Research article

Multi-mixed sub-fractional Brownian motion and Ornstein–Uhlenbeck processes

  • Published: 05 February 2026
  • MSC : 60G15, 60G17, 60G22

  • We proposed a novel class of Gaussian processes, the multi-mixed sub-fractional Brownian motion (mmsfBm) and its Ornstein-Uhlenbeck counterpart. The mmsfBm is an infinite linear combination of independent sub-fractional Brownian motions, a construction that enables it to capture a continuum of scaling properties and provides a significant mathematical advantage over finite-sum models. We rigorously proved that the local roughness of these processes is defined by the infimum of their Hurst exponents. We further showed that both processes are non-semimartingales and possess the conditional full support (CFS) property. The preservation of these unique regularity properties under the Ornstein-Uhlenbeck transformation is a key finding, confirming the robustness of this new framework for modeling complex, multi-scale systems in finance and other fields.

    Citation: Foad Shokrollahi, Tommi Sottinen, Mounir Zili. Multi-mixed sub-fractional Brownian motion and Ornstein–Uhlenbeck processes[J]. AIMS Mathematics, 2026, 11(2): 3464-3498. doi: 10.3934/math.2026141

    Related Papers:

  • We proposed a novel class of Gaussian processes, the multi-mixed sub-fractional Brownian motion (mmsfBm) and its Ornstein-Uhlenbeck counterpart. The mmsfBm is an infinite linear combination of independent sub-fractional Brownian motions, a construction that enables it to capture a continuum of scaling properties and provides a significant mathematical advantage over finite-sum models. We rigorously proved that the local roughness of these processes is defined by the infimum of their Hurst exponents. We further showed that both processes are non-semimartingales and possess the conditional full support (CFS) property. The preservation of these unique regularity properties under the Ornstein-Uhlenbeck transformation is a key finding, confirming the robustness of this new framework for modeling complex, multi-scale systems in finance and other fields.



    加载中


    [1] P. Abry, F. Sellan, The wavelet-based synthesis for fractional Brownian motion proposed by F. Sellan and Y. Meyer: remarks and fast implementation, Appl. Comput. Harmonic Anal., 3 (1996), 377–383.
    [2] E. Azmoodeh, T. Sottinen, L. Viitasaari, A. Yazigi, Necessary and sufficient conditions for Hölder continuity of Gaussian processes, Stat. Probab. Lett., 94 (2014), 230–235. https://doi.org/10.1016/j.spl.2014.07.030 doi: 10.1016/j.spl.2014.07.030
    [3] C. Bender, T. Sottinen, E. Valkeila, Pricing by hedging and no-arbitrage beyond semimartingales, Finance Stoch., 12 (2008), 441–468. https://doi.org/10.1007/s00780-008-0074-8 doi: 10.1007/s00780-008-0074-8
    [4] T. Bojdecki, L. G. Gorostiza, A. Talarczyk, Fractional Brownian density process and its self-intersection local time of order $k$, J. Theor. Probab., 17 (2004), 717–739. https://doi.org/10.1023/B:JOTP.0000040296.95910.e1 doi: 10.1023/B:JOTP.0000040296.95910.e1
    [5] T. Bojdecki, L. G. Gorostiza, A. Talarczyk, Sub-fractional Brownian motion and its relation to occupation times, Stat. Probab. Lett., 69 (2004), 405–419. https://doi.org/10.1016/j.spl.2004.06.035 doi: 10.1016/j.spl.2004.06.035
    [6] E. N. Charles, Z. Mounir, On the sub-mixed fractional Brownian motion, Appl. Math. J. Chin. Univ., 30 (2015), 27–43. https://doi.org/10.1007/s11766-015-3198-6 doi: 10.1007/s11766-015-3198-6
    [7] P. Cheridito, Arbitrage in fractional Brownian motion models, Finance Stoch., 7 (2003), 533–553. https://doi.org/10.1007/s007800300101 doi: 10.1007/s007800300101
    [8] A. Cherny, Brownian moving averages have conditional full support, Ann. Appl. Probab., 18 (2008), 1825–1830.
    [9] C. R. Dietrich, G. N. Newsam, Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix, SIAM J. Sci. Comput., 18 (1997), 1088–1107. https://doi.org/10.1137/S1064827592240555 doi: 10.1137/S1064827592240555
    [10] D. Gasbarra, T. Sottinen, H. van Zanten, Conditional full support of Gaussian processes with stationary increments, J. Appl. Probab., 48 (2011), 561–568. https://doi.org/10.1239/jap/1308662644 doi: 10.1239/jap/1308662644
    [11] P. Guasoni, M. Rásonyi, W. Schachermayer, Consistent price systems and face-lifting pricing under transaction costs, Ann. Appl. Probab., 18 (2008), 491–520. https://doi.org/10.1214/07-AAP461 doi: 10.1214/07-AAP461
    [12] Y. Mishura, M. Zili, Stochastic analysis of mixed fractional Gaussian processes, ISTE Press, Elsevier, 2018. https://doi.org/10.1016/C2017-0-00186-6
    [13] D. Revuz, M. Yor, Continuous martingales and Brownian motion, Grundlehren der mathematischen Wissenschaften, Vol. 293, Springer-Verlag, 1991. https://doi.org/10.1007/978-3-662-06400-9
    [14] C. Tudor, Some properties of the sub-fractional Brownian motion, Stochastics, 79 (2007), 431–448. https://doi.org/10.1080/17442500601100331 doi: 10.1080/17442500601100331
    [15] M. Zili, Mixed sub-fractional Brownian motion, Random Oper. Stochastic Equ., 22 (2014), 163–178. https://doi.org/10.1515/rose-2014-0017 doi: 10.1515/rose-2014-0017
    [16] M. Zili, An optimal series expansion of sub-mixed fractional Brownian motion, J. Numer. Math. Stochastics, 5 (2013), 93–105.
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(149) PDF downloads(25) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog