Citation: Dongxue Yan, Xingfu Zou. Dynamics of an epidemic model with relapse over a two-patch environment[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 6098-6127. doi: 10.3934/mbe.2020324
[1] | S. W. Martin., Livestock Disease Eradication: Evaluation of the Cooperative State-Federal Bovine Tuberculosis Eradication Program, National Academy Press, Washington, 1994. |
[2] | J. Chin., Control of Communicable Diseases Manual, American Public Health Association, Washington, 1999. |
[3] | K. E. VanLandingham, H. B. Marsteller, G. W. Ross, F. G. Hayden, Relapse of herpes simplex encephalitis after conventional acyclovir therapy, JAMA, 259 (1988), 1051-1053. |
[4] | P. van den Driessche, X. Zou, Modeling relapse in infectious diseases, Math. Biosci., 207 (2007), 89-103. |
[5] | J. Arino, P. van den Driessche, Disease spread in metapopulations, Fields Institute Communications, 48 (2006), 1-12. |
[6] | T. Dhirasakdanon, H. R. Thieme, P. van Den Driessche, A sharp threshold for disease persistence in host metapopulations, J. Biol. Dyn., 1 (2007), 363-378. |
[7] | M. Salmani, P. van den Driessche, A model for disease transmission in a patchy environment, Discret. Cont. Dyn. Syst. Ser B, 6 (2006), C185-C202. |
[8] | W. Wang, X. Zhao, An epidemic model with population dispersal and infection period, SIAM J. Appl. Math., 66 (2006), 1454-1472. |
[9] | Y. Xiao, X. Zou, Transmission dynamics for vector-borne diseases in a patchy environment, J. Math. Biol., 69 (2014), 113-146. |
[10] | R. M. Almarashi, C. C. McCluskey, The effect of immigration of infectives on disease-free equilibria, J. Math. Biol., 79 (2020), 1015-1028. |
[11] | S. Chen, J. Shi, Z. Shuai, Y. Wu, Asymptotic profiles of the steady states for an SIS epidemic patch model with asymmetric connectivity matrix, J. Math. Biol., 80 (2020), 2327-2361. |
[12] | J. Li, X. Zou, Generalization of the Kermack-McKendrick SIR model to patch environment for a disease with latency, Math. Model. Natl. Phenom., 4 (2009), 92-118. |
[13] | J. Li, X. Zou, Dynamics of an epidemic model with non-local infections for diseases with latency over a patch environment, J. Math. Biol., 60 (2010), 645-686. |
[14] | J. W. H. So, J. Wu, X. Zou, Structured population on two patches: modeling dispersal and delay, J. Math. Biol., 43 (2001), 37-51. |
[15] | J. Yang, H. R. Thieme, An endemic model with variable re-infection rate and application to influenza, Math. Biosci., 180 (2002), 207-235. |
[16] | M. V. Barbarossa, G. Röst, Immuno-epidemiology of a population structured by immune status: a mathematical study of waning immunity and immune system boosting, J. Math. Biol., 71 (2015), 1737-1770. |
[17] | A. Berman, R. J. Plemmons, Non-negative matrices in the mathematical sciences, Academic Press, London 1979. |
[18] | J. K. Hale, S. M. Verduyn Lunel, Introduction to functional differential equations, Spring, New York, 1993. |
[19] | H. L. Smith, Monotone dynamical systems, An introduction to the theory of competitive and cooperative systems, Amer. Math. Soc., Providence, 1995. |
[20] | H. L. Smith, P. Waltman, The theory of the chemostat, Cambridge University Press, Cambridge, 1995. |
[21] | C. Castillo-Chaves, H. R. Thieme, Asymptotically autonomous epidemic models, In: Arino O et al (eds) Mathematical population dynamics: analysis of heterogeneity, I. Theory of epidemics. Wuerz, Winnipeg, 1995, 33-50. |
[22] | K. Mischaikow, H. Smith, H. R. Thieme, Asymptotically autonomous semiflows: chain recurrence and Lyapunov functions, Trans. Amer. Math. Soc., 347 (1995), 1669-1685. |
[23] | W. M. Hirsch, H. Hanisch, J. P. Gabriel, Differential equation models of some parasitic infections: methods for the study of asymptotic behavior, Commu. Pure Appl. Math., 38 (1985), 733-753. |
[24] | J. A. J. Metz, O. Diekmann, The Dynamics of Physiologically Structured Populations, Springer-Verlag, New York, 1986. |
[25] | H. R. Thieme, Persistence under relaxed point-dissipativity (with application to an endemic model), SIAM J. Math. Anal., 24 (1993), 407-435. |
[26] | P. van den Driessche, L. Wang, X. Zou, Modeling diseases with latency and relapse, Math. Biosci. Eng., 4 (2007), 205-219. |
[27] | X. Zhao, Uniform persistence and periodic coexistence states in infinite-dimensional periodic semiflows with applications, Can Appl Math Q, 3 (1995), 473-495. |