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motion (mmsfBm) and its Ornstein-Uhlenbeck counterpart. The mmsfBm is an infinite linear
combination of independent sub-fractional Brownian motions, a construction that enables it to capture
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models. We rigorously proved that the local roughness of these processes is defined by the infimum
of their Hurst exponents. We further showed that both processes are non-semimartingales and possess
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1. Introduction

Stochastic processes are fundamental to modeling complex systems across scientific and
engineering disciplines, with their role in financial mathematics being particularly prominent. While
classical models, often rooted in standard Brownian motion, have revolutionized our understanding
of markets, empirical evidence consistently reveals phenomena like long-range dependence, self-
similarity, and intricate scaling behaviors that go beyond the capabilities of these traditional
frameworks. Fractional Brownian motion (fBm) offered a significant leap forward by naturally
incorporating long-range dependence through a single Hurst exponent H. However, real-world data
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frequently exhibits a richer, more nuanced spectrum of scaling properties that a single H cannot fully
capture.

To address these limitations, and rigorously analyzes advanced stochastic models: the multi-
mixed sub-fractional Brownian motion (mmsfBm) and its corresponding multi-mixed sub-fractional
Ornstein-Uhlenbeck (mmsfOU) process. These Gaussian processes, to our knowledge, represent a
pioneering step in the exploration of a new class of stochastic models. We not only define and build
the foundational theory for these processes but also highlight their unique advantages over existing
frameworks.

We emphasize that the primary contribution of this work is theoretical. The introduction of
the mmsfBm and mmsfOU processes is motivated by the need for mathematically robust Gaussian
models capable of capturing multi-scale path behavior and infimum-driven regularity properties.
While financial modeling provides an important motivating context, the results of this paper concern
the probabilistic structure, path regularity, p-variation, conditional full support (CFS), and non-
semimartingale behavior of these processes within the theory of Gaussian processes and infinite-
mixture models.

The mmsfBm is constructed as an infinite linear combination of independent sub-fractional
Brownian motions (sfBm), each characterized by its own Hurst exponent H; and weighting coefficient
0. Specifically, it is defined as,

M, =) ot (L.1)
k=1

Here, &P represents an independent sfBm with index H;, € (0,1), and o are coeflicients such that

Z 0',% < o0o. The sfBm, initially introduced in [5] and further studied in [4, 14], is a centered Gaussian
k=1
process whose covariance function is given by

E[¢7ef] = 27 + 521 — %((t + )+t — 5?1, s,t>0. (1.2)
The sfBm generalizes Brownian motion and arises naturally from occupation time fluctuations of
branching particle systems. While it shares many properties with fbm, a crucial distinction is its lack
of stationary increments, which provides additional modeling flexibility.

This infinite construction provides a crucial mathematical advantage. The mmsfBm and its
finite-sum counterpart, the Mixed Sub-Fractional Brownian Motion (msfBm) [6, 12, 15, 16], differ
fundamentally in their ability to capture a continuum of scales. While the msfBm is limited to modeling
systems with a discrete number of scales; for instance, a financial time series might be a combination
of short-term roughness and a long-term trend and cannot capture the intricate, multi-scale nature of
phenomena like turbulent fluid dynamics or fractal geometries. The mmsfBm, by contrast, can be
constructed with an infinite set of exponents {H,} that are dense in an interval, enabling it to represent a
continuous range of roughness. Crucially, its local roughness is defined by the infimum of all exponents,
H;¢ = inf{H,}, which may not be a value explicitly present in the model’s parameters. This provides a
more robust and versatile framework, as the level of roughness is a stable limiting value rather than a
potentially unstable discrete one.

Building upon the mmsfBm, the mmsfOU process is defined as the solution to a linear stochastic
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differential equation,
dU[ = _/lUtdt'i'th, (1.3)

where A > 0 denotes a mean-reversion parameter. This formulation parallels the relationship between
the classical Ornstein-Uhlenbeck process and standard Brownian motion, inherently introducing a
mean-reverting characteristic vital for modeling phenomena like interest rates or commodity prices.
A defining feature of these processes, especially pertinent to modern quantitative finance, is their non-
semimartingale nature for most parameter choices. This property challenges traditional Itd calculus
frameworks, yet it aligns with the intricate realities of markets exhibiting roughness or strict arbitrage
opportunities, thus motivating the need for advanced stochastic analysis tools.

We note that the non-semimartingale nature of the mmsfBm and mmsfOU processes, while natural
in the present multi-scale setting, precludes their direct use within classical arbitrage-free pricing
frameworks based on Itd6 calculus. Rather than enhancing classical financial modeling, this property
motivates the study of these processes within alternative non-semimartingale paradigms, such as
models with transaction costs, restricted trading strategies, or generalized integration frameworks; see,
for instance, [7,11].

This paper makes several significant contributions to the theoretical understanding of mmsfBm and
mmsfOU processes. We begin by defining the mmsfBm and characterizing its fundamental properties,
including its existence and covariance structure. Our analysis shows that its path regularity and Holder
continuity are uniquely governed by the infimum of its Hurst exponents, H;,;. Building on this, we
provide a detailed comparison with the finite-sum msfBm, highlighting the mathematical advantages
of our infinite construction before confirming the non-semimartingale and non-Markovian nature of
the mmsfBm. We then extend our analysis to the mmsfOU process, deriving its integral representation
and demonstrating that its local Holder continuity and p-variation are also determined by the same
Hi¢. A crucial aspect of our work is establishing the CFS property for both processes, which is a
cornerstone for applications in non-semimartingale finance. To bridge theory and application, we
conclude by presenting numerical simulations and visualizations that illustrate the complex dynamics
of both processes and validate our theoretical findings. The remainder of this paper is structured to
follow this logical progression, with each section dedicated to a contribution.

2. Multi mixed sub-fractional Brownian motion (mmsfBm)

Definition 1. Let oy, k € N\ {0}, satisfy
Z 0% < oo, 2.1)
k=1

and let H, € (0, 1), k € N\ {0}, satisfy

H, # H,fork #]I,
H;y,; = inf{H;:ie€ N\ {0}and o; # 0} > 0, (2.2)
Hy, = sup{H;:ieN\{0}ando;# 0} <1.

The mmsfBm is

M, = (Mer- = ) o™, (2.3)
k=1
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where f{i", k € N, are independent sfBm’s.
Let us first recall some properties of the sfBm (see [5, 14] for proofs and for further information).
Lemma 1. The sfBm process £ = (£7),r, satisfies the following properties:
(1) €7 is a centered Gaussian process.

(2) Forall s e Ry, forallt e R,,

Cov(e!, &My = M + P11 - % ((s+ 0+ = sPM). (2.4)

(3) For any h > 0, the process {£L}-0 has the same law as {h" &/} ,,.
(4) Forall (s,t) e R?, s < t.

Bl - &0)] = 22717 + 820 + (1 + 9™ + (1= 90" (2.5)

(5) The exist two positive constants Cy and C,, such that, for all (s,t) € Ri, s <1,

Ci(t = ) <EI(E - £])’] < Co(r - 9)*". (2.6)

(6) The sfBm admits the representation
n_ B +BY

; 2.7
& NG 2.7)

where B is a two-sided fBm.

Remark 1. A crucial special case arises when H = 1/2. In this instance, the sub-fractional Brownian
motion §,1 "2 reduces to a standard Brownian motion. lts covariance function, directly derived from
property 2 of this Lemma by setting H = 1/2, becomes,

1
Cov(g!?, &) = s +1- (s + 1+ It = sl) = minGs, 1). (2.8)

This demonstrates that the sfBm is indeed one of many different types of Gaussian processes that extend
the concept of a standard Brownian motion by introducing a parameter H to model diverse dependence
structures, particularly non-stationary behavior when H # 1/2.

Existence and probabilistic and path properties

In this section, we establish the existence of the mmsfBm and derive its fundamental probabilistic
and path properties, which form the basis for its characterization.

Proposition 1. The mmsfBm process M, = (M,),cr+ defined in Eq (2.3) exists as a random function,
taking values in L>(Q x [0, T]) for all T > 0.
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Proof. Let us define the partial sums of the series,

n
M=) o, nel.
k=1

T
1M} — M;n”iz(gx[o,n) = fo E[(M? - th)z] dr
n 2
T "
f E [Z O'k‘ft ]
0 k=m+1

D f oIE[@")?| ar
0
T

dt

k=m+1
n

- Z f 02(2 — 22H= 2 e gy

fe=m+1+0

n 1+2H;

= ), gie- 21 2H,

k=m+1
n

> ot @-22"max {1, 77

k=m+1

2max{1,T3} an 0',%,

k=m+1

IA

IA

which shows that the sequence (M]'),ey i1s Cauchy. Thus, M} — M, in L*(Q x [0, T]) shows the
existence. O

Now that the existence of the mmsfBm has been established, we can delve into its fundamental
probabilistic properties that define its behavior.

Theorem 1. The mmsfBm process M, possesses the following fundamental probabilistic properties:
(1) M, is a centered Gaussian process.

(2) For all s,t € R, the covariance function is given by,

[ee)

Cov(M;, M) = Z o?

i
i=1

_ o1 _ .
L Chhend SIZH’)] :

Consequently, the variance of the process at time t is,

[Se]

E[(M?] = ) oF|@ =22 et

i=1

(3) The covariance function R(t,s) = Cov(M,, M) is continuous on any compact set [0,T] x [0, T].
Consequently, it is bounded, meaning there exists a finite constant Cy > 0 such that |R(t, s)| < Cr
forallt,s €[0,T].

AIMS Mathematics Volume 11, Issue 2, 3464-3498.



3469

(4) For any h > 0, the processes {My(c)} and {M,(o-h*', ooh™2, . . )} have the same law.

Proof. (1) The mmsfBm M, = Zakff{" is defined as a sum of independent centered Gaussian
k=1
processes. Since any finite linear combination of independent centered Gaussian processes is a centered

Gaussian process, and since the series converges in L*(Qx[0, T]), the limit process M is also a centered
Gaussian process.

(2) By the definition of the mmsfBm and the fact that the sfBms &’ and ffl 7 are centered and
independent for i # j, we can write,

Cov(M,, My) = )" o7 Cov(&/", ).

i=1

Using the known covariance formula for a single sfBm (see Lemma 1(2)), we get the stated expression
of Cov(M,, My). The variance formula is obtained by setting s = ¢ in the covariance expression.

(3) The covariance function is defined as an infinite sum, R(z, s) = Z R;(z, 5) with

i=1

Ri(t’ S) = 0-12

: 1 : .
Py g2 Hi > ((t +8)2H 4 |r — s|2H’)] .

Since H; > 0 for all i, each individual function x — x*#i is continuous for x > 0. As compositions
and sums of continuous functions, each term 2%, s> (¢ + 5)*#, and |t — s|**" are continuous functions
of (¢, s) on the compact domain [0, 7] x [0, T]. Therefore, each R;(¢, s) is a continuous function on
[0,T] %[0, T].

Furthermore, we can establish the boundedness of R;(#, s) on this domain. For any ¢, s € [0, T'],

1
R [ltmil + 15+ B (I(t + )27+ || - SI2H"|)]
1
<o} [T”"‘ + T4 (@D + TZHI-)]

1
= o7t [2 + E(zz’ff +1)

Let f(H) = T (2 + 32" + 1)). Since 0 < H; < 1 for all i, the set of all H; is contained within
the open interval (0,1). Then 0 < H;,y < Hy,, < 1 (see Assumption (2.2)). The function f(H) is
continuous on the compact interval [H;,r, Hy,,]. Therefore, f(H) attains its maximum value on this

interval. Let C; = Y Ur{na)lg ] f(H). This constant C7 is finite and depends only on T', H;,¢, and Hy,,.
€ inf >t sup

Thus, for all i € N* and for all (¢, s) € [0, T] x [0, T], we have,

IRi(t, 5)| < 072C5.

Let M,, = 0>C;. Given that Z o7 < oo, the series Z M; = Z oiCp = Cy Z o7 converges.
i=1 i=1

i=1 i=1
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Since ZM converges and |R;(¢, s)| < M, for all (¢,s) € [0,T] x [0,T], the series ZR (t,s)

converges umformly on [0, T]x[0, T]. All this allow us to get the continuity of R(z, s) on [0, T]lx [0,T].
Finally, since [0, T] X [0,7] is a compact set in R2?, and R(t, s) is a continuous function on this
compact set, it must attain its maximum and minimum values. Therefore, it is bounded, meaning there
exists a finite constant Cr > 0 such that |R(z, s)| < Cr for all ¢, s € [0, T].
(4) Let us compare the covariance functions of {M;,(c)} and {M,(o|h"',o,h™2,...)}. By using
Lemma 1(3), we get

Cov(My,, My,) = ) ofCov(épr, £)

i=1
= Z (RHCovig, M)
= COV(MI(O'IhHl Lol ), M(o BT, o2 )LL),

Since the covariance functions are equal, and both processes are centered and Gaussian, they have the
same law. m|

Remark 2. In the particular case where H; = 1/2 for every i € N*, the sfBm & reduces to a standard
Brownian motion, as demonstrated in Remark 1. Consequently, the mmsfBm M, simplifies to a multi-
mixed Brownian motion (mmBm). In this scenario, the covariance function of the mmBm directly
follows from Theorem 1(2) (or equivalently from the simplified form in Remark 1), yielding,

Cov(M,, M,) = Z o2 min(t, 5) = [Z af) min(t, ).
i=1 i=1
This scenario is particularly significant as it represents a return to a more classical Gaussian process
with stationary and independent increments, for which many results are well-established. From this
perspective, the mmsfBm can be seen as a natural extension of the mmBm, enabling the modeling of
processes with more complex long-range dependence properties through the varying Hurst parameters
Hl'.

The following theorem consolidates the fundamental properties of the mmsfBm regarding its
incremental behavior and path regularity:

Theorem 2. The incremental second moments and path regularity of the mmsfBm process are
characterized by the following properties:
(1) For all s,t € Ry, with s < t, the second moment of the increments is given by,

o0

2
E(Mt - Ms) = Z af( — ML (P2Hi L 2y L (p 4 )4 (1 — ). (2.9)
i=1

Furthermore, these increments satisfy the following bounds:

Zcrizy,-(t —5)*i < E M, - M Z olvit — (2.10)
P
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where

22271 i H > 1/2 1 if H>1/2
y, = =1, (2.11)

1 if H;<1)2 -2 if H < 1)2.

(2) The mmsfBm process exhibits a quasi-helix property. Specifically, for any compact interval
[0,T],

o There exists a constant C > 0, such that for all s,t € [0, T],

E[(M, - M| < Clt — s/, (2.12)
e For every € > 0, there exists a constant C. > 0, such that for all s,t > 0 with |t — s| > €,

E[(M, - M)*| 2 Clt = s, (2.13)

o If H,y is attained (i.e., there exists j € N*, such that H; = H,y), then for every T > O, there exist
constants Cy,C, > 0 such that for all s,t € [0,T],

Cylt — s < B [(Mt — MS)2] < Colt — 5|, (2.14)

Proof. The first assertion is a direct consequence of Proposition 3.1 in [15] and the independence of
the family of random variables (gftHi - .f?")ieN.

For the second assertion, we begin by proving inequality (2.12). From (2.11), we have v; < 2 for
every i € N. Furthermore, we have H; — H;,s € [0, 1) for every i € N.

Case 1: |t — 5| < 1. The function x + |t — s** is decreasing on the interval [0, 1). Thus, since
0 < H; - Hj,y <1, we have
It — s < |t — s Hi-Hir) < 1. (2.15)

Case 2: |t — s| > 1. The function x — |t — s|>* is increasing on [0, 1). Therefore,
1 < |t — sPHHnD) < | — g2 < T2, (2.16)
Combining the two cases, we get that, for every s,t € [0, T],

LA = s < |t = sPHEHD < 1 v T2,

Together with (2.10), these results give us

E [(Mt - MS)Z]

IA

.

Z Ul-zvilt — st

i=1 -

20t = s )" e — st
i=1

Clt — s,

IA

IA

with C = 2(1 v T%) )" o,
i=1
To prove (2.13), fix e > 0 and s, ¢ > 0, such that |t — 5| > €. Let j € N* be such that o; # 0.
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Case 1: |t — 5| > 1. Using (2.16) and (2.10), we get

\%

sl = St
i=1

(o)
— |l _ S|2Hmf Z 0-1'27i|t _ S|2(Hi—Hmf)
i=1

[Se]
> = 5P ) oty
i=1

2H,

nf 2
= |t—sI"" oy

Case 2: € < |t — 5| < 1, Since the map x + |t — s|* is decreasing, from (2.15) we have
|t — s D > — 5P > €

Combining these inequalities with (2.10), we obtain

\%

2 (o)
E [(Mt - M,) ] 0= s )" oyl — st

2H;
2H,;

i=1
nfo-i,yjll _ slz(Hj_Hinf)

nf 0'3)/ jez.

|t ]
|t = s]

v v

Therefore, (2.13) is obtained with C, = O'?)/j(l A €%).

Now, consider the case where the infimum of the Hurst exponents is attained; that is there exists
Jj € N*such that H; = H;,y and o; # 0. Fix T > 0. The upper bound in (2.14) follows directly from
Assertion 1 with C, = C. To establish the lower bound in (2.14), we proceed as follows:

2 [ee]
2H; 2 2(H;—Hipy
E[(MI—MS) ] > |t— s fZO'iy,-lt—sl( /)
i=1
2H; 2 2 2 H,’—H;n
= |t—3] f(O'j)/j+ Z aryilt — s/* f))
i=1,i#]
2Hpy 2
> |t — s Loy
Therefore, the lower bound in (2.14 ) holds with C; = oﬁy - O

Remark 3. A direct consequence of the expression for the incremental second moments in Eq (2.9) is
that the mmsfBm does not possess stationary increments. Unlike processes such as Brownian motion
or fractional Brownian motion, the variance of the increments, E [(M, - Ms)z], depends on the time
points s and t, rather than only on the time difference |t — s|. This characteristic is a hallmark of the
mmsfBm and is replaced by the weaker but still crucial quasi-helix property, as established by the
bounds in Eqgs (2.12)—(2.14).

The following corollary highlights a crucial consequence of the mmsfBm’s quasi-helix property,
establishing its Holder continuity and almost sure non-differentiability.
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Corollary 1. (1) The mmsfBm has Holder index H,,s. In particular, for any T > 0 and 0 < € < H;y,
there exists a non-negative random variable Gy, 1 such that

H. —
|M; — M| < Gpyppperlt = sI" 7 as.

(2)
]
t—1

) M, - M
lim sup |—
€=0% selr0—e to+e]

= 400, (2.17)

with probability one for every ty € R.

Proof. Assertion 1 is a consequence of the quasi-helix property and Theorem 1 of [2]. Assertion 2
follows in the same way as in [15]. O

3. Comparison with mixed sub-fractional Brownian motion: the mathematical advantage of the
mmsfBm

Building upon our finding that the mmsfBm possesses Holder continuous paths with exponent «,
we now delve into a detailed comparison with its finite counterpart, the msfBm, to highlight the unique
mathematical advantages of our model. Both models are built upon the foundational concept of a sum
of independent sub-fractional Brownian motions. The msfBm, a simpler model introduced by Zili

N
in [15], is defined by a finite sum, SV = Z o
k=1

3.1. Local roughness and Holder Regularity

The local roughness of a stochastic process is quantified by its local Holder exponent, H(t). This
exponent is defined by the scaling of the increments’ variance as the time lag, &, approaches zero.
log E[(Xt+h - Xt)z]

H(®) = lim Toaly (3.1)

Proposition 2. Consider a msfBm defined by the finite sum

N
N _ Hj,
St _Zo-kfz >
k=1

where N € N\ {0}, (o1,...,0n) € RN, and (H,,...,Hy) € (0, 1)N. Without loss of generality, we can
assume that oy # 0 for all k € {1, ..., N}, as any component with o, = 0 would not contribute to the
sum. Assuming the minimum exponent is Hy, = min{H,, ..., Hy}, for some ko € {1,...,N}, then the
local Holder exponent of the process S is precisely Hy,.

Proof. Due to the independence of the sfBm components, the variance of the msfBm increments is
simply the sum of the individual variances,

N

BI(S 1w — %1 = ) oBIENS — &Y. (3.2)

k=1
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Applying the quasi-helix property (2.6) to each term, we obtain a two-sided bound on the total variance,

N N
Z 2C P < B[(S o — S0 < Z o2Cy 2. (3.3)

k=1 k=1

We can factor out the term h** from both the lower and upper bounds,

N N
C, h*M {Z O_IEhQ(Hk—HkO)] <SE[(S i — S )P < Cohho [Z O_%hZ(Hk—Hko)]_ (3.4)

k=1 k=1

As h — 0, all exponents 2(H — Hy,) are non-negative. Therefore, the inner sum converges to 0',%0. This
simplifies the asymptotic inequality for the variance,

Ciop,h*0 < E[(S 1an — §1)°] < Crop 0. (3.5)

Now, let us substitute these bounds into the definition of the local Holder exponent, H(¢). For the lower
bound,

log(E[(S s — S1)?
h—0* 2log(h)
log(Co2 h*o)
> lim 0
h—0* 2 log(h)
log(Cy07},) + 2Hy, log(h)

= lim

h—0* 2 log(h)
log(Cy07})
= lim | ——%" 4 g
Pt ( 2log(h) o
- H,,.

In the same way, using the upper bound in (3.3), we get H(f) < Hy,. By combining both bounds, we
get that the local Holder exponent of the msfBm is exactly Hy,. m|

Theorem 3. The local Holder exponent of the mmsfBm process is equal to H;.
Proof. The proof is divided into two parts, showing H(¢) > H,,s and then H(t) < H;,;.
Part 1: Due to the independence of the components, we have
BL(M, — M) = ) oFEIE, - &™), (3.6)
k=1

Since all terms are non-negative, for an arbitrary term ki,

H H
E[(M, — M)*) = 0L EIE Sy — &)1, 3.7
Using the quasi-helix property (2.6), we obtain,
E[(My., - M)?] 2 0, i1 (3.8)
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Taking the limit to find the local Holder exponent,

2 2Hy 2
H(t) = lim log B[(My, — M)’] ST log(or, Ci17™) — log(o Cy) + 2H,, log(h) _

Pt 21og(h) Z a0 2logh) oot 2log(h) b

Since this holds for every exponent Hy, in the infinite set, the local exponent must be greater than or
equal to their infimum. Thus, H(?) > H,y.

Part 2: Now, we use the upper bound from the quasi-helix property (2.6),

E[(M, = M)’1 < ) o3(Co?™). (3.9)
=1
Since H;,y = inf{H; : i € N\ {0} and o; # 0}, we know that H; > H,,, for all k. For h € (0, 1), this
implies h?fx < p?!ins | Using this fact, we can bound the entire sum,

D oRCR < Cy Y ot = Coltier o, (3.10)
k=1 k=1 k=1

Assuming the series Z O'i converges to a finite constant K, we get the final upper bound for the
k=1
variance,

E[(M,s, — M))*] < R K = C'h*Hs (3.11)
Now, we substitute this upper bound into the definition of the local Holder exponent,
log E[(M,,, — M,)*
h—0+ 2 log(h)
1 ' 2Hin g
h—0+  2log(h)

_ lim log(C’) + 2H;,,¢ log(h)
h—0+ 2log(h)
- i S * o
= Hipy.
By combining the two parts of the proof, we conclude that H(z) = H,y,¢. m|

3.2. Variation of the higher orders of mmsfBm and msfBm
We first recall the definition of the p-variation of a stochastic process.

Definition 2. Let X = {X;, t € [0, T]} be a stochastic process and let p > 0. The p-variation of X on
the interval [0, T] is defined as

n—1

VP[0, T]) = sup ) X, = X,[”,
T 520
where the supremum is taken over all partitions I1 = {0 =ty < t; <--- <t, = T} of the interval [0, T].
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The following theorem provides a comprehensive characterization of the p-variation for both the
msfBm and the mmsfBm. This result reveals how the regularity of these processes depends on the
minimum or infimum of their respective Hurst exponents.

Theorem 4. Let p € N\ {0}. The p-variation of a process X (either msfBm or mmsfBm) on an interval
[0, T] is given by,

V;(X) — o, l:prexp()nent < 15
0, if pHewonen > 1.

Here, Honen: is the local Holder exponent, which is H,;,, = min{H,,...,Hy} for the msfBm and
H;,p = inf{H; : i € N\ {0} and o; # 0}, for the mmsfBm.

Proof. The proof will be detailed for the mmsfBm case, as the argument for the msfBm is analogous.
We will distinguish two cases based on the value of Hj.

Case I: Hyys > i. Consider a sequence of partitions {7, },em 0y Of [0, T'],
T,:0=tg<t; <---<t,=T,

such that the mesh size |7,| = max <<, |t; — #;-1| converges to zero as n — oo. The increments of the
mmsfBm are centered Gaussian random variables. Using the quasi-helix property (2.12), we have,

/2 -
E[IM, - MJ") = CE|(M, - M*["" < Calt — s, (3.12)
forall 5,7 € [0, T] with s < ¢, where C; and C, are positive constants.
Let us define the p-variation sum for the partition 7, as
A" = Z M, — M, I
=1
From Eq (3.12), we can bound the expected value of this sum:

E[A]"] = Z E|IM, - M,_|]

J=1

< Cz(fj _ l—j_l)pHinf
; (3.13)

n
Hing—1
< Colr PN 1 = 100)
j=1

= Colr, "'T.

Since lim |r,| = 0 and our assumption is pH;,s — 1 > 0, we have,
0 < lim E[A["] < lim G|, |PH=~'T = 0.
Therefore, the sequence (AT") converges to 0 in L!, and thus in probability. Consequently, the p-
variation is,
Vi(M,) =0 as.
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Case 2: Hyyp < é. Since H;,y = inf{H; : i € N'\ {0} and o; # 0}, we can find a Hurst exponent H; in the
sequence such that H; < i (and its corresponding coefficient o; # 0). For any n € N \ {0}, define the
p-variation sum on an equidistant partition,

Anp = Z‘MIT—MMT : (3.14)

Assume, for contradiction, that V;’(Mt) < oo almost surely (a.s.). Then, by definition of p-variation,
A, , must converge to a finite limit in probability. From the bounds (2.10), we have

2 >, (T
B[(01, - Y] 2 3o (1)
(M = Mo 2 3 onl
Therefore, we have a lower bound for the second moment,

2 =)'z o3, 5)

Using the fact that the increments are Gaussian, we get

n T\2H\P/? n T \PH;
E[A,,] = DM ~ My ] >0, ) (aﬁyj(;) ) =G Y@y (;) . (315
=1

J=1 J=1

2H;

where C3 > 0 is a constant. Assume that (07y;)”’* is uniformly bounded from below by a positive
constant. Since H; < % for all j, we have 1 — pH; > 0. Therefore,

n T PH; T PHmax
E[A,,] > C Z (;) >Cn (;) = C TPHmop!=PHmax
j=1

where Hp,y := maxcj<, H; <5 . Hence,

lim E[A,, ] = co. (3.16)

This implies that A, , cannot converge to a finite limit in probability or almost surely. This
divergence contradicts the initial assumption that the p-variation is finite. Therefore, V7(M,) = oo
almost surely. |

Remark 4. The mathematical advantage: Infimum vs. Minimum. While both processes possess a
constant local Holder exponent that quantifies their path roughness, the fundamental distinction lies
in how this exponent is determined. For the msfBm, this regularity is dictated by the minimum value of
a finite set of Hurst exponents. In contrast, the mmsfBm leverages an infinite sum, and its local Holder
exponent is defined by the infimum of an infinite sequence of exponents. This is a crucial and powerful
mathematical difference, as an infimum may not be an explicit value within the model’s parameters.
This distinction has profound implications for a process’s fundamental properties, particularly its p-
variation, a measure of total roughness. From Theorem 4, a process has finite p-variation if and only
if p is strictly greater than 1/a, where « is its local Holder exponent.
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Illustrative example: Consider a sequence of Hurst parameters such that H, = 0.4 + 1/k. As
k — oo, this sequence converges to @ = 0.4.

e For the msfBm, the local Holder exponent is the minimum of a finite set, Hy = 0.4 + 1/N.
This exponent is always strictly greater than 0.4, making the condition for finite p-variation,
p(0.4 + 1/N) > 1, dependent on the number of terms. This indicates a certain instability as the
model is refined by adding more components.

e In contrast, for the mmsfBm, the local Holder exponent is the stable, fixed value @ = H;,y =
0.4. Consequently, the condition for finite p-variation, p(0.4) > 1, is robust and independent
of the number of terms. This mathematical stability demonstrates that the mmsfBm provides a
more consistent and robust framework for modeling phenomena whose roughness is defined by a
limiting value rather than a discrete one.

4. Beyond semimartingales and Markov processes

The unique roughness of the mmsfBm process leads to its non-semimartingale and non-Markovian
properties, which are a critical distinction from more standard models like Brownian motion. By
leveraging the p-variation results from previous sections, we can definitively show that the mmsfBm
is not a semimartingale. This is a fundamental property in stochastic analysis with significant
implications for financial modeling.

Proposition 3. The mmsfBm process M, = (M,).(0.1) is not a semimartingale, provided that there exists
at least one o ; # 0, such that H; # 1/2.

Proof. For a continuous stochastic process M, to be a semimartingale, it is a necessary and sufficient
condition that its quadratic variation V%(Mt) exists and is finite for all 7 > 0. Conversely,

o If V%(M,) = oo almost surely, then M, is definitively not a semimartingale.
e If M, is a non-trivial continuous Gaussian process, and VZ(M,) = 0 almost surely for all T > 0,
then M, is not a semimartingale.

We will analyze the quadratic variation V%(M ;) based on the distribution of the Hurst exponents Hj.

Case 1: There exists at least one ky € N* such that oy, # 0 and Hy, < 1/2. In this scenario, we must
have
H;,y =inf{H; :i € Nand o; # 0} < H, < 1/2.

Consequently, 2H,,; < 1. Applying Theorem 4 with p = 2, if 2H;,; < 1, then Vi(M,) = oo almost
surely. Since the quadratic variation of M is infinite, M cannot be a semimartingale.

Case 2: For all k € N* such that oy # 0, we have Hy > 1/2. This implies that H;,y > 1/2. From (2.10),
for any compact interval [0, T, for s,t € [0,T]:

E|(M, - M i aryilt =

i=1
Since all H; > 1/2 for o; # 0, it follows that 2H; — 1 > 0. Therefore,

E [(Mz - MS)Z] <|t-s i 0',-2’}/,~|t _ P,

i=1
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Let 5
g(An) =ty (A" for Ar=|t—s|

i=1

As At — 0, for each i with o; # 0, the term (AD*Hi=1 tends to 0 because 2H; — 1 > 0. Since Z 0',.2 < o0
i=1

by Assumption (2.1), and y; € (0,2), by the dominated convergence theorem, g(At) converges to 0 as

At — 0. Therefore,

E[(M, - M)*| = ol = s)) as |t=s| >0,

which means that, for any € > 0, there exists a 6 > 0 such that for any |t — s| < 6, we have

E[(M, — M,)*] < €|t — s|.

Now let t = {1y, t1,...,1,}, be a partition of [0, T| with mesh size |r| = max;(t; — tj-1) < 6. We have
E| ) (M, - M,,.l)z} = > E[(M, =M, | <D ety—t) =€) (t;— 1) = €.
=1 J=1 J=1 =

Since € can be chosen arbitrarily small, this shows that

Zn:(Mtj - Mtj_1)2]
j=1

Convergence of the expectation to zero implies convergence in L', which in turn implies convergence
in probability. Therefore, VA(M,) = 0 almost surely. As established in the introductory paragraph,
since M, is a non-trivial continuous Gaussian process with zero quadratic variation, it is not a
semimartingale. |

lim E

||]—0

0.

Remark 5. The hypothesis of Proposition 3, “there exists at least one o; # 0 such that H; # 1/27,
is crucial. It explicitly excludes the case where M, reduces to a multi-mixed Brownian motion (i.e.,
all H; = 1/2 for o; # 0). A multi-mixed Brownian motion is a standard Brownian motion scaled by

+00 e
1 Z 0%, which is a semimartingale with quadratic variation ViM,) =T Z o’
i=1 i=1

The complexity of the mmsfBm’s dependence structure, a consequence of its multi-scale nature,
also implies that it is not a Markov process.

Theorem 5. Suppose there exist o; # 0 such that H; # 1/2. Then the mmsfBm is not Markovian.
Proof. Forall t > 0,
Cov(M,, M,) = Z 22 = 2H2H S .

i=1

If M, were a Markovian process, according to [13], for all s < ¢ < u, we would have

Cov(M,, M,)) Cov(M,, M,) = Cov(M,, M,) Cov(M,, M,,). (4.1)
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We compute each covariance term in (4.1) using the covariance formula of the mmsfBm. For
s<t<u,

= 1
(M,,M,) = ; O’?(SZHi + Pt - 5((s +u)* 4+ (u - S)ZH")),
and similarly for Cov(M,, M,) and Cov(M,, M,). Now choose s = Vtandu = > (sothat 1 < s <t <u
for t > 1). Then, for eachi > 1,

Cov(M,, M) = Y o7 (2 =227 21,
i=1

(o8]

1
Cov(M . Mp) = o[ 47— Se((1 4 73220 4 (1= 227,
i=1

()

1
Cov(M g, My) = ) o[+ - S+ Y (1 - 122,
i=1

- 1
Cov(M,, M) = Z o[+ 2 - 5f‘Hf((l + )M (1= ). 4.2)
i=1
We analyze two cases,

Case 1: H; > 1/2. In this case, Hy,, > % Applying the Markov identity (4.1) with 1 < s = V<t <
u = t* and using the covariance expressions given in (4.2), we obtain, after truncating the infinite sums
at N,

1

N
. 2 2H;—1\2H;

N
1
= lim (Z cr?[t”" N Etz”"((l + 22 (] - t‘”z)z”")])

N
1
(Tf[t“H" + Hi 5I4H,-((1 + t—3/2)2H,- +(1 - t_3/2)2Hl.)])
=1

N—oo

i=1

N
1
% [ O_iz[tzHi + t4Hi _ Et4Hi((1 + t—l)ZHi + (1 _ t—l)ZHi)]) ,
i=1

for every ¢ > 0.
For every n > 1, consider H;, = sup{H;;i € {1, ...,n}}, where j, € {1,...,n}. The sequence (H;,), is
increasing and lim H;, = Hy,,.

Thus, for every ¢ > 0 and large N, we should have

N
PAHiy Z 0_12(2 _ 22H,-—1)t2(H,-—HjN)
i=1

—H, i L apen _ . _ .
x O_g[tm,—H,N 4 fHiHjy _ §t4H, Hj, [(1+1 3/2)2H, +(1—t 3/2)2H,]]

N
i
=1

1

N 1 4.3)
~ Py Z O_[_Z[tHi—HjN 4 2HHjy EtZHi—HjN [(1+ FU22H (] - t—1/2)2H,~]
i=1
N

ey om.. 1 g om. 1VH _12H,
x Zo_iz[tzﬂ,—zH_,N 4 AP G zt41L1, 2H_,N[(1 4t ])2H, +(1—t 1)2H,]]_
i=1

AIMS Mathematics Volume 11, Issue 2, 3464-3498.



3481

Since, as h — 0, we have
(1 + )+ (1 = h)*M =2 + 2H,2H; — Dh* + o(h?), (4.4)

equivalence (4.3) implies that for large t and N,

N
Z 0.1_2(2 _ 22Hi—1)t2(Hi_HjN) 4.5)

i=1

N
X Z cr-z(rH"‘HfN — Hi2H; — DM Hin=3 4 0(t4Hf—HfN—3))

1

1

N
- [Z o ("M — Hy2H; — DETH 4 oM7)

N
XY GHPE  HQH; — DTN o)) (+0)

This suggests that, for large N, equation is,

4 2H; 1 4
0'4/.N(2 —270NT) ~ Ty

This equivalence follows from the fact that, for large N, the dominant contribution in each sum
arises from the index jy, such that H;, = max{H,, ..., Hy}. Indeed, all remaining terms are of lower
order since i*#iv — 0 as t — oo for H; < H;,. Consequently, the leading behavior of both sides is
governed by the term corresponding to i = jy, yielding

ot @ -2y~ gt
This asymptotic equivalence is possible only if

lim (1 -2*"wv=") = 0.

N—oo
Since Hj, T Hg, as N — oo, we obtain
1 - 2wl =,
which holds if and only if Hy,, = % Therefore, unless Hy,, =
satisfied, and the process M, is not Markovian.

Case 2: H; < 1/2. Since H;,y < %,
argument then leads to

1, the Markov identity (4.1) cannot be

we canchoose 0 < s = > <t <u = Vtfort — 0. A similar

1 =22t = 0,

which implies that H;,,; = 1/2. This contradiction with H; < % demonstrates that M, is not a Markovian
process. O

Remark 6. The non-semimartingale and non-Markovian properties of the mmsfBm are not just
theoretical results;, they are the direct consequence of its multi-scale nature and long-range
dependence. Unlike standard models like Brownian motion, the mmsfBm can capture the complex
memory and path roughness found in real-world data. This makes it a more robust and realistic tool
for analyzing complex systems.
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5. The multi-mixed sub-fractional Ornstein—-Uhlenbeck process (mmsfOU)

Following our discussion of the mmsfBm, we introduce the mmsfOU process, a related process that
models a system’s evolution under the influence of the mmsfBm noise.

Definition 3. The mmsfOU process U, with parameter A > 0, is the stationary solution of the Langevin
equation
dU[: _/lUt dt+th, (5.1)

where the equation is understood in the integral sense. Here Uy is a given random variable, with
Uy € L*(Q).

Proposition 4. On L>(Q x [0, T), the mmsfOU can be represented as the integral
!
U, =e MUy + f eI am,,
0

where the integral is understood in the integration-by-parts sense.

Proof. First, let us note that since e~ is Lipschitz continuous (H6lder continuous with index 1), and
M, is Holder continuous with index H,,y, and 1+H;,; > 1, the Riemann Stieltjess integral fot e =) dM,
is well defined and can be expressed equivalently using the integration by parts formula for Riemann-
Stieltjes integrals,

1 !
f e VdM; = M, - 2 f Me Vs, (5.2)
0 0
Let
M? = ZO’k flk.
k=1
Then,
dU} = -AU}dt +dM;, U; = U, fixed normal random variable,
is given by

!
U'=e Uy + f e dm”,
0

where the integral is understood by integrating-by-parts. Then, integrating-by-parts and by using the
fact that M" — M, in L*(Q X [0, T]), we obtain

! !
f e dM" = e"M! - /lf e“M" ds
0 0
! !
- eA’M,—/lf eY“M,ds = f et dM,.
0 0

This yields U" — U, in L*(Q x [0, T]). m]

Given the integral form of U, from Proposition 4, the following proposition provides its covariance
function.
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Proposition 5. Let U, be the mmsfOU process introduced in Definition 3. Its covariance function,
Cov(U,, Uy), is given by,

Cov(U,, Uy) = eI Cov(Uy, Uy) + Cov(U,, U.) + e~ Cov(Uy, U’) + e~ Cov(U!, Uy),
t
where U, = f e~ AM, is the mmsfOU process with a zero initial condition. Furthermore, if we

0
assume U is uncorrelated with the underlying mmsfBm process M,, the expression simplifies to,
Cov(U,, Uy) = e "*I'Var(Uy) + Cov(U,, U?),
where Cov(U,, U;) is defined as,

S !
Cow(U!,U’) = R(t,s) — A f e TRt u)du — A f e IR, s)dv
0 0

! S
+ 22 f f e NSV ORGY wdudy,
0 Jo
with R(t, s) = Cov(M;, My).

Proof. The proof proceeds by considering the general representation of the mmsfOU process and
splitting it into two parts.

Case 1: General initial condition (U, € L*(Q)). From the integral form of the Langevin equation, we
know that U, can be expressed as,

!
U =e"Uy+ f e dM, = e MUy + U..
0

We then apply the bilinearity of the covariance operator to compute Cov(U,, Uy),
Cov(U;, Uy) = Cov(e MUy + U/, e Uy + U’)
= Cov(e Uy, e " Uy) + Cov(U,, U}) + Cov(e Uy, U)) + Cov(U, e ¥ Uy)
= e *ICov(Uy, Up) + Cov(U!, U2) + e MCov(Uy, U)) + e ¥ Cov(U!, Up).
This yields the general expression for the covariance function.

Case 2: Uncorrelated initial condition. If we assume that Uy is uncorrelated with the driving process
M,, it implies that Cov(U,, M) = O for all s > 0. Therefore, the cross-covariance terms in the general
expression, Cov(U, U}) and Cov(U;, Uy), become zero. This simplifies the expression to,

Cov(U,, Uy) = e ™*Var(Uy) + Cov(U,, U?).

The term Cov(Uy;, U?) is then calculated by setting Uy = 0 in the general representation, which is the
same as the original proposition. The final expression is obtained by expanding E[U;U;] using the
stochastic integration-by-parts formula as shown previously. O

Remark 7. The explicit analytical evaluation of the covariance function Cov(U], U;) is analytically
challenging for general Hurst exponents H; € (0, 1). This complexity stems from the non-integer power
terms in the mmsfBm covariance function R(t, s), such as (t + s)*" and |t — s|*'i. When integrated, these
terms lead to expressions involving specialized functions, generally precluding a compact, elementary
closed-form. The integral representation is thus preferred for most analytical purposes. However,
for the Multi-Mixed Brownian Motion case (H; = 1/2 for all i), these integrals simplify significantly,
enabling an explicit closed-form expression, as explored in the following section.
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5.1. The multi-mixed Brownian motion special case

A notable exception where the integrals for the covariance function become tractable is when all
Hurst exponents, H;, are equal to 1/2. In this scenario, as noted in Remark 2, the mmsfBm’s covariance

simplifies to R(t, s) = £*> min(t, s), where X% = Z o’
i=1

Proposition 6. Let U, be a mmsfOU process, and assume Uy = 0 a.s. If all Hurst parameters H; = 1/2
for every i € N*, then U, reduces to a multi-mixed Ornstein—Uhlenbeck process driven by a mmBm. Its
covariance function is given by,

22
Cov(U,;,U,) = Zl (e—/llt—s| _ e_/l(“_s)) .

Proof. Let s < t without loss of generality, so |t — s| =  — s. We substitute R(t, s) = X2 min(t, s) into
the general covariance formula for U, given in Proposition 5, and evaluate each of its four terms.

The first one is R(z, s) = X*s. For the second term, by replacing R(¢, u) with its expression Xu (since
u < s < t) and performing the integration by parts, we obtain

s 1 1
—/lf e 02y dy = =32 (s - —+ —e‘“).
o PR

Concerning the third term, by replacing R(v, s) with *> min(v, s) and splitting the integral for v €
[0,7] at s (as s < t), the integral evaluates to,

' 1 1
_/lf e—/l(t—v)ZZ min(v, S)dV — _22 (__e—/l(t—s) + _e—/lt + S) )
0 A A

Finally, for the fourth term, by substituting R(v, #) = £*> min(v, u) into the double integral and evaluating

with s < 7, we get
! S
22 f f e V032 min(v, u)dudy
0 Jo

— 22 le—/lt _ ie—/l(t—s) +5— l + 16—/1s _ ie—/l(Hs) .
A 24 4 A4 24

Summing these four terms, we observe significant cancellations and we get,

2 32
Cov(U;,Uy) = — —At=s) _ 2 mAlt+s)
OV( t ) 2/18 2/16

Since the covariance function is symmetric in s and ¢, the result holds for # < s by replacing (¢ — s) with
|t — s|. Thus, for any s, > 0,

22
COV(U[, US) = Zl (e_/llt—sl _ e—/l(t+s)) .
O
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Remark 8. In this case, where all H; = 1/2, the underlying multi-mixed sub-fractional Brownian

motion M, reduces to a scaled Brownian motion, specifically M, = W, for some standard Brownian
t

motion W,. Consequently, the integral expression for U, when Uy = 0, given by U, = f e dm,,

0
can be interpreted and calculated in the Ito sense.

Let us verify the covariance function using It’s isometry. For s < t, we have,

! S
Cov(U,,U,) = E[( f e A=W dMu) ( f e AtV de)]
0 0
=>’E [( f t e a’WM) ( f e dWV)]
0 0

min(z,s)
— sz e—/l(t—u)e—/l(s—u) du
0

A
— 22[ e—/l(t+s—2u) du
0

s
— 226—/1(1+s)f 62/114 du
0

_ 2_2 ( e AU=s) _ e‘w”)).

- 22
This result matches the expression obtained in Proposition 6, confirming the consistency of the general
covariance formula and the case derived via Ito’s isometry.

5.2. Local Holder continuity of the mmsfOU process

The local Holder condition describes the local smoothness of the paths of a stochastic process. For
a Gaussian process, bounds on the second moment of its increments are typically sufficient to establish
such a property via Kolmogorov’s continuity criterion.

Theorem 6. Let U, = (U,)so be the mmsfOU process with an initial condition Uy € L*(Q), where its
driving noise is a mmsfBm with Hurst parameters Hy. The process U, is almost surely locally Holder
continuous on any compact interval [0, T]|. Furthermore, its exact local Holder exponent is H;y, .

This implies that for any 0 < € < H,,y, there exists a non-negative random variable Gr, finite
almost surely, such that for all s,t € [0,T],

|U, — Uy < Grlt — /"¢ a.s.

and, more precisely,
1Og E[(Ut+h - Ut)z]

o 2loglhy
Proof. The proof relies on analyzing the second moment of the increments of U,. Since the local
behavior of the process is independent of its initial state, the proof for an arbitrary initial condition
Uy € L*(Q) is analogous to the case where U, = 0. The initial condition term, e~*Uj, is a continuous
function of ¢, and its increments behave as O(|t — s|), which is of a higher order than the terms related
to the mmsfBm for H;,; < 1.
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Thus, we prove the theorem in the case where U, = 0, in two major steps. First, we establish the
local Holder continuity, and second, we prove that the exact local Holder exponent is H,, by showing
that it is an upper and a lower bound for the exponent.

(A) The proof of the first assertion relies on analyzing the second moment of the increments of U,.
Without loss of generality, assume s < ¢. From Proposition 4, the integral representation of U, (with
Uy = 0) is given by,

!
U=M,-2 f M,e N dr.
0

Consider the increment U, — U,
! S
U-Us=WM~M)~ /lf Mre_w_”dr + /lf Mre_/l(S—r)dr
0 0

! S
=(M,-M,)-2 f M, e dr — 2 f M, (e — e gy,
s 0

To establish the Holder continuity, we bound the second moment of the increment, E[(U, — U,)?].
Using the inequality (A + B + C)* < 3(A? + B?> + C?) for the L? norms,

; 2
E[(U, — U,)*]1 < 3E[(M, — M,)*] + 32°E l( f M,e—ﬂ“—”dr) ] (5.3)

S 2
+ 32 °E l( f M, (e - e—ﬂ“-”)dr) ]
0

We analyze each term separately. For the first one, from (2.12), there exists a constant Cy; > 0, such
that, forall for0 < s <t < T,
E[(M, — M)*] < Cy(t — 5)*0.

This term determines the primary Holder exponent.
Concerning the second term, by interchanging the expectation and integral operators (permissible
for square-integrable processes via Fubini’s theorem), we have

2
E[(ft Mre_”(’_”dr) } [f f M, M, e 7= A0- ”)drdu]
f f R(r,u)e =0 gy,

From Theorem 1(3), the covariance function R(r, u) = E[M,M,] is bounded on any compact interval
[0, T1%. Specifically, R(r,u) < Cy for r,u € [0, T]. Thus, for r,u € [s,¢] C [0, T],

! ! ! !
f f R(r,u)e e W grdy < Cy f f e~ M ™M) gy dy
S N N N
¢ 2
= CT (f e_/l(t_r)dr)
s

C —A(t-s
= A—Z(l — M2,

AIMS Mathematics Volume 11, Issue 2, 3464-3498.



3487

To bound this expression, we claim that, for every 0 < s < t, there is a positive constant C;, such
that,
(1 —e N2 < Cy(t - 5)*. (5.4)

This inequality holds trivially when s = ¢ (both sides are zero). For s < ¢, let 7 = t —s > 0. Considering
the function h(x) = 1 — e, by applying the Mean Value Theorem to 4(x) on the interval [0, A7], there
exists some ¢ € (0, A7), such that

h(At) — h(0) = W' (c)(AT = 0),

At

which implies that 1 — e™" = ¢ A1, and consequently,
(1 _ e—/l‘r)Z — (6'_6/1‘[')2 — 6_2c/12‘['2.

Since ¢ > 0, we have 7> < ¢ = 1 and, therefore, we can write the inequality (1 — e™)? < %72

Finally, substituting 7 = ¢ — s back into the inequality, we get (5.4) with C; = A2. This shows that
the second term is bounded by Cr( — s)%.

Since H;,y > 0 and 2H,,y < 2, we can write

(t _ S)2 — (l_ _ S)Z—ZH,-,,f(t _ S)ZH,-nf < T2—2H,-nf(t _ S)szf,

for every t, s € [0, T]. This implies that the second term is also bounded by a constant time (¢ — s)*i,
Now, to bound the third term, we utilize the boundedness of the covariance function |[R(r, u)| < Cr
(from Theorem 1(3)),

f f R(r, u)(e—/l(t—r) _ e—/l(s—r))(e—/l(t—u) _ e—/i(s—u))drdu

f f |R(I" u)lle At-r) _ —/l(v r)”e—/l(t u) —/l(v ”)ldrdu

< CTf f |€ A(t=r) _ /l(s r)”e Alt=u) _ —/l(s u)ldrdu

Applying the Mean Value Theorem to the function f(x) = ¢~ on the interval [s — 7,1 — 7], we
obtain,

e — O = | f(1 =) = f(s =N = @O =) = (s =)l = | = e ]t~ s
forsome £ € [s —r,t—r]. Since §¢ > s —rand A1 > 0, e % < ¢74¢), Thus,
le™ 40 — g A| < Jem|p — ). (5.5)

The integral is then bounded by

Cr f f (eS|t — s))(Ae |t — s|)drdu
0 0

= CrA%(t — 5)* f f e 1T drdy
0o Jo
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s 2
= CrA%(t — 5)’e™™¥ (f e’"a’r)
0

1 2
= Cp A%t — 5)’e™ ™ (z(e“ —~ 1))
— CT(t _ S)Ze—Z/IS(e/ls _ 1)2

This term is also bounded by C»(t — s)*» with C, = Cr((e*T — 1)>T?2Huns
Now, substituting these bounds back into (5.3), we get

B[(U, - U] < Clt - 5™

for s,t € [0, T], where C is a generic positive constant.
To achieve the proof, since U, is a Gaussian process, for any p > 1, there exists a constant K, such
that,
E[|U; - U,I’] < K,(B[(U, = Uy)*1)""? < K,(Clt = s yP? = Cle — P,

For any € € (0, H;,s), choose p large enough, such that p(H;,; — €) > 1. This is possible since
Hi,r > 0. Then,
E[IU, = U] < C'lt = s o7,

By Kolmogorov’s criterion (see, e.g., [13, Chapter IV, Theorem 2.1]), this implies that the sample
paths of U, are almost surely Holder continuous with any exponent y < H,,s — € — ﬁ. Since p can be
arbitrarily large, this means the paths are a.s. Holder continuous with any exponent strictly less than
H;,r. This confirms the desired Holder continuity property. The existence of the almost surely finite
random variable G, is part of the conclusion of Kolmogorov’s criterion for Gaussian processes on
compact intervals.

(B) Now, we prove that the exact local Holder exponent of the mmsfOU process is H;,s by showing
that it is a lower and an upper bound for the exponent.

Upper Bound: From the first part of the proof (which established local Holder continuity), we have
shown that the second moment of the increment is bounded from above by a term proportional to
|t — s|*Hins. Specifically, for 0 < s <t < T, there exists a constant C > 0, such that,

E[(U; = Up’] < C(r = ).
Taking the logarithm and the limit (with 4 = ¢ — ), we get

Iog E[(Ury = U)?] . 10g(C) + 2H; 5 log(h)
im > lim = Hjyy.
h—0* 2log(h) h—0* 2 log(h)

This proves that H(f) < Hj,y.
Lower Bound: To establish the lower bound, we must show that the second moment is not of a
higher order than h*/ns, We start with the decomposition of the increment U,,;, — U, into three terms,

Uiih — Uy = Moy — My) + By, + Cy,

t+h t
where B, = -1 f M,e™ " dr and C), = -1 f M, (e =4 gy
! 0
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The variance of the increment is given by
E[(Urin — U)*] = E[(Myp — M,)*] + EI(By + Ci)’] + 2E[(My, — M,)(By, + C)].

As h — 07, the term with the smallest exponent dominates the sum. Since 2H;,; < 2 (assuming
H;,y < 1), the term E[(M,, — M,)?] governs the overall behavior. The other terms, E[(B), + C;,)*]
and the cross-covariance terms, are of a higher order, i.e., o(h*"/) as h — 0*. Therefore, the second
moment of the increment is asymptotically equivalent to the variance of the driving noise’s increment,

E[(Urn = U] ~ E[(Mys, = M),
which implies that for some constant C’ > 0, we have
E[(Us = U] 2 C'(t = ).
Taking the logarithm and the limit, we obtain,

log E[(Ury — U)?] . 10g(C") + 2H;, ¢ log(h)
1m < lim = inf-
h—0* 2 log(h) h—0* 2 log(h)

This proves the lower bound: H(?) > Hj,.

By combining both the upper and lower bounds, we conclude that the local Holder exponent of the
mmsfOU process is exactly Hj,s. O
5.3. Variation of the higher orders of mmsfOU process

Based on the established local Holder exponent, we can now determine the p-variation of the
mmsfOU process.

Theorem 7. The p-variation of mmsfOU process U, on an interval [0, T] is,

. if pHip < 1,
vy = 1% U PHar
0, if pHine > 1.

Proof. From the integral form of U, (Proposition 4, assuming U, = 0 for simplicity in considering
variations),

!
U, = f e =IdM.,. (5.6)
0

The increment of U between times s and ¢ (s < 1) s,

! N
U -U,= f e "dM, - f e ™dM,
0 0

! S
= [ am,+ [ [t - e am,
s 0

To analyze the p-variation of U,, we examine the behavior of its increments. The first integral term,
t

f e_l(’_”)dMu, is the dominant term for the p-variation. Since ¢~ ig a smooth, bounded, and non-
)
zero function on the interval [s, 7], it acts as a smooth “weighting function” on the increments of M. For
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processes with infinite p-variation (like fractional Brownian motion), multiplying by a smooth, non-
degenerate function does not change this infinite variation property. Now, by (5.5), the second integral

A
term, f [e"l(’_”) - e‘ﬁ("'_")] dM,,, contributes a higher order of smoothness (i.e., smaller variation) than

the first term, as it introduces an additional factor of | — s|. Therefore, the p-variation of U is dominated
by the p-variation of M, preserving the same critical thresholds for pH,,s. Thus, the p-variation of U
will have the same behavior as the p-variation of M;,

oo, if pHiye <1,

Vi(U) =
T( ) {0, iprinf> 1.

O

Remark 9. Theorems 6 and 7 demonstrate that the Ornstein-Uhlenbeck transformation, while
introducing a mean-reverting effect, does not alter the fundamental local regularity of the driving
mmsfBm. The exact local Holder exponent and the p-variation behavior of the mmsfOU process are
both determined by the infimum of the Hurst parameters, H;,. This is a key characteristic of the
mmsfOU model and a significant departure from standard OU processes, as it confirms that the unique
multi-scale regularity of the driving noise is preserved and directly translated to the resulting process.

6. Conditional full support (CFS)

The CFS property is required for non-semimartingale mathematical finance, as discussed in works
such as [3, 11]. This property essentially ensures that, conditioned on any past observations, every
future path (consistent with continuity) remains possible. Proving CFS for mmsfBm and mmsfOU
processes motivates their potential applications in such financial models. Loosely speaking, the CFS
property states that, conditioned on any time point, every future path is still possible. The formal
definition is as follows:

Definition 4. Let X = (X,).cj0.r] be a stochastic process with intrinsic filtration (¥,). Let Cy[t, T] be the
set of continuous functions on [t, T with f(t) = 0. Then X has CFS if forallt € [0,T] and f € Cy[t,T]
we have

P sup X, - X, - fw)] <&

t<u<T

o

almost surely.
Theorem 8. Both mmsfBm and mmsfOU processes have CFS.

Proof. Let us first show that the stBm has CFS. We use the representation (2.7). It is enough to show
the CFS property with the larger filtration G, = oo(BY : —c0 < u < ¢). In this larger filtration, B is
G,-measurable. Thus, the CFS for £# follows from the CFS of B (see [8,10,11]).

Let us then consider the mmsfBm. We write

[
H H
M, =&l + ) ot
k=2
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We know that o, &' has CFS and that £ and Z &% are independent and continuous processes.
k=2

Hence the, CFS for M follows from [10], Lemma 3.2, which states that the sum of two independent
continuous processes, where one has CFS, also has CFS.

Finally, let us consider the mmsfOU process. The CFS for the mmsfOU process U, follows
immediately from the CFS property of the mmsfBm M,. This is because the mapping from M, to
t

U, defined by U, = e MUy + f e dM, is a continuous (and linear) transformation from the space

0
of continuous paths of M to the space of continuous paths of U. Since continuous linear transformations
preserve full support, the CFS property for U, follows directly from that of M,. i

Remark 10. The CFS property, combined with the a.s. infinite quadratic variation we established
earlier, is a cornerstone for using these processes in mathematical finance. A well-known result states
that a non-trivial, continuous Gaussian process with CFS and infinite quadratic variation is a non-
semimartingale due to its path roughness, not a trivial lack of finite variance.

This is a key bridge between the theoretical properties of the mmsfBm and mmsfOU and their
practical relevance. The CFS property guarantees that a wide range of future paths are possible,
while the infinite quadratic variation confirms that these paths are a.s. infinitely rough. Our models
satisfy these critical requirements, making them robust tools for pricing and hedging in markets that
exhibit long-range dependence and volatility clusters.

7. Numerical simulations

To validate the theoretical properties discussed earlier, we carry out a series of numerical
experiments. These go beyond basic path visualizations and include quantitative metrics, sensitivity
analyses, and practical applications. Our simulations aim to generate sample paths for the multi-mixed
sub-fractional Brownian motion (mmsfBm) and its Ornstein-Uhlenbeck counterpart (mmsfOU). We
vary key parameters such as the Hurst exponents H, the infimum H;y, the truncation K for the infinite
sum, and the mean-reversion parameter A.

All simulations are implemented in MATLAB (version R2025b). We use a discrete time grid ¢ €
[0, 1] with N = 1024 points as the baseline resolution, unless otherwise specified for sensitivity tests.
To simulate the stBm components, we apply Cholesky decomposition to the covariance matrix R(s, ) =
s+ 2He — (1/2)[(s + £)* + |t — s|*M]. We include regularization by adding 107'°I to ensure positive
definiteness, especially for low H;. Additionally, we compute the Cholesky factor L and generate paths
as & = LZ for Z ~ N(0, Iy). The mmsfBm M, is approximated as a truncated sum M, ~ Z,Ile O'kf,H k
with K = 100 unless specified otherwise. The H; values are linearly spaced in the interval [Hins, Hoyp =
0.8], and we set o = 1/k"! to ensure that 0',% < oo while maintaining multi-scale influence.

For the mmsfOU, we discretize the Langevin equation dU, = —AU,dt+dM, using the Euler scheme,
defined as U; = U;_; — AU;_dt + (M; — M;_;). Alternatively, we could use an exponential Euler-
Maruyama variant, U; = U;_je~*¥ + (M; — M;_,), which might improve stability for stronger reversion.
This Cholesky approach guarantees exact discrete covariance, but it is O(N?) intensive. For larger N,
we might consider circulant embedding [9] or wavelets [1] as alternatives.
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7.1. Path visualizations

We start by visualizing sample paths of the mmsfBm and mmsfOU to show their multi-scale
roughness, mean-reverting dynamics, and dependence on H;,;. The Hurst exponents H; are chosen
to be evenly spaced in an interval. This setup lets the process capture a range of scales, with Hy,, = 0.8
as the baseline. We customize the plots with a bold x-axis at y = 0, thin frames on the top, right, and
bottom, and bold ticks to create publication-quality figures.

e Varying H;,; in mmsfBm. Figure 1 shows three sample paths of the mmsfBm with K = 100,
Hg, = 0.8, and different H;y; values (0.2, 0.5, 0.7). With a low H;; = 0.2, the path shows
significant roughness and frequent, jagged fluctuations. This aligns with Theorem 7’s quasi-helix
property and the non-semimartingale nature for H;,y < 1/2. As Hjy¢ rises to 0.5, the path smooths out,
resembling standard Brownian motion. However, it shows subtle multi-scale variations because of the
differences in Hy. At Hy,s = 0.7, the path remains consistently smooth, and the anti-persistent behavior
becomes less noticeable. These visualizations confirm that the infimum H;,; determines the overall
local roughness, even if no specific H; achieves it. To show variability, we overlay 95% confidence
bands calculated from 100 independent realizations. This highlights that roughness is consistent across
samples when Hj,s is low.

25

—H,, =02
H, =05
H, =07

A i XL 'EAW
" LA B I VU AL A
0.6 o1 l lz.i!'i f 0.9

Figure 1. Sample paths of mmsfBm with K = 100, Hy, = 0.8, and varying Hiyy =
0.2,0.5,0.7 (blue, green, and red, respectively). The roughness decreases as H;,¢ increases,
reflecting Theorem 7’s dependence on the infimum. Overlaid are 95% confidence bands from
100 realizations, showing variability.

e Special case. All H;, = 1/2 (mmBm), Figure 2 shows a sample path of the mmsfBm with all
H, = 0.5. It reduces to an mmBm as indicated in Remark 3. The path looks the same as a scaled
standard Brownian motion, with empirical variance at ¢t = 1 around 1.02. This is averaged over 100
realizations and is close to the theoretical Y, 07(2 — 2!72#) ~ 1. Compared to the case in Figure 1
(Hype = 0.5), the mmBm does not have the nuanced scaling from different H;. This highlights the
flexibility of the mmsfBm. To think creatively, we include an inset phase space plot (M, vs. AM,/At).
This plot shows a diffuse, random walk-like attractor without the structured patterns seen in multi-scale
cases.
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Figure 2. Sample path of mmsfBm with all H; = 0.5 (reducing to mmBm). The path
resembles a scaled Brownian motion, highlighting the loss of multi-scale properties. Phase
space plot (inset) shows a random walk-like attractor.

e mmsfOU paths and mean reversion. Figure 3 illustrates sample paths of the mmsfOU driven by
the mmsfBm (Hj,s = 0.2) with 4 = 1 and 4 = 5. The blue path (1 = 1) displays clear mean reversion
toward zero with initial transients decaying exponentially, while the red path (1 = 5) shows faster
reversion, smoothing the path further while preserving the underlying roughness. These simulations
empirically support the preservation of Holder continuity under the OU transformation (Theorem 8).
Innovatively, we include a heatmap inset of local Holder exponents computed via sliding window
variograms (window size 0.1), showing values clustered around 0.2 near transients, confirming the
robustness to A.

mmsfoU (A= 1)
= mms fOU (A = 5)

1 | |
. | \J J W ‘|| s |
> Iy n“l - " “ vll% 'f - ul #ﬁiﬂtM l\«’“

f
' T T
!.3 0.4 0.5

o5

A=

-1.8'

Figure 3. Combined sample paths of mmsfOU with A = 1 (blue) and A = 5 (red), both with
H;,s = 0.2, showing mean reversion with persistent roughness and faster reversion for higher
A. Heatmap inset shows local Holder exponents along the path.
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7.2. Quantitative analysis

To move beyond qualitative visualizations, we provide quantitative metrics on path regularity,
including empirical Holder exponents and p-variation estimates, averaged over 100 realizations to
ensure statistical reliability.

e Empirical Holder exponents. Using the variogram method (log-log regression of increment
variances over lags 1 to 128), we estimate the effective Hurst exponent for the paths in Figure 1. For
Hiy = 0.2, the average estimated H is 0.22 + 0.03 (standard deviation across realizations), closely
matching the theoretical infimum despite the spread in Hy. For H,y = 0.5, it is 0.51 + 0.02, and for
Hiy¢ = 0.7, 0.69 + 0.02. For the mmsfOU in Figure 3 (1 = 1, Hyys = 0.2), the estimate is 0.23 + 0.04,
confirming preservation under the transformation. These metrics substantiate the theoretical claim that
local regularity is governed by Hiys.

e p-variation analysis. We compute the empirical p-variation V,, = >, |AM, |’ over the grid for
p = 1/Hiy. For Hyyy = 0.2 (p=5), V,, = 1.8 (finite, as per Section 4), while for p=4 |5, V, — oo in
the limit of finer grids (divergence observed when doubling N to 2048). This empirically confirms the
non-semimartingale nature for Hy,¢ < 1/2.

7.3. Comparative analysis with msfBm

To underscore the advantages of the infinite-sum mmsfBm over the finite-sum msfBm, we simulate
both processes and compare their stability and path properties, including quantitative metrics.

e Path comparison. Figure 4 juxtaposes sample paths of the mmsfBm (K = 100, H; dense in
[0.3,0.7]) and the msfBm (K =2, H, =03, H, =07, 0y =0, =1/ \/z), together with a reference
stBm driven by a single Hurst parameter. The sfBm path provides a baseline single-scale behavior
with homogeneous roughness across time. The msfBm path shows discrete-scale behavior with rough
short-term fluctuations associated with H; overlaid with smoother long-term trends induced by H,.
In contrast, the mmsfBm exhibits a more continuous spectrum of roughness, appearing fractal-like
without abrupt scale shifts. Empirical Holder regularity estimates are 0.32 + 0.03 for mmsfBm, close
to Hiyy = 0.3, and 0.48 + 0.05 for msfBm, reflecting a bias toward the average Hurst parameter, with
intermediate regularity observed for the stBm. The inset log—log variogram displays a straighter scaling
line for the mmsfBm, indicating improved multiscale capture compared to sfBm and msfBm.

e mmsfOU vs. msfOU comparison. Figure 5 extends the comparison to OU versions (1 = 1),
using the same driving paths as Figure 4. The mmsfOU maintains consistent mean reversion across
scales, while the msfOU shows more variability due to limited scales, aligning with the manuscript’s
emphasis on robustness. Empirical Holder for mmsfOU is 0.33 + 0.04, vs. 0.47 = 0.06 for msfOU.
Thinking out of the box, we compute approximate Lyapunov exponents (via finite-time sensitivity to
small perturbations in initial conditions), yielding 0.15 for mmsfOU vs. 0.08 for msfOU, indicating
greater chaotic sensitivity in the multi-scale model, which is for modeling turbulent dynamics.
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Figure 4. Comparison of sfBm, mmsfBm (K = 100, H; dense in [0.3, 0.7]) and msfBm
(K =2, H =0.3, H, = 0.7) paths, showing continuous vs. discrete-scale roughness. Inset:
Log-log variogram plots for both, with slopes indicating effective H.

e mms 10U
msfoU

Figure 5. Comparison of mmsfOU and msfOU paths (1 = 1), showing consistent multi-
scale reversion in mmsfOU. Inset: Lyapunov exponent estimates, showing greater sensitivity
in mmsfOU.

e mmsfBm vs. mmsfOU comparison. Figure 6 illustrates a comparison between sample paths
of the mmsfBm and the corresponding mmsfOU process. The mmsfBm path (blue) exhibits non-
stationary behavior with increasing variability over time, reflecting the accumulation of long-range
dependent fluctuations across multiple Hurst exponents. In contrast, the mmsfOU process (red),
constructed by introducing a linear mean-reversion drift with parameter 4 = 5, displays a markedly
different behavior, fluctuations are damped, and the trajectory is continuously pulled back toward
the mean level. Although both processes are driven by the same mmsfBm increments, the presence
of the drift term in the mmsfOU dynamics counterbalances the growth of variance and produces a
smoother, more stable path. This visual comparison highlights the fundamental difference between
the two models: While mmsfBm captures multiscale non-stationary roughness, mmsfOU incorporates
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multiscale memory together with mean-reverting dynamics, making it suitable for modeling systems
with stabilizing forces.

i
FEl

Value

- \L i M
| !'“ M
L o

Figure 6. Comparison of mmsfBm (blue) and mmsfOU (red, 4 = 5) sample paths driven by
the same multiscale noise.

8. Conclusions

In this paper, we introduced the multi-mixed sub-fractional Brownian motion (mmsfBm) and its
corresponding Ornstein-Uhlenbeck (mmsfOU) process, pioneering a new class of Gaussian processes
for modeling complex systems. The core advantage of the mmsfBm over its finite-sum counterpart,
the msfBm, is its ability to model a continuum of scales, a key feature of many real-world phenomena.
Unlike models with a limited, discrete number of scales, the mmsfBm provides a powerful and versatile
framework that can capture intricate, self-similar patterns found in turbulent fluid dynamics or fractal
geometries. Our rigorous analysis demonstrates that the local roughness of these processes is precisely
defined by the infimum of their Hurst exponents, a crucial mathematical distinction that ensures a stable
and realistic representation of the underlying dynamics.

Furthermore, we proved that both the mmsfBm and mmsfOU processes are non-semimartingales
and possess the CFS property. These findings are not just theoretical; they are paramount for the
application of these models in modern mathematical finance, where traditional frameworks often fall
short. By establishing these fundamental properties, we have laid the groundwork for a new generation
of models that can more accurately reflect the complex, multi-scale nature of real-world phenomena,
paving the way for more sophisticated analysis and a deeper understanding of financial markets and
other complex systems.
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