https://doi.org/10.1016/j.enconman.2019.112138
    [12] H. X. Chen, D. L. Fan, F. Lu, W. J. Huang, J. M. Huang, C. H. Cao, et al., Particle swarm optimization algorithm with mutation operator for particle filter noise reduction in mechanical fault diagnosis, Int. J. Pattern Recognit. Artif. Intell., 34 (2020), 2058012. https://doi.org/10.1142/S0218001420580124
    [13] X. F. Song, Y. Zhang, Y. N. Guo, X. Y. Sun, Y. L. Wang, Variable-size cooperative coevolutionary particle swarm optimization for feature selection on high-dimensional data, IEEE Trans. Evol. Comput., 24 (2020), 882-895. https://doi.org/10.1109/TEVC.2020.2968743 doi: 10.1109/TEVC.2020.2968743
    [14] L. Qing, W. Gang, Y. Zaiyue, W. Qiuping, Crowding clustering genetic algorithm for multimodal function optimization, Appl. Soft Comput., 8 (2008), 88-95. https://10.1016/j.asoc.2006.10.014
    [15] B. Y. Qu, P. N. Suganthan, S. Das, A distance-based locally informed particle swarm model for multimodal optimization, IEEE Trans. Evol. Comput., 17 (2013), 387-402. https://doi.org/10.1109/TEVC.2012.2203138 doi: 10.1109/TEVC.2012.2203138
    [16] Z. J. Wang, Z. H. Zhan, Y. Lin, W. J. Wu, H. Q. Yuan, T. L. Gu, et al., Dual-strategy differential evolution with affinity propagation clustering for multimodal optimization problems, IEEE Trans. Evol. Comput., 22 (2018), 894-908. https://doi.org/10.1109/TEVC.2017.2769108
    [17] T. Kohonen, Self-organized formation of topologically correct feature maps, Biol. Cybern., 43 (1982). https://doi.org/10.1007/BF00337288
    [18] T. Kohonen, Essentials of the self-organizing map, Neural Networks, 37 (2013), 52-65. https://doi.org/10.1016/j.neunet.2012.09.018
    [19] R. Storn, K. Price, Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim., 11 (1997), 341-359, https://doi.org/10.1023/A:1008202821328 doi: 10.1023/A:1008202821328
    [20] B. Xue, M. Zhang, W. N. Browne, X. Yao, A survey on evolutionary computation approaches to feature selection, IEEE Trans. Evol. Comput., 20 (2016), 606-626. https://doi.org/10.1109/TEVC.2015.2504420 doi: 10.1109/TEVC.2015.2504420
    [21] H. Bersini, M. Dorigo, S. Langerman, G. Seront, L. Gambardella, Results of the first international contest on evolutionary optimisation, in Proceedings of IEEE International Conference on Evolutionary Computation, (1996), 611-615. https://doi.org/10.1109/ICEC.1996.542670
    [22] S. M. Guo, J. S. H. Tsai, C. C. Yang, T. H. Hsu, A self-organizing approach for L-SHADE incorporated with eigenvector-based crossover and successful-parent-selecting framework on CEC 2015 benchmark set, in Proceedings IEEE Congress on Evolutionary Computation, (2015), 1003-1010. https://doi.org/10.1109/CEC.2015.7256999
    [23] N. Awad, M. Ali, P. Suganthan, R. Reynolds, An ensemble sinusoidal parameter adaptation incorporated with L-SHade for solving CEC2014 benchmark problems, in Proceedings IEEE Congress on Evolutionary Computation, (2016), 2958-2965. https://doi.org/10.1109/CEC.2016.7744163
    [24] R. Tanabe, A. Fukunaga, Improving the search performance of SHADE using linear population size reduction, in Proceedings IEEE Congress on Evolutionary Computation, (2014), 1658-1665. https://doi.org/0.1109/CEC.2014.6900380
    [25] N. Awad, M. Ali, P. Suganthan, Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems, in Proceedings IEEE Congress on Evolutionary Computation, (2017), 372-379. https://doi.org/10.1109/CEC.2017.7969336
    [26] S. Akhmedova, V. Stanovov, E. Senmenkin, LSHADE algorithm with a rank-based selective pressure strategy for the circular antenna array design problem, in International Conference on Informatics in Control, Automation and Robotics, (2018), 159-165. https://doi.org/10.5220/0006852501590165
    [27] J. Brest, S. Greiner, B. Boskovic, M. Mernik, V. Zumer, Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems, IEEE Trans. Evol. Comput., 10 (2006), 646-657. https://doi.org/10.1109/TEVC.2006.872133 doi: 10.1109/TEVC.2006.872133
    [28] X. Rui, D. Wunsch, Survey of clustering algorithms, IEEE Trans. Neural Networks, 16 (2005), 645-678. https://doi.org/10.1109/TNN.2005.845141
    [29] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, A. Y. Wu, An efficient k-means clustering algorithm: analysis and implementation, IEEE Trans. Pattern Anal. Mach. Intell., 24 (2002), 881-892. https://doi.org/10.1109/TPAMI.2002.1017616 doi: 10.1109/TPAMI.2002.1017616
    [30] B. Y. Qu, C. Li, J. Liang, L. Yan, K. Yu, Y. Zhu, A self-organized speciation based multi-objective particle swarm optimizer for multimodal multi-objective problems, Appl. Soft Comput., 86 (2020), 105886. https://doi.org/10.1016/j.asoc.2019.105886 doi: 10.1016/j.asoc.2019.105886
    [31] Y. Hu, j. Wang, J. Liang, K. Yu, H. Song, Q. GUO, et al., A self-organizing multimodal multi-objective pigeon-inspired optimization algorithm, Sci. China Inf. Sci., 62 (2019), 70206. https://doi.org/10.1007/s11432-018-9754-6
    [32] H. Zhang, A. Zhou, S. Song, Q. Zhang, X. Z. Gao, J. Zhang, A self-organizing multiobjective evolutionary algorithm, IEEE Trans. Evol. Comput., 20 (2016), 792-806. https://doi.org/10.1109/TEVC.2016.2521868 doi: 10.1109/TEVC.2016.2521868
    [33] A. M. Kashtiban, S. Khanmohammadi, A genetic algorithm with SOM neural network clustering for multimodal function optimization, J. Intell. Fuzzy Syst., 35 (2018), 4543-4556. https://doi.org/10.3233/JIFS-131344 doi: 10.3233/JIFS-131344
    [34] K. Zielinski, R. Laur, Stopping criteria for differential evolution in constrained single-objective optimization, in Advances in Differential Evolution, (eds. U. K. Chakraborty), Springer Berlin Heidelberg, (2008), 111-138. https://doi.org/10.1007/978-3-540-68830-3_4
    [35] Q. Yang, W. N. Chen, Z. Yu, T. Gu, Y. Li, H. Zhang, J.Zhang, et al., Adaptive multimodal continuous ant colony optimization, IEEE Trans. Evol. Comput., 21 (2017), 191-205. https://doi.org/10.1109/TEVC.2016.2591064
    [36] A. Hackl, C. Magele, W. Renhart, Extended firefly algorithm for multimodal optimization, in Proceedings 19th International Symposium on Electrical Apparatus and Technologies, (2016), 1-4. https://doi.org/10.1109/SIELA.2016.7543010
    [37] R. Thomsen, Multimodal optimization using crowding-based differential evolution, in Proceedings of the 2004 Congress on Evolutionary Computation, (2004), 1382-1389. https://doi.org/10.1109/CEC.2004.1331058
    [38] A. Petrowski, A clearing procedure as a niching method for genetic algorithms, in Proceedings of IEEE International Conference on Evolutionary Computation, (1996), 798-803. https://doi.org/10.1109/ICEC.1996.542703
    [39] B. Y. Qu, P. N. Suganthan, J. J. Liang, Differential evolution with neighborhood mutation for multimodal optimization, IEEE Trans. Evol. Comput., 16 (2012), 601-614. https://doi.org/10.1109/TEVC.2011.2161873 doi: 10.1109/TEVC.2011.2161873
    [40] X. Li, Niching without niching parameters: particle swarm optimization using a ring topology, IEEE Trans. Evol. Comput., 14 (2010), 150-169. https://https://doi.org/10.1109/TEVC.2009.2026270 doi: 10.1109/TEVC.2009.2026270
    [41] Z. Wei, W. Gao, G. Li, Q. Zhang, A penalty-based differential evolution for multimodal optimization, IEEE Trans. Cybern., 2021 (2021). https://doi.org/10.1109/TCYB.2021.3117359 doi: 10.1109/TCYB.2021.3117359
    [42] X. Lin, W. Luo, P. Xu, Differential evolution for multimodal optimization with species by nearest-better clustering, IEEE Trans. Cybern., 51 (2021), 970-983. https://doi.org/10.1109/TCYB.2019.2907657 doi: 10.1109/TCYB.2019.2907657
    [43] Z. J. Wang, Z. H. Zhan, Y. Lin, W. J. Yu, H. Wang, S. Kwong, J. Zhang, et al., Automatic niching differential evolution with contour prediction approach for multimodal optimization problems, IEEE Trans. Evol. Comput., 24 (2020), 114-128. https://doi.org/10.1109/TEVC.2019.2910721
    [44] X. Zhuoran, M. Polojärvi, M. Yamamoto, M. Furukawa, Attraction basin estimating GA: an adaptive and efficient technique for multimodal optimization, in Proceedings IEEE Congress on Evolutionary Computation, (2013), 333-340. https://doi.org/10.1109/CEC.2013.6557588
    [45] J. Liang, K. Qiao, T. Y. Cai, K. Yu, A clustering-based differential evolution algorithm for solving multimodal multi-objective optimization problems, Swarm Evol. Comput., 60 (2021), 100788. https://doi.org/10.1016/j.swevo.2020.100788 doi: 10.1016/j.swevo.2020.100788
    [46] Z. Hu, T. Zhou, Q. Su, M. Liu, A niching backtracking search algorithm with adaptive local search for multimodal multiobjective optimization, Swarm Evol. Comput., 69 (2022), 101031. https://doi.org/10.1016/j.swevo.2022.101031 doi: 10.1016/j.swevo.2022.101031
    [47] M. G. Epitropakis, V. P. Plagianakos, M. N. Vrahatis, Finding multiple global optima exploiting differential evolution's niching capability, in Proceedings IEEE Symposium on Differential Evolution, (2011), 1-8. https://doi.org/10.1109/SDE.2011.5952058
    [48] M. G. Epitropakis, X. Li, E. K. Burke, A dynamic archive niching differential evolution algorithm for multimodal optimization, in Proceedings IEEE Congress on Evolutionary Computation, (2013), 79-86. https://doi.org/10.1109/CEC.2013.6557556
    [49] J. Wang, Enhancing particle swarm algorithm for multimodal optimization problems, in Proceedings International Conference on Computing Intelligence and Information System, (2017), 1-6. https://doi.org/10.1109/CIIS.2017.10
    [50] W. Liu, L. Liu, T. Zhang, J. Liu, Multimodal function optimization based on improved ABC algorithm, in Proceedings 9th International Symposium on Computational Intelligence and Design, (2016), 246-249. https://doi.org/10.1109/ISCID.2016.1063
    [51] R. Cheng, M. Li, K. Li, X. Yao, Evolutionary multiobjective optimization-based multimodal optimization: fitness landscape approximation and peak detection, IEEE Trans. Evol. Comput., 22 (2018), 692-706. https://doi.org/10.1109/TEVC.2017.2744328 doi: 10.1109/TEVC.2017.2744328
    [52] Y. Wang, H. Li, G. G. Yen, W. Song, MOMMOP: multiobjective optimization for locating multiple optimal solutions of multimodal optimization problems, IEEE Trans. Cybern., 45 (2015), 830-843. https://doi.org/10.1109/TCYB.2014.2337117 doi: 10.1109/TCYB.2014.2337117
    [53] W. J. Yu, J. Y. Ji, Y. J. Gong, Q. Yang, J. Zhang, A tri-objective differential evolution approach for multimodal optimization, Inf. Sci., 423 (2018), 1-23. https://doi.org/10.1016/j.ins.2017.09.044 doi: 10.1016/j.ins.2017.09.044
    [54] V. Steinhoff, P. Kerschke, P. Aspar, H. Trautmann, C. Grimme, Multiobjectivization of local search: single-objective optimization benefits from multi-objective gradient descent, in Proceedings IEEE Symposium Series on Computational Intelligence, (2020), 2445-2452. https://doi.org/10.1109/SSCI47803.2020.9308259
    [55] P. Aspar, P. Kerschke, V. Steinhoff, H. Trautmann, C. Grimme, Multi3: optimizing multimodal single-objective continuous problems in the multi-objective space by means of multiobjectivization, in Evolutionary Multi-Criterion Optimization (eds. H. Ishibuchi, et al.), (2021), 12654. https://doi.org/10.1007/978-3-030-72062-9_25
    [56] C. Grimme, P. Kerschke, P. Aspar, H. Trautmann, M. Preuss, A. Deutz, et al., Peeking beyond peaks: challenges and research potentials of continuous multimodal multi-objective optimization, Comput. Oper. Res., 136 (2021), 105489. https://doi.org/10.1016/j.cor.2021.105489
    [57] X. Li, A. Engelbrecht, M. G. Epitropakis, Benchmark functions for CEC'2013 special session and competition on niching methods for multimodal function optimization. Available from: https://www.epitropakis.co.uk/sites/default/files/pubs/cec2013-niching-benchmark-tech-report.pdf.
    [58] W. Luo, Y. Qiao, X. Lin, P. Xu, M. Preuss, Hybridizing niching, particle swarm optimization, and evolution strategy for multimodal optimization, IEEE Trans. Cybern., 2020 (2020). https://doi.org/10.1109/TCYB.2020.3032995
    [59] J. Alami, A. El-Imrani, Dielectric composite multimodal optimization using a multipopulation cultural algorithm, Intell. Data Anal., 12 (2008), 359-378. doi:10.3233/IDA-2008-12404 doi: 10.3233/IDA-2008-12404
  • This article has been cited by:

    1. P.O. Amadi, A.N. Ikot, U.S. Okorie, L.F. Obagboye, G.J. Rampho, R. Horchani, M.C. Onyeaju, H.I. Alrebdi, A.-H. Abdel-Aty, Shannon entropy and complexity measures for Bohr Hamiltonian with triaxial nuclei, 2022, 39, 22113797, 105744, 10.1016/j.rinp.2022.105744
    2. Hari M. Srivastava, Waseem Z. Lone, Firdous A. Shah, Ahmed I. Zayed, Discrete Quadratic-Phase Fourier Transform: Theory and Convolution Structures, 2022, 24, 1099-4300, 1340, 10.3390/e24101340
    3. William Guo, A guide for using integration by parts: Pet-LoPo-InPo, 2022, 30, 2688-1594, 3572, 10.3934/era.2022182
    4. Mawardi Bahri, Samsul Ariffin Abdul Karim, Some Essential Relations for the Quaternion Quadratic-Phase Fourier Transform, 2023, 11, 2227-7390, 1235, 10.3390/math11051235
    5. Waseem Z. Lone, Firdous A. Shah, Weighted convolutions in the quadratic-phase Fourier domains: Product theorems and applications, 2022, 270, 00304026, 169978, 10.1016/j.ijleo.2022.169978
    6. Sri Sulasteri, Mawardi Bahri, Nasrullah Bachtiar, Jeffry Kusuma, Agustinus Ribal, Solving Generalized Heat and Generalized Laplace Equations Using Fractional Fourier Transform, 2023, 7, 2504-3110, 557, 10.3390/fractalfract7070557
    7. JAY SINGH MAURYA, SANTOSH KUMAR UPADHYAY, CHARACTERIZATIONS OF THE INVERSION FORMULA OF THE CONTINUOUS BESSEL WAVELET TRANSFORM OF DISTRIBUTIONS IN Hμ′(ℝ+), 2023, 31, 0218-348X, 10.1142/S0218348X23400303
    8. Mohra Zayed, Aamir H. Dar, M. Younus Bhat, Discrete Quaternion Quadratic Phase Fourier Transform, 2025, 19, 1661-8254, 10.1007/s11785-025-01677-8
    9. Waseem Z. Lone, Ahmed Saoudi, Amit K. Verma, An Analysis of Short‐Time Quadratic‐Phase Fourier Transform in Octonion Domain, 2025, 0170-4214, 10.1002/mma.11142
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2606) PDF downloads(109) Cited by(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog