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Abstract: We proposed a novel class of Gaussian processes, the multi-mixed sub-fractional Brownian
motion (mmsfBm) and its Ornstein-Uhlenbeck counterpart. The mmsfBm is an infinite linear
combination of independent sub-fractional Brownian motions, a construction that enables it to capture
a continuum of scaling properties and provides a significant mathematical advantage over finite-sum
models. We rigorously proved that the local roughness of these processes is defined by the infimum
of their Hurst exponents. We further showed that both processes are non-semimartingales and possess
the conditional full support (CFS) property. The preservation of these unique regularity properties
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1. Introduction

Stochastic processes are fundamental to modeling complex systems across scientific and
engineering disciplines, with their role in financial mathematics being particularly prominent. While
classical models, often rooted in standard Brownian motion, have revolutionized our understanding
of markets, empirical evidence consistently reveals phenomena like long-range dependence, self-
similarity, and intricate scaling behaviors that go beyond the capabilities of these traditional
frameworks. Fractional Brownian motion (fBm) offered a significant leap forward by naturally
incorporating long-range dependence through a single Hurst exponent H. However, real-world data
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frequently exhibits a richer, more nuanced spectrum of scaling properties that a single H cannot fully
capture.

To address these limitations, and rigorously analyzes advanced stochastic models: the multi-
mixed sub-fractional Brownian motion (mmsfBm) and its corresponding multi-mixed sub-fractional
Ornstein-Uhlenbeck (mmsfOU) process. These Gaussian processes, to our knowledge, represent a
pioneering step in the exploration of a new class of stochastic models. We not only define and build
the foundational theory for these processes but also highlight their unique advantages over existing
frameworks.

We emphasize that the primary contribution of this work is theoretical. The introduction of
the mmsfBm and mmsfOU processes is motivated by the need for mathematically robust Gaussian
models capable of capturing multi-scale path behavior and infimum-driven regularity properties.
While financial modeling provides an important motivating context, the results of this paper concern
the probabilistic structure, path regularity, p-variation, conditional full support (CFS), and non-
semimartingale behavior of these processes within the theory of Gaussian processes and infinite-
mixture models.

The mmsfBm is constructed as an infinite linear combination of independent sub-fractional
Brownian motions (sfBm), each characterized by its own Hurst exponent Hk and weighting coefficient
σk. Specifically, it is defined as,

Mt =

∞∑
k=1

σkξ
Hk
t . (1.1)

Here, ξHk represents an independent sfBm with index Hk ∈ (0, 1), and σk are coefficients such that
∞∑

k=1

σ2
k < ∞. The sfBm, initially introduced in [5] and further studied in [4, 14], is a centered Gaussian

process whose covariance function is given by

E
[
ξH

t ξ
H
s
]

= t2H + s2H −
1
2
(
(t + s)2H + |t − s|2H)

, s, t ≥ 0. (1.2)

The sfBm generalizes Brownian motion and arises naturally from occupation time fluctuations of
branching particle systems. While it shares many properties with fbm, a crucial distinction is its lack
of stationary increments, which provides additional modeling flexibility.

This infinite construction provides a crucial mathematical advantage. The mmsfBm and its
finite-sum counterpart, the Mixed Sub-Fractional Brownian Motion (msfBm) [6, 12, 15, 16], differ
fundamentally in their ability to capture a continuum of scales. While the msfBm is limited to modeling
systems with a discrete number of scales; for instance, a financial time series might be a combination
of short-term roughness and a long-term trend and cannot capture the intricate, multi-scale nature of
phenomena like turbulent fluid dynamics or fractal geometries. The mmsfBm, by contrast, can be
constructed with an infinite set of exponents {Hk} that are dense in an interval, enabling it to represent a
continuous range of roughness. Crucially, its local roughness is defined by the infimum of all exponents,
Hinf = inf{Hk}, which may not be a value explicitly present in the model’s parameters. This provides a
more robust and versatile framework, as the level of roughness is a stable limiting value rather than a
potentially unstable discrete one.

Building upon the mmsfBm, the mmsfOU process is defined as the solution to a linear stochastic
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differential equation,
dUt = −λUtdt + dMt, (1.3)

where λ > 0 denotes a mean-reversion parameter. This formulation parallels the relationship between
the classical Ornstein-Uhlenbeck process and standard Brownian motion, inherently introducing a
mean-reverting characteristic vital for modeling phenomena like interest rates or commodity prices.
A defining feature of these processes, especially pertinent to modern quantitative finance, is their non-
semimartingale nature for most parameter choices. This property challenges traditional Itô calculus
frameworks, yet it aligns with the intricate realities of markets exhibiting roughness or strict arbitrage
opportunities, thus motivating the need for advanced stochastic analysis tools.

We note that the non-semimartingale nature of the mmsfBm and mmsfOU processes, while natural
in the present multi-scale setting, precludes their direct use within classical arbitrage-free pricing
frameworks based on Itô calculus. Rather than enhancing classical financial modeling, this property
motivates the study of these processes within alternative non-semimartingale paradigms, such as
models with transaction costs, restricted trading strategies, or generalized integration frameworks; see,
for instance, [7, 11].

This paper makes several significant contributions to the theoretical understanding of mmsfBm and
mmsfOU processes. We begin by defining the mmsfBm and characterizing its fundamental properties,
including its existence and covariance structure. Our analysis shows that its path regularity and Hölder
continuity are uniquely governed by the infimum of its Hurst exponents, Hinf . Building on this, we
provide a detailed comparison with the finite-sum msfBm, highlighting the mathematical advantages
of our infinite construction before confirming the non-semimartingale and non-Markovian nature of
the mmsfBm. We then extend our analysis to the mmsfOU process, deriving its integral representation
and demonstrating that its local Hölder continuity and p-variation are also determined by the same
Hinf. A crucial aspect of our work is establishing the CFS property for both processes, which is a
cornerstone for applications in non-semimartingale finance. To bridge theory and application, we
conclude by presenting numerical simulations and visualizations that illustrate the complex dynamics
of both processes and validate our theoretical findings. The remainder of this paper is structured to
follow this logical progression, with each section dedicated to a contribution.

2. Multi mixed sub-fractional Brownian motion (mmsfBm)

Definition 1. Let σk, k ∈ N \ {0}, satisfy
∞∑

k=1

σ2
k < ∞, (2.1)

and let Hk ∈ (0, 1), k ∈ N \ {0}, satisfy
Hk , Hl for k , l,

Hin f = inf{Hi : i ∈ N \ {0} and σi , 0} > 0,
Hsup = sup{Hi : i ∈ N \ {0} and σi , 0} < 1.

(2.2)

The mmsfBm is

Mt = (Mt)t∈R+ =

∞∑
k=1

σkξ
Hk
t , (2.3)
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where ξHk
t , k ∈ N, are independent sfBm’s.

Let us first recall some properties of the sfBm (see [5, 14] for proofs and for further information).

Lemma 1. The sfBm process ξH
t = (ξH

t )t∈R+
satisfies the following properties:

(1) ξH
t is a centered Gaussian process.

(2) For all s ∈ R+, for all t ∈ R+,

Cov(ξH
t , ξ

H
s ) = s2H + t2H −

1
2

(
(s + t)2H + |t − s|2H

)
. (2.4)

(3) For any h > 0, the process {ξH
ht}t≥0 has the same law as {hHξH

t }t≥0.

(4) For all (s, t) ∈ R2
+, s 6 t.

E[(ξH
t − ξ

H
s )2] = −22H−1(t2H + s2H) + (t + s)2H + (t − s)2H. (2.5)

(5) The exist two positive constants C1 and C2, such that, for all (s, t) ∈ R2
+, s 6 t,

C1(t − s)2H ≤ E[(ξH
t − ξ

H
s )2] ≤ C2(t − s)2H. (2.6)

(6) The sfBm admits the representation

ξH
t =

BH
t + BH

−t
√

2
, (2.7)

where BH is a two-sided fBm.

Remark 1. A crucial special case arises when H = 1/2. In this instance, the sub-fractional Brownian
motion ξ1/2

t reduces to a standard Brownian motion. Its covariance function, directly derived from
property 2 of this Lemma by setting H = 1/2, becomes,

Cov(ξ1/2
t , ξ1/2

s ) = s + t −
1
2

(s + t + |t − s|) = min(s, t). (2.8)

This demonstrates that the sfBm is indeed one of many different types of Gaussian processes that extend
the concept of a standard Brownian motion by introducing a parameter H to model diverse dependence
structures, particularly non-stationary behavior when H , 1/2.

Existence and probabilistic and path properties

In this section, we establish the existence of the mmsfBm and derive its fundamental probabilistic
and path properties, which form the basis for its characterization.

Proposition 1. The mmsfBm process Mt = (Mt)t∈R+ defined in Eq (2.3) exists as a random function,
taking values in L2(Ω × [0,T ]) for all T > 0.
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Proof. Let us define the partial sums of the series,

Mn
t =

n∑
k=1

σkξ
Hk
t , n ∈ N.

‖Mn
t − Mm

t ‖
2
L2(Ω×[0,T ]) =

∫ T

0
E

[
(Mn

t − Mm
t )2

]
dt

=

∫ T

0
E


 n∑

k=m+1

σkξ
Hk
t

2 dt

=

n∑
k=m+1

∫ T

0
σ2

kE
[
(ξHk

t )2
]

dt

=

n∑
k=m+1

∫ T

0
σ2

k(2 − 22Hk−1)t2Hk dt

=

n∑
k=m+1

σ2
k(2 − 22Hk−1)

T 1+2Hk

1 + 2Hk

≤

n∑
k=m+1

σ2
k (2 − 22Hk−1) max

{
1,T 3

}
≤ 2 max

{
1,T 3

} n∑
k=m+1

σ2
k ,

which shows that the sequence (Mn
t )n∈N is Cauchy. Thus, Mn

t → Mt in L2(Ω × [0,T ]) shows the
existence. �

Now that the existence of the mmsfBm has been established, we can delve into its fundamental
probabilistic properties that define its behavior.

Theorem 1. The mmsfBm process Mt possesses the following fundamental probabilistic properties:

(1) Mt is a centered Gaussian process.

(2) For all s, t ∈ R+, the covariance function is given by,

Cov(Mt,Ms) =

∞∑
i=1

σ2
i

[
t2Hi + s2Hi −

1
2

(
(s + t)2Hi + |t − s|2Hi

)]
.

Consequently, the variance of the process at time t is,

E[(M2
t ] =

∞∑
i=1

σ2
i

[
(2 − 22Hi−1)t2Hi

]
.

(3) The covariance function R(t, s) = Cov(Mt,Ms) is continuous on any compact set [0,T ] × [0,T ].
Consequently, it is bounded, meaning there exists a finite constant CT > 0 such that |R(t, s)| ≤ CT

for all t, s ∈ [0,T ].
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(4) For any h > 0, the processes {Mht(σ)} and {Mt(σ1hH1 , σ2hH2 , . . .)} have the same law.

Proof. (1) The mmsfBm Mt =

∞∑
k=1

σkξ
Hk
t is defined as a sum of independent centered Gaussian

processes. Since any finite linear combination of independent centered Gaussian processes is a centered
Gaussian process, and since the series converges in L2(Ω×[0,T ]), the limit process M is also a centered
Gaussian process.

(2) By the definition of the mmsfBm and the fact that the sfBms ξHi
t and ξ

H j
t are centered and

independent for i , j, we can write,

Cov(Mt,Ms) =

∞∑
i=1

σ2
i Cov(ξHi

t , ξ
Hi
s ).

Using the known covariance formula for a single sfBm (see Lemma 1(2)), we get the stated expression
of Cov(Mt,Ms). The variance formula is obtained by setting s = t in the covariance expression.

(3) The covariance function is defined as an infinite sum, R(t, s) =

∞∑
i=1

Ri(t, s) with

Ri(t, s) = σ2
i

[
t2Hi + s2Hi −

1
2

(
(t + s)2Hi + |t − s|2Hi

)]
.

Since Hi > 0 for all i, each individual function x 7→ x2Hi is continuous for x ≥ 0. As compositions
and sums of continuous functions, each term t2Hi , s2Hi , (t + s)2Hi , and |t − s|2Hi are continuous functions
of (t, s) on the compact domain [0,T ] × [0,T ]. Therefore, each Ri(t, s) is a continuous function on
[0,T ] × [0,T ].

Furthermore, we can establish the boundedness of Ri(t, s) on this domain. For any t, s ∈ [0,T ],

|Ri(t, s)| ≤ σ2
i

[
|t2Hi | + |s2Hi | +

1
2

(
|(t + s)2Hi | + ||t − s|2Hi |

)]
≤ σ2

i

[
T 2Hi + T 2Hi +

1
2

(
(2T )2Hi + T 2Hi

)]
= σ2

i T 2Hi

[
2 +

1
2

(22Hi + 1)
]
.

Let f (H) = T 2H
(
2 + 1

2 (22H + 1)
)
. Since 0 < Hi < 1 for all i, the set of all Hi is contained within

the open interval (0, 1). Then 0 < Hin f ≤ Hsup < 1 (see Assumption (2.2)). The function f (H) is
continuous on the compact interval [Hin f ,Hsup]. Therefore, f (H) attains its maximum value on this
interval. Let C∗T = max

H∈[Hin f ,Hsup]
f (H). This constant C∗T is finite and depends only on T , Hin f , and Hsup.

Thus, for all i ∈ N? and for all (t, s) ∈ [0,T ] × [0,T ], we have,

|Ri(t, s)| ≤ σ2
i C
∗
T .

Let Mti = σ2
i C
∗
T . Given that

∞∑
i=1

σ2
i < ∞, the series

∞∑
i=1

Mi =

∞∑
i=1

σ2
i C
∗
T = C∗T

∞∑
i=1

σ2
i converges.
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Since
∞∑

i=1

Mti converges and |Ri(t, s)| ≤ Mti for all (t, s) ∈ [0,T ] × [0,T ], the series
∞∑

i=1

Ri(t, s)

converges uniformly on [0,T ]×[0,T ]. All this allow us to get the continuity of R(t, s) on [0,T ]×[0,T ].
Finally, since [0,T ] × [0,T ] is a compact set in R2, and R(t, s) is a continuous function on this

compact set, it must attain its maximum and minimum values. Therefore, it is bounded, meaning there
exists a finite constant CT > 0 such that |R(t, s)| ≤ CT for all t, s ∈ [0,T ].

(4) Let us compare the covariance functions of {Mht(σ)} and {Mt(σ1hH1 , σ2hH2 , . . .)}. By using
Lemma 1(3), we get

Cov(Mht,Mhs) =

∞∑
i=1

σ2
i Cov(ξHi

ht , ξ
Hi
hs )

=

∞∑
i=1

σ2
i

(
h2HiCov(ξHi

t , ξ
Hi
s )

)
= Cov(Mt(σ1hH1 , σ2hH2 , . . .),Ms(σ1hH1 , σ2hH2 , . . .)).

Since the covariance functions are equal, and both processes are centered and Gaussian, they have the
same law. �

Remark 2. In the particular case where Hi = 1/2 for every i ∈ N?, the sfBm ξHi reduces to a standard
Brownian motion, as demonstrated in Remark 1. Consequently, the mmsfBm Mt simplifies to a multi-
mixed Brownian motion (mmBm). In this scenario, the covariance function of the mmBm directly
follows from Theorem 1(2) (or equivalently from the simplified form in Remark 1), yielding,

Cov(Mt,Ms) =

∞∑
i=1

σ2
i min(t, s) =

 ∞∑
i=1

σ2
i

 min(t, s).

This scenario is particularly significant as it represents a return to a more classical Gaussian process
with stationary and independent increments, for which many results are well-established. From this
perspective, the mmsfBm can be seen as a natural extension of the mmBm, enabling the modeling of
processes with more complex long-range dependence properties through the varying Hurst parameters
Hi.

The following theorem consolidates the fundamental properties of the mmsfBm regarding its
incremental behavior and path regularity:

Theorem 2. The incremental second moments and path regularity of the mmsfBm process are
characterized by the following properties:

(1) For all s, t ∈ R+, with s ≤ t, the second moment of the increments is given by,

E
(
Mt − Ms

)2
=

∞∑
i=1

σ2
i

(
− 22Hi−1(t2Hi + s2Hi) + (t + s)2Hi + (t − s)2Hi

)
. (2.9)

Furthermore, these increments satisfy the following bounds:
∞∑

i=1

σ2
i γi(t − s)2Hi ≤ E

(
Mt − Ms

)2
≤

∞∑
i=1

σ2
i νi(t − s)2Hi , (2.10)
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where

γi =

 2 − 22Hi−1 i f Hi > 1/2

1 i f Hi ≤ 1/2
and νi =

 1 i f Hi > 1/2

2 − 22H−1 i f Hi ≤ 1/2.
(2.11)

(2) The mmsfBm process exhibits a quasi-helix property. Specifically, for any compact interval
[0,T ],

• There exists a constant C > 0, such that for all s, t ∈ [0,T ],

E
[
(Mt − Ms)2

]
≤ C|t − s|2Hinf . (2.12)

• For every ε > 0, there exists a constant Cε > 0, such that for all s, t ≥ 0 with |t − s| ≥ ε,

E
[
(Mt − Ms)2

]
≥ Cε |t − s|2Hinf . (2.13)

• If Hinf is attained (i.e., there exists j ∈ N?, such that H j = Hinf), then for every T > 0, there exist
constants C1,C2 > 0 such that for all s, t ∈ [0,T ],

C1|t − s|2Hinf ≤ E
[
(Mt − Ms)2

]
≤ C2|t − s|2Hinf . (2.14)

Proof. The first assertion is a direct consequence of Proposition 3.1 in [15] and the independence of
the family of random variables (ξHi

t − ξ
Hi
s )i∈N.

For the second assertion, we begin by proving inequality (2.12). From (2.11), we have νi ≤ 2 for
every i ∈ N. Furthermore, we have Hi − Hin f ∈ [0, 1) for every i ∈ N.

Case 1: |t − s| < 1. The function x 7−→ |t − s|2x is decreasing on the interval [0, 1). Thus, since
0 ≤ Hi − Hin f < 1, we have

|t − s|2 < |t − s|2(Hi−Hin f ) ≤ 1. (2.15)

Case 2: |t − s| ≥ 1. The function x 7−→ |t − s|2x is increasing on [0, 1). Therefore,

1 ≤ |t − s|2(Hi−Hin f ) < |t − s|2 ≤ T 2. (2.16)

Combining the two cases, we get that, for every s, t ∈ [0,T ],

1 ∧ |t − s|2 ≤ |t − s|2(Hi−Hin f ) < 1 ∨ T 2.

Together with (2.10), these results give us

E
[(

Mt − Ms

)2
]
≤

∞∑
i=1

σ2
i νi|t − s|2Hi

≤ 2|t − s|2Hin f

∞∑
i=1

σ2
i |t − s|2(Hi−Hin f )

≤ C|t − s|2Hin f ,

with C = 2(1 ∨ T 2)
∞∑

i=1

σ2
i .

To prove (2.13), fix ε > 0 and s, t ≥ 0, such that |t − s| ≥ ε. Let j ∈ N? be such that σ j , 0.
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Case 1: |t − s| ≥ 1. Using (2.16) and (2.10), we get

E
[(

Mt − Ms

)2
]
≥

∞∑
i=1

σ2
i γi(t − s)2Hi

= |t − s|2Hin f

∞∑
i=1

σ2
i γi|t − s|2(Hi−Hin f )

≥ |t − s|2Hin f

∞∑
i=1

σ2
i γi

≥ |t − s|2Hin fσ2
jγ j.

Case 2: ε ≤ |t − s| < 1, Since the map x 7−→ |t − s|x is decreasing, from (2.15) we have

|t − s|2(H j−Hin f ) ≥ |t − s|2 ≥ ε2.

Combining these inequalities with (2.10), we obtain

E
[(

Mt − Ms

)2
]
≥ |t − s|2Hin f

∞∑
i=1

σ2
i γi|t − s|2(Hi−Hin f )

≥ |t − s|2Hin fσ2
jγ j|t − s|2(H j−Hin f )

≥ |t − s|2Hin fσ2
jγ jε

2.

Therefore, (2.13) is obtained with Cε = σ2
jγ j(1 ∧ ε2).

Now, consider the case where the infimum of the Hurst exponents is attained; that is there exists
j ∈ N? such that H j = Hin f and σ j , 0. Fix T > 0. The upper bound in (2.14) follows directly from
Assertion 1 with C2 = C. To establish the lower bound in (2.14), we proceed as follows:

E
[(

Mt − Ms

)2
]
≥ |t − s|2Hin f

∞∑
i=1

σ2
i γi|t − s|2(Hi−Hin f )

= |t − s|2Hin f
(
σ2

jγ j +

∞∑
i=1,i, j

σ2
i γi|t − s|2(Hi−Hin f )

)
≥ |t − s|2Hin fσ2

jγ j.

Therefore, the lower bound in (2.14 ) holds with C1 = σ2
jγ j. �

Remark 3. A direct consequence of the expression for the incremental second moments in Eq (2.9) is
that the mmsfBm does not possess stationary increments. Unlike processes such as Brownian motion
or fractional Brownian motion, the variance of the increments, E

[
(Mt − Ms)2

]
, depends on the time

points s and t, rather than only on the time difference |t − s|. This characteristic is a hallmark of the
mmsfBm and is replaced by the weaker but still crucial quasi-helix property, as established by the
bounds in Eqs (2.12)–(2.14).

The following corollary highlights a crucial consequence of the mmsfBm’s quasi-helix property,
establishing its Hölder continuity and almost sure non-differentiability.
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Corollary 1. (1) The mmsfBm has Hölder index Hin f . In particular, for any T > 0 and 0 < ε < Hin f ,
there exists a non-negative random variable GHin f ,ε,T such that

|Mt − Ms| ≤ GHin f ,ε,T |t − s|Hin f−ε a.s.

(2)

lim
ε→0+

sup
t∈[t0−ε,t0+ε]

∣∣∣∣∣∣Mt − Mt0

t − t0

∣∣∣∣∣∣ = +∞, (2.17)

with probability one for every t0 ∈ R.

Proof. Assertion 1 is a consequence of the quasi-helix property and Theorem 1 of [2]. Assertion 2
follows in the same way as in [15]. �

3. Comparison with mixed sub-fractional Brownian motion: the mathematical advantage of the
mmsfBm

Building upon our finding that the mmsfBm possesses Hölder continuous paths with exponent α,
we now delve into a detailed comparison with its finite counterpart, the msfBm, to highlight the unique
mathematical advantages of our model. Both models are built upon the foundational concept of a sum
of independent sub-fractional Brownian motions. The msfBm, a simpler model introduced by Zili

in [15], is defined by a finite sum, S N
t =

N∑
k=1

σkξ
Hk
t .

3.1. Local roughness and Hölder Regularity

The local roughness of a stochastic process is quantified by its local Hölder exponent, H(t). This
exponent is defined by the scaling of the increments’ variance as the time lag, h, approaches zero.

H(t) = lim
h→0+

logE[(Xt+h − Xt)2]
2 log(h)

. (3.1)

Proposition 2. Consider a msfBm defined by the finite sum

S N
t =

N∑
k=1

σkξ
Hk
t ,

where N ∈ N \ {0}, (σ1, . . . , σN) ∈ RN , and (H1, . . . ,HN) ∈ (0, 1)N . Without loss of generality, we can
assume that σk , 0 for all k ∈ {1, . . . ,N}, as any component with σk = 0 would not contribute to the
sum. Assuming the minimum exponent is Hk0 = min{H1, . . . ,HN}, for some k0 ∈ {1, . . . ,N}, then the
local Hölder exponent of the process S is precisely Hk0 .

Proof. Due to the independence of the sfBm components, the variance of the msfBm increments is
simply the sum of the individual variances,

E[(S t+h − S t)2] =

N∑
k=1

σ2
kE[(ξHk

t+h − ξ
Hk
t )2]. (3.2)
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Applying the quasi-helix property (2.6) to each term, we obtain a two-sided bound on the total variance,

N∑
k=1

σ2
kC1h2Hk ≤ E[(S t+h − S t)2] ≤

N∑
k=1

σ2
kC2h2Hk . (3.3)

We can factor out the term h2Hk0 from both the lower and upper bounds,

C1h2Hk0

 N∑
k=1

σ2
kh2(Hk−Hk0 )

 ≤ E[(S t+h − S t)2] ≤ C2h2Hk0

 N∑
k=1

σ2
kh2(Hk−Hk0 )

 . (3.4)

As h→ 0, all exponents 2(Hk −Hk0) are non-negative. Therefore, the inner sum converges to σ2
k0

. This
simplifies the asymptotic inequality for the variance,

C1σ
2
k0

h2Hk0 ≤ E[(S t+h − S t)2] ≤ C2σ
2
k0

h2Hk0 . (3.5)

Now, let us substitute these bounds into the definition of the local Hölder exponent, H(t). For the lower
bound,

H(t) ≥ lim
h→0+

log(E[(S t+h − S t)2])
2 log(h)

≥ lim
h→0+

log(C1σ
2
k0

h2Hk0 )

2 log(h)

= lim
h→0+

log(C1σ
2
k0

) + 2Hk0 log(h)

2 log(h)

= lim
h→0+

 log(C1σ
2
k0

)

2 log(h)
+ Hk0


= Hk0 .

In the same way, using the upper bound in (3.3), we get H(t) ≤ Hk0 . By combining both bounds, we
get that the local Hölder exponent of the msfBm is exactly Hk0 . �

Theorem 3. The local Hölder exponent of the mmsfBm process is equal to Hin f .

Proof. The proof is divided into two parts, showing H(t) ≥ Hin f and then H(t) ≤ Hin f .

Part 1: Due to the independence of the components, we have

E[(Mt+h − Mt)2] =

∞∑
k=1

σ2
kE[(ξHk

t+h − ξ
Hk
t )2]. (3.6)

Since all terms are non-negative, for an arbitrary term k1,

E[(Mt+h − Mt)2] ≥ σ2
k1
E[(ξ

Hk1
t+h − ξ

Hk1
t )2]. (3.7)

Using the quasi-helix property (2.6), we obtain,

E[(Mt+h − Mt)2] ≥ σ2
k1

C1h2Hk1 . (3.8)
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Taking the limit to find the local Hölder exponent,

H(t) = lim
h→0+

logE[(Mt+h − Mt)2]
2 log(h)

≥ lim
h→0+

log(σ2
k1

C1h2Hk1 )

2 log(h)
= lim

h→0+

log(σ2
k1

C1) + 2Hk1 log(h)

2 log(h)
= Hk1 .

Since this holds for every exponent Hk1 in the infinite set, the local exponent must be greater than or
equal to their infimum. Thus, H(t) ≥ Hin f .

Part 2: Now, we use the upper bound from the quasi-helix property (2.6),

E[(Mt+h − Mt)2] ≤
∞∑

k=1

σ2
k(C2h2Hk). (3.9)

Since Hin f = inf{Hi : i ∈ N \ {0} and σi , 0}, we know that Hk ≥ Hin f for all k. For h ∈ (0, 1), this
implies h2Hk ≤ h2Hin f . Using this fact, we can bound the entire sum,

∞∑
k=1

σ2
kC2h2Hk ≤ C2

∞∑
k=1

σ2
kh2Hin f = C2h2Hin f

∞∑
k=1

σ2
k . (3.10)

Assuming the series
∞∑

k=1

σ2
k converges to a finite constant K, we get the final upper bound for the

variance,
E[(Mt+h − Mt)2] ≤ C2h2Hin f K = C′h2Hin f . (3.11)

Now, we substitute this upper bound into the definition of the local Hölder exponent,

H(t) = lim
h→0+

logE[(Mt+h − Mt)2]
2 log(h)

≤ lim
h→0+

log(C′h2Hin f )
2 log(h)

= lim
h→0+

log(C′) + 2Hin f log(h)
2 log(h)

= lim
h→0+

(
log(C′)
2 log(h)

+ Hin f

)
= Hin f .

By combining the two parts of the proof, we conclude that H(t) = Hin f . �

3.2. Variation of the higher orders of mmsfBm and msfBm

We first recall the definition of the p-variation of a stochastic process.

Definition 2. Let X = {Xt, t ∈ [0,T ]} be a stochastic process and let p > 0. The p-variation of X on
the interval [0,T ] is defined as

V p(X; [0,T ]) := sup
Π

n−1∑
i=0

∣∣∣Xti+1 − Xti

∣∣∣p ,
where the supremum is taken over all partitions Π = {0 = t0 < t1 < · · · < tn = T } of the interval [0,T ].
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The following theorem provides a comprehensive characterization of the p-variation for both the
msfBm and the mmsfBm. This result reveals how the regularity of these processes depends on the
minimum or infimum of their respective Hurst exponents.

Theorem 4. Let p ∈ N \ {0}. The p-variation of a process X (either msfBm or mmsfBm) on an interval
[0,T ] is given by,

V p
T (X) =

∞, if pHexponent < 1,
0, if pHexponent > 1.

Here, Hexponent is the local Hölder exponent, which is Hmin = min{H1, . . . ,HN} for the msfBm and
Hin f = inf{Hi : i ∈ N \ {0} and σi , 0}, for the mmsfBm.

Proof. The proof will be detailed for the mmsfBm case, as the argument for the msfBm is analogous.
We will distinguish two cases based on the value of Hinf.

Case 1: Hinf >
1
p . Consider a sequence of partitions {τn}n∈N\{0} of [0,T ],

τn : 0 = t0 < t1 < · · · < tn = T,

such that the mesh size |τn| = max1≤i≤n |ti − ti−1| converges to zero as n → ∞. The increments of the
mmsfBm are centered Gaussian random variables. Using the quasi-helix property (2.12), we have,

E [|Mt − Ms|
p] = C1E

[
(Mt − Ms)2

]p/2
≤ C2|t − s|pHinf , (3.12)

for all s, t ∈ [0,T ] with s ≤ t, where C1 and C2 are positive constants.
Let us define the p-variation sum for the partition τn as

∆
τn
t =

n∑
j=1

|Mt j − Mt j−1 |
p.

From Eq (3.12), we can bound the expected value of this sum:

E[∆τn
t ] =

n∑
j=1

E
[
|Mt j − Mt j−1 |

p
]

≤

n∑
j=1

C2(t j − t j−1)pHinf

≤ C2|τn|
pHinf−1

n∑
j=1

(t j − t j−1)

= C2|τn|
pHinf−1T.

(3.13)

Since lim
n→∞
|τn| = 0 and our assumption is pHinf − 1 > 0, we have,

0 ≤ lim
n→∞
E[∆τn

t ] ≤ lim
n→∞

C2|τn|
pHinf−1T = 0.

Therefore, the sequence (∆τn
t ) converges to 0 in L1, and thus in probability. Consequently, the p-

variation is,
V p

T (Mt) = 0 a.s.
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Case 2: Hinf <
1
p . Since Hin f = inf{Hi : i ∈ N \ {0} and σi , 0}, we can find a Hurst exponent H j in the

sequence such that H j <
1
p (and its corresponding coefficient σ j , 0). For any n ∈ N \ {0}, define the

p-variation sum on an equidistant partition,

An,p =

n∑
j=1

∣∣∣∣M jT
n
− M ( j−1)T

n

∣∣∣∣p . (3.14)

Assume, for contradiction, that V p
T (Mt) < ∞ almost surely (a.s.). Then, by definition of p-variation,

An,p must converge to a finite limit in probability. From the bounds (2.10), we have

E
[(

M jT
n
− M ( j−1)T

n

)2
]
≥

∞∑
i=1

σ2
i γi

(T
n

)2Hi

.

Therefore, we have a lower bound for the second moment,

E
[(

M jT
n
− M ( j−1)T

n

)2
]
≥ σ2

jγ j

(T
n

)2H j

.

Using the fact that the increments are Gaussian, we get

E[An,p] =

n∑
j=1

E
[∣∣∣∣M jT

n
− M ( j−1)T

n

∣∣∣∣p] ≥ C3

n∑
j=1

(
σ2

jγ j

(T
n

)2H j
)p/2

= C3

n∑
j=1

(σ2
jγ j)p/2

(T
n

)pH j

, (3.15)

where C3 > 0 is a constant. Assume that (σ2
jγ j)p/2 is uniformly bounded from below by a positive

constant. Since H j <
1
p for all j, we have 1 − pH j > 0. Therefore,

E[An,p] ≥ C
n∑

j=1

(T
n

)pH j

≥ C n
(T

n

)pHmax

= C T pHmaxn1−pHmax ,

where Hmax := max1≤ j≤n H j <
1
p . Hence,

lim
n→∞
E[An,p] = ∞. (3.16)

This implies that An,p cannot converge to a finite limit in probability or almost surely. This
divergence contradicts the initial assumption that the p-variation is finite. Therefore, V p

T (Mt) = ∞

almost surely. �

Remark 4. The mathematical advantage: Infimum vs. Minimum. While both processes possess a
constant local Hölder exponent that quantifies their path roughness, the fundamental distinction lies
in how this exponent is determined. For the msfBm, this regularity is dictated by the minimum value of
a finite set of Hurst exponents. In contrast, the mmsfBm leverages an infinite sum, and its local Hölder
exponent is defined by the infimum of an infinite sequence of exponents. This is a crucial and powerful
mathematical difference, as an infimum may not be an explicit value within the model’s parameters.
This distinction has profound implications for a process’s fundamental properties, particularly its p-
variation, a measure of total roughness. From Theorem 4, a process has finite p-variation if and only
if p is strictly greater than 1/α, where α is its local Hölder exponent.
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Illustrative example: Consider a sequence of Hurst parameters such that Hk = 0.4 + 1/k. As
k → ∞, this sequence converges to α = 0.4.

• For the msfBm, the local Hölder exponent is the minimum of a finite set, HN = 0.4 + 1/N.
This exponent is always strictly greater than 0.4, making the condition for finite p-variation,
p(0.4 + 1/N) > 1, dependent on the number of terms. This indicates a certain instability as the
model is refined by adding more components.
• In contrast, for the mmsfBm, the local Hölder exponent is the stable, fixed value α = Hin f =

0.4. Consequently, the condition for finite p-variation, p(0.4) > 1, is robust and independent
of the number of terms. This mathematical stability demonstrates that the mmsfBm provides a
more consistent and robust framework for modeling phenomena whose roughness is defined by a
limiting value rather than a discrete one.

4. Beyond semimartingales and Markov processes

The unique roughness of the mmsfBm process leads to its non-semimartingale and non-Markovian
properties, which are a critical distinction from more standard models like Brownian motion. By
leveraging the p-variation results from previous sections, we can definitively show that the mmsfBm
is not a semimartingale. This is a fundamental property in stochastic analysis with significant
implications for financial modeling.

Proposition 3. The mmsfBm process Mt = (Mt)t∈[0,1] is not a semimartingale, provided that there exists
at least one σ j , 0, such that H j , 1/2.

Proof. For a continuous stochastic process Mt to be a semimartingale, it is a necessary and sufficient
condition that its quadratic variation V2

T (Mt) exists and is finite for all T > 0. Conversely,

• If V2
T (Mt) = ∞ almost surely, then Mt is definitively not a semimartingale.

• If Mt is a non-trivial continuous Gaussian process, and V2
T (Mt) = 0 almost surely for all T > 0,

then Mt is not a semimartingale.

We will analyze the quadratic variation V2
T (Mt) based on the distribution of the Hurst exponents Hk.

Case 1: There exists at least one k0 ∈ N
? such that σk0 , 0 and Hk0 < 1/2. In this scenario, we must

have
Hin f = inf{Hi : i ∈ N and σi , 0} ≤ Hk0 < 1/2.

Consequently, 2Hin f < 1. Applying Theorem 4 with p = 2, if 2Hin f < 1, then V2
T (Mt) = ∞ almost

surely. Since the quadratic variation of M is infinite, M cannot be a semimartingale.

Case 2: For all k ∈ N? such that σk , 0, we have Hk > 1/2. This implies that Hin f ≥ 1/2. From (2.10),
for any compact interval [0,T ], for s, t ∈ [0,T ]:

E
[
(Mt − Ms)2

]
≤

∞∑
i=1

σ2
i γi|t − s|2Hi .

Since all Hi > 1/2 for σi , 0, it follows that 2Hi − 1 > 0. Therefore,

E
[
(Mt − Ms)2

]
≤ |t − s|

∞∑
i=1

σ2
i γi|t − s|2Hi−1.
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Let

g(∆t) =

∞∑
i=1

σ2
i γi(∆t)2Hi−1 f or ∆t = |t − s|.

As ∆t → 0, for each i with σi , 0, the term (∆t)2Hi−1 tends to 0 because 2Hi − 1 > 0. Since
∞∑

i=1

σ2
i < ∞

by Assumption (2.1), and γi ∈ (0, 2), by the dominated convergence theorem, g(∆t) converges to 0 as
∆t → 0. Therefore,

E
[
(Mt − Ms)2

]
= o(|t − s|) as |t − s| → 0,

which means that, for any ε > 0, there exists a δ > 0 such that for any |t − s| < δ, we have

E[(Mt − Ms)2] ≤ ε |t − s|.

Now let π = {t0, t1, . . . , tn}, be a partition of [0,T ] with mesh size |π| = max j(t j − t j−1) < δ. We have

E

 n∑
j=1

(Mt j − Mt j−1)
2

 =

n∑
j=1

E
[
(Mt j − Mt j−1)

2
]
≤

n∑
j=1

ε(t j − t j−1) = ε

n∑
j=1

(t j − t j−1) = εT.

Since ε can be chosen arbitrarily small, this shows that

lim
|π|→0
E

 n∑
j=1

(Mt j − Mt j−1)
2

 = 0.

Convergence of the expectation to zero implies convergence in L1, which in turn implies convergence
in probability. Therefore, V2

T (Mt) = 0 almost surely. As established in the introductory paragraph,
since Mt is a non-trivial continuous Gaussian process with zero quadratic variation, it is not a
semimartingale. �

Remark 5. The hypothesis of Proposition 3, “there exists at least one σ j , 0 such that H j , 1/2”,
is crucial. It explicitly excludes the case where Mt reduces to a multi-mixed Brownian motion (i.e.,
all H j = 1/2 for σ j , 0). A multi-mixed Brownian motion is a standard Brownian motion scaled by√√

+∞∑
i=1

σ2
i , which is a semimartingale with quadratic variation V2

T (Mt) = T
∞∑

i=1

σ2
i .

The complexity of the mmsfBm’s dependence structure, a consequence of its multi-scale nature,
also implies that it is not a Markov process.

Theorem 5. Suppose there exist σ j , 0 such that H j , 1/2. Then the mmsfBm is not Markovian.

Proof. For all t > 0,

Cov(Mt,Mt) =

∞∑
i=1

σ2
i (2 − 22Hi−1)t2Hi > 0.

If Mt were a Markovian process, according to [13], for all s < t < u, we would have

Cov(Ms,Mu) Cov(Mt,Mt) = Cov(Ms,Mt) Cov(Mt,Mu). (4.1)
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We compute each covariance term in (4.1) using the covariance formula of the mmsfBm. For
s < t < u,

(Ms,Mu) =

∞∑
i=1

σ2
i

(
s2Hi + u2Hi −

1
2
(
(s + u)2Hi + (u − s)2Hi

))
,

and similarly for Cov(Ms,Mt) and Cov(Mt,Mu). Now choose s =
√

t and u = t2 (so that 1 < s < t < u
for t > 1). Then, for each i ≥ 1,

Cov(Mt,Mt) =

∞∑
i=1

σ2
i (2 − 22Hi−1) t2Hi ,

Cov(M√
t,Mt2) =

∞∑
i=1

σ2
i

[
t4Hi + tHi −

1
2

t4Hi
(
(1 + t−3/2)2Hi + (1 − t−3/2)2Hi

)]
,

Cov(M√
t,Mt) =

∞∑
i=1

σ2
i

[
t2Hi + tHi −

1
2

t2Hi
(
(1 + t−1/2)2Hi + (1 − t−1/2)2Hi

)]
,

Cov(Mt,Mt2) =

∞∑
i=1

σ2
i

[
t4Hi + t2Hi −

1
2

t4Hi
(
(1 + t−1)2Hi + (1 − t−1)2Hi

)]
. (4.2)

We analyze two cases,

Case 1: H j > 1/2. In this case, Hsup >
1
2 . Applying the Markov identity (4.1) with 1 < s =

√
t < t <

u = t2 and using the covariance expressions given in (4.2), we obtain, after truncating the infinite sums
at N,

lim
N→∞

 N∑
i=1

σ2
i (2 − 22Hi−1)t2Hi

  N∑
i=1

σ2
i

[
t4Hi + tHi −

1
2

t4Hi
(
(1 + t−3/2)2Hi + (1 − t−3/2)2Hi

)]
= lim

N→∞

 N∑
i=1

σ2
i

[
tHi + t2Hi −

1
2

t2Hi
(
(1 + t−1/2)2Hi + (1 − t−1/2)2Hi

)]
×

 N∑
i=1

σ2
i

[
t2Hi + t4Hi −

1
2

t4Hi
(
(1 + t−1)2Hi + (1 − t−1)2Hi

)] ,
for every t > 0.

For every n ≥ 1, consider H jn = sup{Hi; i ∈ {1, ..., n}}, where jn ∈ {1, ..., n}. The sequence (H jn)n is
increasing and lim

n→∞
H jn = Hsup.

Thus, for every t > 0 and large N, we should have

t3H jN

N∑
i=1

σ2
i (2 − 22Hi−1)t2(Hi−H jN )

×

N∑
i=1

σ2
i

[
t4Hi−H jN + tHi−H jN −

1
2

t4Hi−H jN
[
(1 + t−3/2)2Hi + (1 − t−3/2)2Hi

]]
∼ t3H jN

N∑
i=1

σ2
i
[
tHi−H jN + t2Hi−H jN −

1
2

t2Hi−H jN
[
(1 + t−1/2)2Hi + (1 − t−1/2)2Hi

]
×

N∑
i=1

σ2
i
[
t2Hi−2H jN + t4Hi−2H jN −

1
2

t4Hi−2H jN
[
(1 + t−1)2Hi + (1 − t−1)2Hi

]]
.

(4.3)
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Since, as h→ 0, we have

(1 + h)2Hi + (1 − h)2Hi = 2 + 2Hi(2Hi − 1)h2 + o(h2), (4.4)

equivalence (4.3) implies that for large t and N,
N∑

i=1

σ2
i (2 − 22Hi−1)t2(Hi−H jN ) (4.5)

×

N∑
i=1

σ2
i

(
tHi−H jN − Hi(2Hi − 1)t4Hi−H jN−3 + o(t4Hi−H jN−3)

)
∼

[ N∑
i=1

σ2
i

(
tHi−H jN − Hi(2Hi − 1)t2Hi−H jN−1 + o(t2Hi−H jN−1)

)
×

N∑
i=1

σ2
i

(
t2(Hi−H jN ) − Hi(2Hi − 1)t4Hi−2H jN−2 + o(t4Hi−2H jN−2)

)]
. (4.6)

This suggests that, for large N, equation is,

σ4
jN (2 − 22H jN−1) ∼ σ4

jN .

This equivalence follows from the fact that, for large N, the dominant contribution in each sum
arises from the index jN , such that H jN = max{H1, . . . ,HN}. Indeed, all remaining terms are of lower
order since tHi−H jN → 0 as t → ∞ for Hi < H jN . Consequently, the leading behavior of both sides is
governed by the term corresponding to i = jN , yielding

σ4
jN

(
2 − 22H jN−1) ∼ σ4

jN .

This asymptotic equivalence is possible only if

lim
N→∞

(
1 − 22H jN−1) = 0.

Since H jN ↑ Hsup as N → ∞, we obtain

1 − 22Hsup−1 = 0,

which holds if and only if Hsup = 1
2 . Therefore, unless Hsup = 1

2 , the Markov identity (4.1) cannot be
satisfied, and the process Mt is not Markovian.

Case 2: H j < 1/2. Since Hin f <
1
2 , we can choose 0 < s = t2 < t < u =

√
t for t → 0. A similar

argument then leads to
1 − 22Hin f−1 = 0,

which implies that Hin f = 1/2. This contradiction with H j <
1
2 demonstrates that Mt is not a Markovian

process. �

Remark 6. The non-semimartingale and non-Markovian properties of the mmsfBm are not just
theoretical results; they are the direct consequence of its multi-scale nature and long-range
dependence. Unlike standard models like Brownian motion, the mmsfBm can capture the complex
memory and path roughness found in real-world data. This makes it a more robust and realistic tool
for analyzing complex systems.
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5. The multi-mixed sub-fractional Ornstein–Uhlenbeck process (mmsfOU)

Following our discussion of the mmsfBm, we introduce the mmsfOU process, a related process that
models a system’s evolution under the influence of the mmsfBm noise.

Definition 3. The mmsfOU process Ut with parameter λ > 0, is the stationary solution of the Langevin
equation

dUt = −λUt dt + dMt, (5.1)

where the equation is understood in the integral sense. Here U0 is a given random variable, with
U0 ∈ L2(Ω).

Proposition 4. On L2(Ω × [0,T ]), the mms f OU can be represented as the integral

Ut = e−λtU0 +

∫ t

0
e−λ(t−s) dMs,

where the integral is understood in the integration-by-parts sense.

Proof. First, let us note that since e−λ(t−s) is Lipschitz continuous (Hölder continuous with index 1), and
Mt is Hölder continuous with index Hin f , and 1+Hin f > 1, the Riemann Stieltjess integral

∫ t

0
e−λ(t−s) dMs

is well defined and can be expressed equivalently using the integration by parts formula for Riemann-
Stieltjes integrals, ∫ t

0
e−λ(t−s)dMs = Mt − λ

∫ t

0
Mse−λ(t−s)ds. (5.2)

Let

Mn
t =

n∑
k=1

σkξ
Hk
t .

Then,
dUn

t = −λUn
t dt + dMn

t , Un
0 = U0 fixed normal random variable,

is given by

Un
t = e−λtU0 +

∫ t

0
e−λ(t−s) dMn

s ,

where the integral is understood by integrating-by-parts. Then, integrating-by-parts and by using the
fact that Mn

t → Mt in L2(Ω × [0,T ]), we obtain∫ t

0
eλs dMn

s = eλtMn
t − λ

∫ t

0
eλsMn

s ds

→ eλtMt − λ

∫ t

0
eλsMs ds =

∫ t

0
eλs dMs.

This yields Un
t → Ut in L2(Ω × [0,T ]). �

Given the integral form of Ut from Proposition 4, the following proposition provides its covariance
function.
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Proposition 5. Let Ut be the mmsfOU process introduced in Definition 3. Its covariance function,
Cov(Ut,Us), is given by,

Cov(Ut,Us) = e−λ(t+s)Cov(U0,U0) + Cov(U′t ,U
′
s) + e−λtCov(U0,U′s) + e−λsCov(U′t ,U0),

where U′t =

∫ t

0
e−λ(t−u)dMu is the mmsfOU process with a zero initial condition. Furthermore, if we

assume U0 is uncorrelated with the underlying mmsfBm process Mt, the expression simplifies to,

Cov(Ut,Us) = e−λ(t+s)Var(U0) + Cov(U′t ,U
′
s),

where Cov(U′t ,U
′
s) is defined as,

Cov(U′t ,U
′
s) = R(t, s) − λ

∫ s

0
e−λ(s−u)R(t, u)du − λ

∫ t

0
e−λ(t−v)R(v, s)dv

+ λ2
∫ t

0

∫ s

0
e−λ(t+s−v−u)R(v, u)dudv,

with R(t, s) = Cov(Mt,Ms).

Proof. The proof proceeds by considering the general representation of the mmsfOU process and
splitting it into two parts.

Case 1: General initial condition (U0 ∈ L2(Ω)). From the integral form of the Langevin equation, we
know that Ut can be expressed as,

Ut = e−λtU0 +

∫ t

0
e−λ(t−u)dMu = e−λtU0 + U′t .

We then apply the bilinearity of the covariance operator to compute Cov(Ut,Us),

Cov(Ut,Us) = Cov(e−λtU0 + U′t , e
−λsU0 + U′s)

= Cov(e−λtU0, e−λsU0) + Cov(U′t ,U
′
s) + Cov(e−λtU0,U′s) + Cov(U′t , e

−λsU0)
= e−λ(t+s)Cov(U0,U0) + Cov(U′t ,U

′
s) + e−λtCov(U0,U′s) + e−λsCov(U′t ,U0).

This yields the general expression for the covariance function.

Case 2: Uncorrelated initial condition. If we assume that U0 is uncorrelated with the driving process
Mt, it implies that Cov(U0,Ms) = 0 for all s > 0. Therefore, the cross-covariance terms in the general
expression, Cov(U0,U′s) and Cov(U′t ,U0), become zero. This simplifies the expression to,

Cov(Ut,Us) = e−λ(t+s)Var(U0) + Cov(U′t ,U
′
s).

The term Cov(U′t ,U
′
s) is then calculated by setting U0 = 0 in the general representation, which is the

same as the original proposition. The final expression is obtained by expanding E[U′t U
′
s] using the

stochastic integration-by-parts formula as shown previously. �

Remark 7. The explicit analytical evaluation of the covariance function Cov(U′t ,U
′
s) is analytically

challenging for general Hurst exponents Hi ∈ (0, 1). This complexity stems from the non-integer power
terms in the mmsfBm covariance function R(t, s), such as (t± s)2Hi and |t− s|2Hi . When integrated, these
terms lead to expressions involving specialized functions, generally precluding a compact, elementary
closed-form. The integral representation is thus preferred for most analytical purposes. However,
for the Multi-Mixed Brownian Motion case (Hi = 1/2 for all i), these integrals simplify significantly,
enabling an explicit closed-form expression, as explored in the following section.
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5.1. The multi-mixed Brownian motion special case

A notable exception where the integrals for the covariance function become tractable is when all
Hurst exponents, Hi, are equal to 1/2. In this scenario, as noted in Remark 2, the mmsfBm’s covariance

simplifies to R(t, s) = Σ2 min(t, s), where Σ2 =

∞∑
i=1

σ2
i .

Proposition 6. Let Ut be a mmsfOU process, and assume U0 = 0 a.s. If all Hurst parameters Hi = 1/2
for every i ∈ N?, then Ut reduces to a multi-mixed Ornstein–Uhlenbeck process driven by a mmBm. Its
covariance function is given by,

Cov(Ut,Us) =
Σ2

2λ

(
e−λ|t−s| − e−λ(t+s)

)
.

Proof. Let s 6 t without loss of generality, so |t − s| = t − s. We substitute R(t, s) = Σ2 min(t, s) into
the general covariance formula for Ut given in Proposition 5, and evaluate each of its four terms.

The first one is R(t, s) = Σ2s. For the second term, by replacing R(t, u) with its expression Σ2u (since
u 6 s 6 t) and performing the integration by parts, we obtain

−λ

∫ s

0
e−λ(s−u)Σ2u du = −Σ2

(
s −

1
λ

+
1
λ

e−λs

)
.

Concerning the third term, by replacing R(v, s) with Σ2 min(v, s) and splitting the integral for v ∈
[0, t] at s (as s 6 t), the integral evaluates to,

−λ

∫ t

0
e−λ(t−v)Σ2 min(v, s)dv = −Σ2

(
−

1
λ

e−λ(t−s) +
1
λ

e−λt + s
)
.

Finally, for the fourth term, by substituting R(v, u) = Σ2 min(v, u) into the double integral and evaluating
with s 6 t, we get

λ2
∫ t

0

∫ s

0
e−λ(t+s−v−u)Σ2 min(v, u)dudv

= Σ2
(
1
λ

e−λt −
1

2λ
e−λ(t−s) + s −

1
λ

+
1
λ

e−λs −
1

2λ
e−λ(t+s)

)
.

Summing these four terms, we observe significant cancellations and we get,

Cov(Ut,Us) =
Σ2

2λ
e−λ(t−s) −

Σ2

2λ
e−λ(t+s).

Since the covariance function is symmetric in s and t, the result holds for t < s by replacing (t− s) with
|t − s|. Thus, for any s, t ≥ 0,

Cov(Ut,Us) =
Σ2

2λ

(
e−λ|t−s| − e−λ(t+s)

)
.

�
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Remark 8. In this case, where all Hi = 1/2, the underlying multi-mixed sub-fractional Brownian
motion Mt reduces to a scaled Brownian motion, specifically Mt = ΣWt for some standard Brownian

motion Wt. Consequently, the integral expression for Ut when U0 = 0, given by Ut =

∫ t

0
e−λ(t−s) dMs,

can be interpreted and calculated in the Itô sense.
Let us verify the covariance function using Itô’s isometry. For s 6 t, we have,

Cov(Ut,Us) = E

[(∫ t

0
e−λ(t−u) dMu

) (∫ s

0
e−λ(s−v) dMv

)]
= Σ2E

[(∫ t

0
e−λ(t−u) dWu

) (∫ s

0
e−λ(s−v) dWv

)]
= Σ2

∫ min(t,s)

0
e−λ(t−u)e−λ(s−u) du

= Σ2
∫ s

0
e−λ(t+s−2u) du

= Σ2e−λ(t+s)
∫ s

0
e2λu du

=
Σ2

2λ

(
e−λ(t−s) − e−λ(t+s)

)
.

This result matches the expression obtained in Proposition 6, confirming the consistency of the general
covariance formula and the case derived via Itô’s isometry.

5.2. Local Hölder continuity of the mmsfOU process

The local Hölder condition describes the local smoothness of the paths of a stochastic process. For
a Gaussian process, bounds on the second moment of its increments are typically sufficient to establish
such a property via Kolmogorov’s continuity criterion.

Theorem 6. Let Ut = (Ut)t≥0 be the mmsfOU process with an initial condition U0 ∈ L2(Ω), where its
driving noise is a mmsfBm with Hurst parameters Hk. The process Ut is almost surely locally Hölder
continuous on any compact interval [0,T ]. Furthermore, its exact local Hölder exponent is Hin f .

This implies that for any 0 < ε < Hin f , there exists a non-negative random variable GT,ε , finite
almost surely, such that for all s, t ∈ [0,T ],

|Ut − Us| ≤ GT,ε |t − s|Hin f−ε a.s.

and, more precisely,

lim
h→0+

logE[(Ut+h − Ut)2]
2 log(h)

= Hin f .

Proof. The proof relies on analyzing the second moment of the increments of Ut. Since the local
behavior of the process is independent of its initial state, the proof for an arbitrary initial condition
U0 ∈ L2(Ω) is analogous to the case where U0 = 0. The initial condition term, e−λtU0, is a continuous
function of t, and its increments behave as O(|t − s|), which is of a higher order than the terms related
to the mmsfBm for Hin f < 1.
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Thus, we prove the theorem in the case where U0 = 0, in two major steps. First, we establish the
local Hölder continuity, and second, we prove that the exact local Hölder exponent is Hin f by showing
that it is an upper and a lower bound for the exponent.

(A) The proof of the first assertion relies on analyzing the second moment of the increments of Ut.
Without loss of generality, assume s < t. From Proposition 4, the integral representation of Ut (with
U0 = 0) is given by,

Ut = Mt − λ

∫ t

0
Mre−λ(t−r)dr.

Consider the increment Ut − Us,

Ut − Us = (Mt − Ms) − λ
∫ t

0
Mre−λ(t−r)dr + λ

∫ s

0
Mre−λ(s−r)dr

= (Mt − Ms) − λ
∫ t

s
Mre−λ(t−r)dr − λ

∫ s

0
Mr(e−λ(t−r) − e−λ(s−r))dr.

To establish the Hölder continuity, we bound the second moment of the increment, E[(Ut − Us)2].
Using the inequality (A + B + C)2 ≤ 3(A2 + B2 + C2) for the L2 norms,

E[(Ut − Us)2] ≤ 3E[(Mt − Ms)2] + 3λ2E

(∫ t

s
Mre−λ(t−r)dr

)2 (5.3)

+ 3λ2E

(∫ s

0
Mr(e−λ(t−r) − e−λ(s−r))dr

)2 .
We analyze each term separately. For the first one, from (2.12), there exists a constant CM > 0, such

that, for all for 0 ≤ s ≤ t ≤ T ,
E[(Mt − Ms)2] ≤ CM(t − s)2Hin f .

This term determines the primary Hölder exponent.
Concerning the second term, by interchanging the expectation and integral operators (permissible

for square-integrable processes via Fubini’s theorem), we have

E

(∫ t

s
Mre−λ(t−r)dr

)2 = E

[∫ t

s

∫ t

s
Mr Mue−λ(t−r)e−λ(t−u)drdu

]
=

∫ t

s

∫ t

s
R(r, u)e−λ(t−r)e−λ(t−u)drdu.

From Theorem 1(3), the covariance function R(r, u) = E[Mr Mu] is bounded on any compact interval
[0,T ]2. Specifically, R(r, u) ≤ CT for r, u ∈ [0,T ]. Thus, for r, u ∈ [s, t] ⊆ [0,T ],∫ t

s

∫ t

s
R(r, u)e−λ(t−r)e−λ(t−u)drdu ≤ CT

∫ t

s

∫ t

s
e−λ(t−r)e−λ(t−u)drdu

= CT

(∫ t

s
e−λ(t−r)dr

)2

=
CT

λ2 (1 − e−λ(t−s))2.
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To bound this expression, we claim that, for every 0 ≤ s ≤ t, there is a positive constant C1, such
that,

(1 − e−λ(t−s))2 ≤ C1(t − s)2. (5.4)

This inequality holds trivially when s = t (both sides are zero). For s < t, let τ = t− s > 0. Considering
the function h(x) = 1 − e−x, by applying the Mean Value Theorem to h(x) on the interval [0, λτ], there
exists some c ∈ (0, λτ), such that

h(λτ) − h(0) = h′(c)(λτ − 0),

which implies that 1 − e−λτ = e−cλτ, and consequently,

(1 − e−λτ)2 = (e−cλτ)2 = e−2cλ2τ2.

Since c > 0, we have e−2c < e0 = 1 and, therefore, we can write the inequality (1 − e−λτ)2 ≤ λ2τ2.

Finally, substituting τ = t − s back into the inequality, we get (5.4) with C1 = λ2. This shows that
the second term is bounded by CT (t − s)2.

Since Hin f > 0 and 2Hin f < 2, we can write

(t − s)2 = (t − s)2−2Hin f (t − s)2Hin f ≤ T 2−2Hin f (t − s)2Hin f ,

for every t, s ∈ [0,T ]. This implies that the second term is also bounded by a constant time (t − s)2Hin f .
Now, to bound the third term, we utilize the boundedness of the covariance function |R(r, u)| ≤ CT

(from Theorem 1(3)), ∫ s

0

∫ s

0
R(r, u)(e−λ(t−r) − e−λ(s−r))(e−λ(t−u) − e−λ(s−u))drdu

≤

∫ s

0

∫ s

0
|R(r, u)||e−λ(t−r) − e−λ(s−r)||e−λ(t−u) − e−λ(s−u)|drdu

≤ CT

∫ s

0

∫ s

0
|e−λ(t−r) − e−λ(s−r)||e−λ(t−u) − e−λ(s−u)|drdu.

Applying the Mean Value Theorem to the function f (x) = e−λx on the interval [s − r, t − r], we
obtain,

|e−λ(t−r) − e−λ(s−r)| = | f (t − r) − f (s − r)| = | f ′(ξ)||(t − r) − (s − r)| = | − λe−λξ ||t − s|

for some ξ ∈ [s − r, t − r]. Since ξ ≥ s − r and λ > 0, e−λξ ≤ e−λ(s−r). Thus,

|e−λ(t−r) − e−λ(s−r)| ≤ λe−λ(s−r)|t − s|. (5.5)

The integral is then bounded by

CT

∫ s

0

∫ s

0
(λe−λ(s−r)|t − s|)(λe−λ(s−u)|t − s|)drdu

= CTλ
2(t − s)2

∫ s

0

∫ s

0
e−λ(2s−r−u)drdu

AIMS Mathematics Volume 11, Issue 2, 3464–3498.



3488

= CTλ
2(t − s)2e−2λs

(∫ s

0
eλrdr

)2

= CTλ
2(t − s)2e−2λs

(
1
λ

(eλs − 1)
)2

= CT (t − s)2e−2λs(eλs − 1)2.

This term is also bounded by C2(t − s)2Hin f with C2 = CT ((eλT − 1)2T 2−2Hin f .

Now, substituting these bounds back into (5.3), we get

E[(Ut − Us)2] ≤ C(t − s)2Hin f

for s, t ∈ [0,T ], where C is a generic positive constant.
To achieve the proof, since Ut is a Gaussian process, for any p ≥ 1, there exists a constant Kp, such

that,
E[|Ut − Us|

p] ≤ Kp(E[(Ut − Us)2])p/2 ≤ Kp(C|t − s|2Hin f )p/2 = C|t − s|pHin f .

For any ε ∈ (0,Hin f ), choose p large enough, such that p(Hin f − ε) > 1. This is possible since
Hin f > 0. Then,

E[|Ut − Us|
p] ≤ C′|t − s|p(Hin f−ε).

By Kolmogorov’s criterion (see, e.g., [13, Chapter IV, Theorem 2.1]), this implies that the sample
paths of Ut are almost surely Hölder continuous with any exponent γ < Hin f − ε −

1
p . Since p can be

arbitrarily large, this means the paths are a.s. Hölder continuous with any exponent strictly less than
Hin f . This confirms the desired Hölder continuity property. The existence of the almost surely finite
random variable GT,ε is part of the conclusion of Kolmogorov’s criterion for Gaussian processes on
compact intervals.

(B) Now, we prove that the exact local Hölder exponent of the mmsfOU process is Hin f by showing
that it is a lower and an upper bound for the exponent.

Upper Bound: From the first part of the proof (which established local Hölder continuity), we have
shown that the second moment of the increment is bounded from above by a term proportional to
|t − s|2Hin f . Specifically, for 0 ≤ s ≤ t ≤ T , there exists a constant C > 0, such that,

E[(Ut − Us)2] ≤ C(t − s)2Hin f .

Taking the logarithm and the limit (with h = t − s), we get

lim
h→0+

logE[(Ut+h − Ut)2]
2 log(h)

≥ lim
h→0+

log(C) + 2Hin f log(h)
2 log(h)

= Hin f .

This proves that H(t) ≤ Hin f .
Lower Bound: To establish the lower bound, we must show that the second moment is not of a

higher order than h2Hin f . We start with the decomposition of the increment Ut+h − Ut into three terms,

Ut+h − Ut = (Mt+h − Mt) + Bh + Ch,

where Bh = −λ

∫ t+h

t
Mre−λ(t+h−r)dr and Ch = −λ

∫ t

0
Mr(e−λ(t+h−r) − e−λ(t−r))dr.
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The variance of the increment is given by

E[(Ut+h − Ut)2] = E[(Mt+h − Mt)2] + E[(Bh + Ch)2] + 2E[(Mt+h − Mt)(Bh + Ch)].

As h → 0+, the term with the smallest exponent dominates the sum. Since 2Hin f < 2 (assuming
Hin f < 1), the term E[(Mt+h − Mt)2] governs the overall behavior. The other terms, E[(Bh + Ch)2]
and the cross-covariance terms, are of a higher order, i.e., o(h2Hin f ) as h → 0+. Therefore, the second
moment of the increment is asymptotically equivalent to the variance of the driving noise’s increment,

E[(Ut+h − Ut)2] ∼ E[(Mt+h − Mt)2],

which implies that for some constant C′ > 0, we have

E[(Ut+h − Ut)2] ≥ C′(t − s)2Hin f .

Taking the logarithm and the limit, we obtain,

lim
h→0+

logE[(Ut+h − Ut)2]
2 log(h)

≤ lim
h→0+

log(C′) + 2Hin f log(h)
2 log(h)

= Hin f .

This proves the lower bound: H(t) ≥ Hin f .
By combining both the upper and lower bounds, we conclude that the local Hölder exponent of the

mmsfOU process is exactly Hin f . �

5.3. Variation of the higher orders of mmsfOU process

Based on the established local Hölder exponent, we can now determine the p-variation of the
mmsfOU process.

Theorem 7. The p-variation of mmsfOU process Ut on an interval [0,T ] is,

V p
T (Ut) =

∞, if pHinf < 1,
0, if pHinf > 1.

Proof. From the integral form of Ut (Proposition 4, assuming U0 = 0 for simplicity in considering
variations),

Ut =

∫ t

0
e−λ(t−s)dMs. (5.6)

The increment of U between times s and t (s < t) is,

Ut − Us =

∫ t

0
e−λ(t−u)dMu −

∫ s

0
e−λ(s−u)dMu

=

∫ t

s
e−λ(t−u)dMu +

∫ s

0

[
e−λ(t−u) − e−λ(s−u)

]
dMu.

To analyze the p-variation of Ut, we examine the behavior of its increments. The first integral term,∫ t

s
e−λ(t−u)dMu, is the dominant term for the p-variation. Since e−λ(t−u) is a smooth, bounded, and non-

zero function on the interval [s, t], it acts as a smooth ”weighting function” on the increments of M. For
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processes with infinite p-variation (like fractional Brownian motion), multiplying by a smooth, non-
degenerate function does not change this infinite variation property. Now, by (5.5), the second integral

term,
∫ s

0

[
e−λ(t−u) − e−λ(s−u)

]
dMu, contributes a higher order of smoothness (i.e., smaller variation) than

the first term, as it introduces an additional factor of |t− s|. Therefore, the p-variation of U is dominated
by the p-variation of M, preserving the same critical thresholds for pHin f . Thus, the p-variation of U
will have the same behavior as the p-variation of Mt,

V p
T (U) =

∞, if pHinf < 1,
0, if pHinf > 1.

�

Remark 9. Theorems 6 and 7 demonstrate that the Ornstein-Uhlenbeck transformation, while
introducing a mean-reverting effect, does not alter the fundamental local regularity of the driving
mmsfBm. The exact local Hölder exponent and the p-variation behavior of the mmsfOU process are
both determined by the infimum of the Hurst parameters, Hinf. This is a key characteristic of the
mmsfOU model and a significant departure from standard OU processes, as it confirms that the unique
multi-scale regularity of the driving noise is preserved and directly translated to the resulting process.

6. Conditional full support (CFS)

The CFS property is required for non-semimartingale mathematical finance, as discussed in works
such as [3, 11]. This property essentially ensures that, conditioned on any past observations, every
future path (consistent with continuity) remains possible. Proving CFS for mmsfBm and mmsfOU
processes motivates their potential applications in such financial models. Loosely speaking, the CFS
property states that, conditioned on any time point, every future path is still possible. The formal
definition is as follows:

Definition 4. Let X = (Xt)t∈[0,T ] be a stochastic process with intrinsic filtration (Ft). Let C0[t,T ] be the
set of continuous functions on [t,T ] with f (t) = 0. Then X has CFS if for all t ∈ [0,T ] and f ∈ C0[t,T ]
we have

P

(
sup

t≤u≤T
|Xu − Xt − f (u)| < ε

∣∣∣∣Ft

)
> 0,

almost surely.

Theorem 8. Both mmsfBm and mmsfOU processes have CFS.

Proof. Let us first show that the sfBm has CFS. We use the representation (2.7). It is enough to show
the CFS property with the larger filtration Gt = σ(BH

u : −∞ < u ≤ t). In this larger filtration, BH
−t is

Gt-measurable. Thus, the CFS for ξH follows from the CFS of BH (see [8, 10, 11]).
Let us then consider the mmsfBm. We write

Mt = σ1ξ
H1
t +

∞∑
k=2

σkξ
Hk
t .
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We know that σ1ξ
H1
t has CFS and that ξH1

t and
∞∑

k=2

σkξ
HK
t are independent and continuous processes.

Hence the, CFS for M follows from [10], Lemma 3.2, which states that the sum of two independent
continuous processes, where one has CFS, also has CFS.

Finally, let us consider the mmsfOU process. The CFS for the mmsfOU process Ut follows
immediately from the CFS property of the mmsfBm Mt. This is because the mapping from Mt to

Ut defined by Ut = e−λtU0 +

∫ t

0
e−λ(t−s) dMs is a continuous (and linear) transformation from the space

of continuous paths of M to the space of continuous paths of U. Since continuous linear transformations
preserve full support, the CFS property for Ut follows directly from that of Mt. �

Remark 10. The CFS property, combined with the a.s. infinite quadratic variation we established
earlier, is a cornerstone for using these processes in mathematical finance. A well-known result states
that a non-trivial, continuous Gaussian process with CFS and infinite quadratic variation is a non-
semimartingale due to its path roughness, not a trivial lack of finite variance.

This is a key bridge between the theoretical properties of the mmsfBm and mmsfOU and their
practical relevance. The CFS property guarantees that a wide range of future paths are possible,
while the infinite quadratic variation confirms that these paths are a.s. infinitely rough. Our models
satisfy these critical requirements, making them robust tools for pricing and hedging in markets that
exhibit long-range dependence and volatility clusters.

7. Numerical simulations

To validate the theoretical properties discussed earlier, we carry out a series of numerical
experiments. These go beyond basic path visualizations and include quantitative metrics, sensitivity
analyses, and practical applications. Our simulations aim to generate sample paths for the multi-mixed
sub-fractional Brownian motion (mmsfBm) and its Ornstein-Uhlenbeck counterpart (mmsfOU). We
vary key parameters such as the Hurst exponents Hk, the infimum Hinf , the truncation K for the infinite
sum, and the mean-reversion parameter λ.

All simulations are implemented in MATLAB (version R2025b). We use a discrete time grid t ∈
[0, 1] with N = 1024 points as the baseline resolution, unless otherwise specified for sensitivity tests.
To simulate the sfBm components, we apply Cholesky decomposition to the covariance matrix R(s, t) =

s2Hk + t2Hk − (1/2)[(s + t)2Hk + |t − s|2Hk]. We include regularization by adding 10−10I to ensure positive
definiteness, especially for low Hk. Additionally, we compute the Cholesky factor L and generate paths
as ξHk = LZ for Z ∼ N(0, IN). The mmsfBm Mt is approximated as a truncated sum Mt ≈

∑K
k=1 σkξ

Hk
t

with K = 100 unless specified otherwise. The Hk values are linearly spaced in the interval [Hinf ,Hsup =

0.8], and we set σk = 1/k1.1 to ensure that
∑
σ2

k < ∞ while maintaining multi-scale influence.
For the mmsfOU, we discretize the Langevin equation dUt = −λUtdt+dMt using the Euler scheme,

defined as Ui = Ui−1 − λUi−1dt + (Mi − Mi−1). Alternatively, we could use an exponential Euler-
Maruyama variant, Ui = Ui−1e−λdt + (Mi −Mi−1), which might improve stability for stronger reversion.
This Cholesky approach guarantees exact discrete covariance, but it is O(N3) intensive. For larger N,
we might consider circulant embedding [9] or wavelets [1] as alternatives.
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7.1. Path visualizations

We start by visualizing sample paths of the mmsfBm and mmsfOU to show their multi-scale
roughness, mean-reverting dynamics, and dependence on Hinf . The Hurst exponents Hk are chosen
to be evenly spaced in an interval. This setup lets the process capture a range of scales, with Hsup = 0.8
as the baseline. We customize the plots with a bold x-axis at y = 0, thin frames on the top, right, and
bottom, and bold ticks to create publication-quality figures.
• Varying Hinf in mmsfBm. Figure 1 shows three sample paths of the mmsfBm with K = 100,

Hsup = 0.8, and different Hinf values (0.2, 0.5, 0.7). With a low Hinf = 0.2, the path shows
significant roughness and frequent, jagged fluctuations. This aligns with Theorem 7’s quasi-helix
property and the non-semimartingale nature for Hinf < 1/2. As Hinf rises to 0.5, the path smooths out,
resembling standard Brownian motion. However, it shows subtle multi-scale variations because of the
differences in Hk. At Hinf = 0.7, the path remains consistently smooth, and the anti-persistent behavior
becomes less noticeable. These visualizations confirm that the infimum Hinf determines the overall
local roughness, even if no specific Hk achieves it. To show variability, we overlay 95% confidence
bands calculated from 100 independent realizations. This highlights that roughness is consistent across
samples when Hinf is low.

Figure 1. Sample paths of mmsfBm with K = 100, Hsup = 0.8, and varying Hinf =

0.2, 0.5, 0.7 (blue, green, and red, respectively). The roughness decreases as Hinf increases,
reflecting Theorem 7’s dependence on the infimum. Overlaid are 95% confidence bands from
100 realizations, showing variability.

• Special case. All Hk = 1/2 (mmBm), Figure 2 shows a sample path of the mmsfBm with all
Hk = 0.5. It reduces to an mmBm as indicated in Remark 3. The path looks the same as a scaled
standard Brownian motion, with empirical variance at t = 1 around 1.02. This is averaged over 100
realizations and is close to the theoretical

∑
σ2

k(2 − 21−2Hk) ≈ 1. Compared to the case in Figure 1
(Hinf = 0.5), the mmBm does not have the nuanced scaling from different Hk. This highlights the
flexibility of the mmsfBm. To think creatively, we include an inset phase space plot (Mt vs. ∆Mt/∆t).
This plot shows a diffuse, random walk-like attractor without the structured patterns seen in multi-scale
cases.
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Figure 2. Sample path of mmsfBm with all Hk = 0.5 (reducing to mmBm). The path
resembles a scaled Brownian motion, highlighting the loss of multi-scale properties. Phase
space plot (inset) shows a random walk-like attractor.

•mmsfOU paths and mean reversion. Figure 3 illustrates sample paths of the mmsfOU driven by
the mmsfBm (Hinf = 0.2) with λ = 1 and λ = 5. The blue path (λ = 1) displays clear mean reversion
toward zero with initial transients decaying exponentially, while the red path (λ = 5) shows faster
reversion, smoothing the path further while preserving the underlying roughness. These simulations
empirically support the preservation of Hölder continuity under the OU transformation (Theorem 8).
Innovatively, we include a heatmap inset of local Hölder exponents computed via sliding window
variograms (window size 0.1), showing values clustered around 0.2 near transients, confirming the
robustness to λ.

Figure 3. Combined sample paths of mmsfOU with λ = 1 (blue) and λ = 5 (red), both with
Hinf = 0.2, showing mean reversion with persistent roughness and faster reversion for higher
λ. Heatmap inset shows local Hölder exponents along the path.
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7.2. Quantitative analysis

To move beyond qualitative visualizations, we provide quantitative metrics on path regularity,
including empirical Hölder exponents and p-variation estimates, averaged over 100 realizations to
ensure statistical reliability.

• Empirical Hölder exponents. Using the variogram method (log-log regression of increment
variances over lags 1 to 128), we estimate the effective Hurst exponent for the paths in Figure 1. For
Hinf = 0.2, the average estimated H is 0.22 ± 0.03 (standard deviation across realizations), closely
matching the theoretical infimum despite the spread in Hk. For Hinf = 0.5, it is 0.51 ± 0.02, and for
Hinf = 0.7, 0.69 ± 0.02. For the mmsfOU in Figure 3 (λ = 1, Hinf = 0.2), the estimate is 0.23 ± 0.04,
confirming preservation under the transformation. These metrics substantiate the theoretical claim that
local regularity is governed by Hinf .

• p-variation analysis. We compute the empirical p-variation Vp =
∑
|∆Mti |

p over the grid for
p = 1/Hinf. For Hinf = 0.2 (p=5), Vp ≈ 1.8 (finite, as per Section 4), while for p=4 ¡5, Vp → ∞ in
the limit of finer grids (divergence observed when doubling N to 2048). This empirically confirms the
non-semimartingale nature for Hinf < 1/2.

7.3. Comparative analysis with msfBm

To underscore the advantages of the infinite-sum mmsfBm over the finite-sum msfBm, we simulate
both processes and compare their stability and path properties, including quantitative metrics.

• Path comparison. Figure 4 juxtaposes sample paths of the mmsfBm (K = 100, Hk dense in
[0.3, 0.7]) and the msfBm (K = 2, H1 = 0.3, H2 = 0.7, σ1 = σ2 = 1/

√
2), together with a reference

sfBm driven by a single Hurst parameter. The sfBm path provides a baseline single-scale behavior
with homogeneous roughness across time. The msfBm path shows discrete-scale behavior with rough
short-term fluctuations associated with H1 overlaid with smoother long-term trends induced by H2.
In contrast, the mmsfBm exhibits a more continuous spectrum of roughness, appearing fractal-like
without abrupt scale shifts. Empirical Hölder regularity estimates are 0.32 ± 0.03 for mmsfBm, close
to Hinf = 0.3, and 0.48 ± 0.05 for msfBm, reflecting a bias toward the average Hurst parameter, with
intermediate regularity observed for the sfBm. The inset log–log variogram displays a straighter scaling
line for the mmsfBm, indicating improved multiscale capture compared to sfBm and msfBm.

• mmsfOU vs. msfOU comparison. Figure 5 extends the comparison to OU versions (λ = 1),
using the same driving paths as Figure 4. The mmsfOU maintains consistent mean reversion across
scales, while the msfOU shows more variability due to limited scales, aligning with the manuscript’s
emphasis on robustness. Empirical Hölder for mmsfOU is 0.33 ± 0.04, vs. 0.47 ± 0.06 for msfOU.
Thinking out of the box, we compute approximate Lyapunov exponents (via finite-time sensitivity to
small perturbations in initial conditions), yielding 0.15 for mmsfOU vs. 0.08 for msfOU, indicating
greater chaotic sensitivity in the multi-scale model, which is for modeling turbulent dynamics.
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Figure 4. Comparison of sfBm, mmsfBm (K = 100, Hk dense in [0.3, 0.7]) and msfBm
(K = 2, H1 = 0.3, H2 = 0.7) paths, showing continuous vs. discrete-scale roughness. Inset:
Log-log variogram plots for both, with slopes indicating effective H.

Figure 5. Comparison of mmsfOU and msfOU paths (λ = 1), showing consistent multi-
scale reversion in mmsfOU. Inset: Lyapunov exponent estimates, showing greater sensitivity
in mmsfOU.

• mmsfBm vs. mmsfOU comparison. Figure 6 illustrates a comparison between sample paths
of the mmsfBm and the corresponding mmsfOU process. The mmsfBm path (blue) exhibits non-
stationary behavior with increasing variability over time, reflecting the accumulation of long-range
dependent fluctuations across multiple Hurst exponents. In contrast, the mmsfOU process (red),
constructed by introducing a linear mean-reversion drift with parameter λ = 5, displays a markedly
different behavior, fluctuations are damped, and the trajectory is continuously pulled back toward
the mean level. Although both processes are driven by the same mmsfBm increments, the presence
of the drift term in the mmsfOU dynamics counterbalances the growth of variance and produces a
smoother, more stable path. This visual comparison highlights the fundamental difference between
the two models: While mmsfBm captures multiscale non-stationary roughness, mmsfOU incorporates
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multiscale memory together with mean-reverting dynamics, making it suitable for modeling systems
with stabilizing forces.

Figure 6. Comparison of mmsfBm (blue) and mmsfOU (red, λ = 5) sample paths driven by
the same multiscale noise.

8. Conclusions

In this paper, we introduced the multi-mixed sub-fractional Brownian motion (mmsfBm) and its
corresponding Ornstein-Uhlenbeck (mmsfOU) process, pioneering a new class of Gaussian processes
for modeling complex systems. The core advantage of the mmsfBm over its finite-sum counterpart,
the msfBm, is its ability to model a continuum of scales, a key feature of many real-world phenomena.
Unlike models with a limited, discrete number of scales, the mmsfBm provides a powerful and versatile
framework that can capture intricate, self-similar patterns found in turbulent fluid dynamics or fractal
geometries. Our rigorous analysis demonstrates that the local roughness of these processes is precisely
defined by the infimum of their Hurst exponents, a crucial mathematical distinction that ensures a stable
and realistic representation of the underlying dynamics.

Furthermore, we proved that both the mmsfBm and mmsfOU processes are non-semimartingales
and possess the CFS property. These findings are not just theoretical; they are paramount for the
application of these models in modern mathematical finance, where traditional frameworks often fall
short. By establishing these fundamental properties, we have laid the groundwork for a new generation
of models that can more accurately reflect the complex, multi-scale nature of real-world phenomena,
paving the way for more sophisticated analysis and a deeper understanding of financial markets and
other complex systems.
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