Rock-Paper-Scissors (RPS) games have been widely studied, while research on asymmetric multiplayer cases has remained relatively limited. In this paper, we constructed a three-player asymmetric RPS model by introducing a novel payoff matrix, which then serves as the basis for developing a reverse-cyclic mutation logit system. Analysis of the interior equilibrium showed that both mutation rate and selection intensity can destabilize the equilibrium and generate oscillatory dynamics through Hopf bifurcations. When the first Lyapunov coefficient vanished, the second Lyapunov coefficient was derived to classify the bifurcation type, enabling us to distinguish supercritical and subcritical cases. Numerical simulations confirmed the theoretical predictions. These results revealed stability conditions and bifurcation mechanisms in asymmetric multiplayer interactions and demonstrated how higher-order Lyapunov coefficients enhance the analysis of complex dynamics.
Citation: Jie Liu, Wenjun Hu. Bifurcation analysis of an asymmetric three-player three-strategy game with logit dynamics and reverse-cyclic mutations[J]. AIMS Mathematics, 2025, 10(9): 22206-22220. doi: 10.3934/math.2025988
Rock-Paper-Scissors (RPS) games have been widely studied, while research on asymmetric multiplayer cases has remained relatively limited. In this paper, we constructed a three-player asymmetric RPS model by introducing a novel payoff matrix, which then serves as the basis for developing a reverse-cyclic mutation logit system. Analysis of the interior equilibrium showed that both mutation rate and selection intensity can destabilize the equilibrium and generate oscillatory dynamics through Hopf bifurcations. When the first Lyapunov coefficient vanished, the second Lyapunov coefficient was derived to classify the bifurcation type, enabling us to distinguish supercritical and subcritical cases. Numerical simulations confirmed the theoretical predictions. These results revealed stability conditions and bifurcation mechanisms in asymmetric multiplayer interactions and demonstrated how higher-order Lyapunov coefficients enhance the analysis of complex dynamics.
| [1] | J. Von Neumann, O. Morgenstern, Theory of games and economic behavior, Princeton: Princeton University Press, 1944. |
| [2] |
M. S. Mariano, J. F. Fontanari, Evolutionary game-theoretic approach to the population dynamics of early replicators, Life, 14 (2024), 1064. https://doi.org/10.3390/life14091064 doi: 10.3390/life14091064
|
| [3] |
B. Yuan, Mathematical modeling of intellectual capital asymmetric information game in financial enterprises, AIMS Mathematics, 9 (2024), 5708–5721. https://doi.org/10.3934/math.2024277 doi: 10.3934/math.2024277
|
| [4] |
R. Goetz, J. Marco, Social networks, norm-enforcing ties and cooperation, J. Econ. Interact. Coord., 20 (2025), 371–412. https://doi.org/10.1007/s11403-024-00435-x doi: 10.1007/s11403-024-00435-x
|
| [5] |
M. Ferrara, Modeling by topological data analysis and game theory for analyzing data poisoning phenomena, AIMS Mathematics, 10 (2025), 15457–15475. https://doi.org/10.3934/math.2025693 doi: 10.3934/math.2025693
|
| [6] |
J. F. Nash, The bargaining problem, Econometrica, 18 (1950), 155–162. http://dx.doi.org/10.2307/1907266 doi: 10.2307/1907266
|
| [7] |
Y. Gao, R. Jia, Y. Yao, J. Xu, Evolutionary game theory and the simulation of green building development based on dynamic government subsidies, Sustainability, 14 (2022), 7294. https://doi.org/10.3390/su14127294 doi: 10.3390/su14127294
|
| [8] |
D. Fudenberg, M. A. Nowak, C. Taylor, L. A. Imhof, Evolutionary game dynamics in finite populations with strong selection and weak mutation, Theor. Popul. Biol., 70 (2006), 352–363. http://dx.doi.org/10.1016/j.tpb.2006.07.006 doi: 10.1016/j.tpb.2006.07.006
|
| [9] |
R. C. Lewontin, Evolution and the theory of games, J. Theor. Biol., 1 (1961), 382–403. http://dx.doi.org/10.1016/0022-5193(61)90038-8 doi: 10.1016/0022-5193(61)90038-8
|
| [10] |
J. M. Smith, G. R. Price, The logic of animal conflict, Nature, 246 (1973), 15–18. http://dx.doi.org/10.1038/246015a0 doi: 10.1038/246015a0
|
| [11] |
S. Zhang, C. Wang, C. Yu, The evolutionary game analysis and simulation with system dynamics of manufacturer's emissions abatement behavior under cap-and-trade regulation, Appl. Math. Comput., 355 (2019), 343–355. http://dx.doi.org/10.1016/j.amc.2019.02.080 doi: 10.1016/j.amc.2019.02.080
|
| [12] |
C. Wang, T. Feng, Y. Gao, Y. Tao, C. Li, Evolutionary stability in an eco‑evolutionary game dynamics with density dependence, Chaos Solitons Fract., 168 (2023), 113141. http://dx.doi.org/10.1016/j.chaos.2023.113141 doi: 10.1016/j.chaos.2023.113141
|
| [13] | J. W. Weibull, Evolutionary game theory, Cambridge: MIT Press, 1997. |
| [14] |
P. D. Taylor, L. B. Jonker, Evolutionarily stable strategies and game dynamics, Math. Biosci., 40 (1978), 145–156. http://dx.doi.org/10.1016/0025-5564(78)90077-9 doi: 10.1016/0025-5564(78)90077-9
|
| [15] | J. Hofbauer, K. Sigmund, Evolutionary games and population dynamics, Cambridge: Cambridge University Press, 1998. http://dx.doi.org/10.1017/CBO9781139173179 |
| [16] |
M. Kleshnina, S. S. Streipert, J. A. Filar, K. Chatterjee, Mistakes can stabilise the dynamics of rock-paper-scissors games, PLoS Comput. Biol., 17 (2021), e1008523. http://dx.doi.org/10.1371/journal.pcbi.1008523 doi: 10.1371/journal.pcbi.1008523
|
| [17] |
M. Mobilia, Oscillatory dynamics in rock-paper-scissors games with mutations, J. Theor. Biol., 264 (2010), 1–10. http://dx.doi.org/10.1016/j.jtbi.2010.01.008 doi: 10.1016/j.jtbi.2010.01.008
|
| [18] |
D. F. P. Toupo, S. H. Strogatz, Nonlinear dynamics of the rock‑paper‑scissors game with mutations, Phys. Rev. E, 91 (2015), 052907. http://dx.doi.org/10.1103/PhysRevE.91.052907 doi: 10.1103/PhysRevE.91.052907
|
| [19] |
J. Han, X. Chen, A. Szolnoki, When selection pays: Structured public goods game with a generalized interaction mode, Chaos, 34 (2024), 033124. https://doi.org/10.1063/5.0201582 doi: 10.1063/5.0201582
|
| [20] |
R. D. McKelvey, T. R. Palfrey, Quantal response equilibria for normal form games, Games Econ. Behav., 10 (1995), 6–38. https://doi.org/10.1006/game.1995.1023 doi: 10.1006/game.1995.1023
|
| [21] | C. H. Hommes, M. I. Ochea, Multiple equilibria and limit cycles in evolutionary games with logit dynamics, 74 (2012), 434–441. http://dx.doi.org/10.1016/j.geb.2011.05.014 |
| [22] |
M. I. Ochea, Evolution of repeated prisoner's dilemma play under logit dynamics, J. Econ. Dyn. Control, 37 (2013), 2483–2499. http://dx.doi.org/10.1016/j.jedc.2013.06.012 doi: 10.1016/j.jedc.2013.06.012
|
| [23] |
Y. Umezuki, Bifurcation analysis of the rock-paper-scissors game with discrete-time logit dynamics, Math. Soc. Sci., 95 (2018), 54–65. http://dx.doi.org/10.1016/j.mathsocsci.2017.12.001 doi: 10.1016/j.mathsocsci.2017.12.001
|
| [24] |
S. Mittal, A. Mukhopadhyay, S. Chakraborty, Evolutionary dynamics of the delayed replicator-mutator equation: Limit cycle and cooperation, Phys. Rev. E, 101 (2020), 042410. https://doi.org/10.1103/PhysRevE.101.042410 doi: 10.1103/PhysRevE.101.042410
|
| [25] |
T. Nagatani, G. Ichinose, K. Tainaka, Metapopulation model for rock-paper-scissors game: Mutation affects paradoxical impacts, J. Theor. Biol., 450 (2018), 22–29. http://dx.doi.org/10.1016/j.jtbi.2018.04.005 doi: 10.1016/j.jtbi.2018.04.005
|
| [26] |
W. Hu, G. Zhang, H. Tian, Z. Wang, Chaotic dynamics in asymmetric rock-paper-scissors games, IEEE Access, 7 (2019), 175614–175621. http://dx.doi.org/10.1109/ACCESS.2019.2956816 doi: 10.1109/ACCESS.2019.2956816
|
| [27] | T. Varga, J. Garay, Dynamically unstable ESS in matrix games under time constraints, Dyn. Games Appl., 2024. http://dx.doi.org/10.1007/s13235-024-00581-8 |
| [28] |
A. Y. Adetowubo, G. Zhang, A three-strategy game involving loners in eco-evolutionary dynamics, Nonlinear Dyn., 113 (2025), 12447–12461. https://doi.org/10.1007/s11071-024-10818-1 doi: 10.1007/s11071-024-10818-1
|
| [29] |
C. Wang, M. Perc, A. Szolnoki, Evolutionary dynamics of any multiplayer game on regular graphs, Nat. Commun., 15 (2024), 5349. http://dx.doi.org/10.1038/s41467-024-49505-5 doi: 10.1038/s41467-024-49505-5
|
| [30] |
W. Hu, H. Tian, G. Zhang, Bifurcation analysis of three‑strategy imitative dynamics with mutations, Complexity, 2019 (2019), 4134105. http://dx.doi.org/10.1155/2019/4134105 doi: 10.1155/2019/4134105
|
| [31] |
A. McAvoy, J. Wakeley, Evaluating the structure-coefficient theorem of evolutionary game theory, Proc. Natl. Acad. Sci. U.S.A., 119 (2022), e2119656119. https://doi.org/10.1073/pnas.2119656119 doi: 10.1073/pnas.2119656119
|
| [32] |
A. A. Soares, L. Wardil, L. B. Klaczko, R. Dickman, Hidden role of mutations in the evolutionary process, Phys. Rev. E, 104 (2021), 044413. https://doi.org/10.1103/PhysRevE.104.044413 doi: 10.1103/PhysRevE.104.044413
|