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Abstract: Rock-Paper-Scissors (RPS) games have been widely studied, while research on asymmetric
multiplayer cases has remained relatively limited. In this paper, we constructed a three-player
asymmetric RPS model by introducing a novel payoff matrix, which then serves as the basis for
developing a reverse-cyclic mutation logit system. Analysis of the interior equilibrium showed that
both mutation rate and selection intensity can destabilize the equilibrium and generate oscillatory
dynamics through Hopf bifurcations. When the first Lyapunov coefficient vanished, the second
Lyapunov coefficient was derived to classify the bifurcation type, enabling us to distinguish
supercritical and subcritical cases. Numerical simulations confirmed the theoretical predictions. These
results revealed stability conditions and bifurcation mechanisms in asymmetric multiplayer interactions
and demonstrated how higher-order Lyapunov coefficients enhance the analysis of complex dynamics.
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1. Introduction

Game theory, an essential branch of applied mathematics, primarily investigates the strategic
decisions and evolutionary dynamics of players engaged in interactive situations. The seminal 1944
work, Theory of Games and Economic Behavior, authored by Hungarian mathematicians John von
Neumann and Oskar Morgenstern [1], is widely recognized as the foundational text of classical
game theory. Since then, game theory has demonstrated extensive applicability across disciplines,
including biology [2], economics [3], sociology [4], and information science [5]. Within this
theoretical framework, players’ payoffs are influenced not only by their individual strategic decisions,
but also to a large extent by the strategies of the other players involved, resulting in a complex and
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dynamic interactive network. In the assumptions of classical game theory, the players are regarded
as absolutely rational individuals [6]. However, in reality, players always exhibit the characteristic of
bounded rationality [7], which has led to the emergence and development of evolutionary game theory.
Furthermore, evolutionary game theory explicitly explores how bounded-rational individuals optimize
their payoffs through continuous strategic adjustments during repeated interactions. This theoretical
approach provides robust analytical tools to examine strategy dynamics within populations [8].
In 1961, Lewontin [9] pioneered the application of game theory concepts to the realm of biological
science. On this basis, Smith and Price introduced the concept of Evolutionarily Stable Strategies
(ESS) to analyze conflict dynamics among animals, thereby laying a critical foundation for subsequent
research in evolutionary game theory [10].

Evolutionary game dynamics, integrating differential equations and game theory, provides a robust
framework for studying strategic evolution in complex interactive systems [11,12]. In 1995, economist
Jörgen Weibull systematically formalized these principles in his seminal work, “Evolutionary Game
Theory”, equipping researchers with essential mathematical tools to analyze strategic interactions [13].
Replicator dynamics, as the most extensively studied dynamic models, was first introduced by
Taylor [14] and colleagues in ecological evolutionary contexts to describe the relationship between
the unit growth rates of different strategic populations and their corresponding fitness within the
population. For this framework, mathematician Hofbauer and collaborators performed stability
analyses of equilibrium points under Rock-Paper-Scissors (RPS) game payoffs [15]. As a prototypical
cyclic dominance game, the RPS game has garnered significant research attention due to its intuitive
strategy structure and rich dynamic behaviors [16]. As the number of players and strategic options
increases, the resulting dynamics become progressively complex and variable. To gain deeper insights
into these dynamics, researchers have continually introduced new elements and parameters into the
RPS games. For example, Mobilia [17] incorporated mutation factors into the replicator equations
for RPS games, constructing models with global mutations and exploring their effects. His findings
indicated that mutations can induce Hopf bifurcations within the system. Additionally, Toupo and
Strogatz [18] explored the influences of single mutations, bidirectional mutations, and other mutation
types on RPS dynamics using replicator equations. Introducing selective interaction mechanisms in
public goods games has also been shown to promote cooperation by lowering critical thresholds [19].
Critical bifurcation thresholds were identified, and numerical simulations to illustrate the evolutionary
trajectories and behaviors of these systems were conducted.

As interest in players’ bounded rationality and strategic heterogeneity has grown, researchers have
increasingly recognized that individuals’ strategic choices are often shaped by cognitive biases or
random “noise”, than being consistently rational. McKelvey and Palfrey (1995) were pioneers in
introducing the logit response mechanism (logit dynamics) into game theory, effectively characterizing
how bounded rationality and stochastic elements influence strategy adaptation, and laying a theoretical
foundation for subsequent studies [20]. Building upon this foundation, Hommes and Ochea [21]
demonstrated the presence of stable periodic orbits and multiple stable states within three-strategy
best-response dynamics. Following this, Ochea [22] explored the evolutionary dynamics of repeated
Prisoner’s Dilemma games via logit dynamics, elucidating conditions under which cooperation among
boundedly rational individuals could persist or collapse, and identifying the emergence of periodic
behaviors and multiple equilibria. Umezuki [23] utilized discrete logit systems to investigate RPS
games, discovering Neimark-Sacker bifurcations and determining corresponding bifurcation values.
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Beyond logit dynamics, scholars have expanded evolutionary game systems from diverse perspectives.
For example, the replicator-mutator framework was extended with time delays by Mittal [24], and it
was demonstrated that such delays can induce Hopf bifurcations and stable limit-cycle oscillations,
thereby revealing new dynamic behaviors beyond classical replicator dynamics. Mean-field theory
(MFT) was applied by Nagatani [25] to RPS games, revealing paradoxical outcomes from backward
mutations. Hu [26] examined asymmetric RPS games using imitation dynamics and found that chaotic
behaviors can emerge under specific conditions. Additionally, Tamás [27] investigated the dynamic
instability of evolutionarily stable strategies (ESS) within the RPS framework under time constraints,
demonstrating that in complex ecological and evolutionary contexts, an ESS may no longer represent
a dynamically stable equilibrium. Recent eco-evolutionary researchers have also incorporated loner
strategies into three-strategy games, demonstrating how additional options beyond the classical RPS
cycle can alter coexistence and stability outcomes [28].

While extensive research has been conducted on RPS games involving three or four strategies,
demonstrating substantial progress across dynamic models, such as Logit, Replicator, Imitation, and
different mutation mechanisms, most researchers have predominantly focused on symmetric structures
and two-player scenarios [29, 30]. Relatively limited attention has been devoted to investigating
dynamical behaviors in asymmetric and multi-players interactive contexts. Building upon prior studies,
the major contributions of this paper are as follows:

(i) We construct a three-player asymmetric payoff matrix for the RPS game. Unlike the symmetric
frameworks emphasized in most research, this design captures heterogeneity among players and
highlights the role of dominant participants, providing a more realistic representation of strategic
interactions.

(ii) We develop a dynamical system that integrates reverse-cyclic mutations with the Logit response
mechanism. This approach makes it possible to study the combined influence of mutation and
rationality level on system dynamics, thereby extending the scope of classical replicator-mutator
models and reflecting decision-making behaviors under bounded rationality.

(iii) In examining equilibrium stability, we explicitly address degenerate Hopf bifurcations. When
the first Lyapunov coefficient equals zero, we further derive the second Lyapunov coefficient to classify
the bifurcation type. This step offers a more complete characterization of local dynamics near critical
thresholds, a situation that has received limited attention in previous work.

Taken together, these aspects contribute to a better understanding of asymmetric multiplayer
interactions and complement existing approaches to bifurcation analysis in evolutionary game theory.
The remainder of this paper is structured as follows. In Section 2, we introduce the formulation of
the proposed three-player asymmetric RPS model together with the construction of the reverse-cyclic
mutation Logit system. In this section, we also provide a detailed stability analysis of the interior
equilibrium, highlighting the roles of mutation rate and selection intensity in shaping the system’s
dynamics. In Section 3, we present numerical simulations that illustrate the theoretical predictions
and visualize the emergence of oscillatory behaviors under different parameter regimes. In Section 4,
we summarize the major findings, discuss their implications for evolutionary game theory, and outline
possible directions for future research.
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2. Logit dynamics with inverse cyclic mutations

2.1. Model formulation

We consider an asymmetric three-player RPS game model, in which every players simultaneously
chooses among rock, paper, and scissors with equal probability. Considering the cyclic dominance
structure inherent in three-player RPS games, results remain consistent regardless of which player is
the reference subject. Thus, the payoff matrix is constructed from the perspective of player I. Player
II is assumed to be a high-profile player, similar to a Stackelberg oligopoly, where a dominant firm
leads and smaller firms follow. This assumption captures asymmetry more realistically and highlights
how the influence of a dominant player shapes the strategies of others. For clarity, the payoff rules are
summarized as follows:

(i) When all players select identical strategies or distinct strategies (e.g., RRR, PPP, SSS, RPS, RSP,
PRS, PSR, SRP, and SPR), player I receives a payoff of 0.

(ii) When player I and player II choose the same strategy but lose to player III (e.g., RRP, PPS, and
SSR), player I incurs a payoff of −1, indicating a minor loss from aligning with a strong individual’s
unsuccessful choice.

(iii) When player I and player II adopt the same strategy and prevail against player III (e.g., RRS,
PPR, and SSP), player I receives a payoff denoted by α(α > 1), suggesting substantial gains from
successfully aligning with the influential player.

(iv) When player I and player II select different strategies and player I loses (e.g., RPR, RPP, PSP,
PSS, SRR, and SRS), player I experiences a payoff of −α, representing significant losses resulting from
decisions contrary to those of a strong player.

(v) When player I selects differently from player II but wins (e.g., RSR, RSS, PRR, PRP, SPP, and
SPS), player I’s payoff is 1, reflecting limited gains despite winning against the influential player’s
choice.

Based on this foundation, the corresponding payoff matrix is derived as shown in Table 1.

Table 1. Payoff matrix for player I in the three-player RPS game.

Game Players
III

R P S

I

R II
R 0 −1 α

P −α −α 0
S 1 0 1

P II
R 1 1 0
P α 0 −1
S 0 −α −α

S II
R −α 0 −α

P 0 1 1
S −1 α 0

For convenience, given the current population state x = (x1, x2, x3), denote player I’s expected
payoffs as f1 for strategy R, f2 for strategy P, and f3 for strategy S. Here, x1, x2, x3 represent the
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proportions of the R, P, and S strategies chosen by player I, respectively, and the state space is denoted

by ∆3 =

{
x ∈ R3 :

3∑
i=1

xi = 1, xi ≥ 0
}

. Thus, When player I adopts strategy k, its expected payoff

function is fk(x) =
3∑

i=1

3∑
j=1

aki jxix j, (k = 1, 2, 3), where aki j denotes the instantaneous payoff of player I

when player I chooses strategy k, player II chooses strategy i, and player III chooses strategy j. xi

represents the probability that player II selects strategy i, and x j represents the probability that player
III selects strategy j. Expanding these expressions gives:

f1 = −αx2
2 + x2

3 − (1 + α)x1x2 + (1 + α)x1x3,

f2 = x2
1 − αx2

3 + (1 + α)x1x2 − (1 + α)x2x3,

f3 = −αx2
1 + x2

2 − (1 + α)x1x3 + (1 + α)x2x3.

(2.1)

We employ the logit dynamic system to describe the temporal evolution of the strategies [20].
Compared with other evolutionary models, such as replicator dynamics, the logit system introduces
a rationality parameter σ(0 < σ < +∞), which quantifies the degree of rationality exhibited by the
players. When σ ≈ 0, the probability of switching between strategies is nearly 1

3 , indicating that
players transition among strategies almost randomly, independent of actual payoffs. As σ gradually
increases, players become more rational, and the probability of selecting their best-response strategies
also increases. When σ = +∞, each player selects their optimal response strategy with absolute
certainty, eliminating any random deviations (“trembles”) and choosing the strategy most advantageous
to them with complete rationality.

In biological evolution, mutation is a fundamental evolutionary mechanism [31, 32]. When
mutations occur from relatively advantageous strategies to relatively inferior ones at a certain rate
µ(0 < µ < 1), these mutations are referred to as reverse cyclic mutations, with µ representing the
reverse cyclic mutation rate. Specifically, in the RPS game characterized by cyclic dominance among
three strategies, reverse cyclic mutations follow the cycle R→ S → P→ R. Consequently, the reverse
cyclic mutation logit dynamic system can be constructed as follows:

ẋ1 = eσ f1
3∑

k=1
eσ fk
− x1 + u(x2 − x1),

ẋ2 = eσ f2
3∑

k=1
eσ fk
− x2 + u(x3 − x2),

ẋ3 = eσ f3
3∑

k=1
eσ fk
− x2 + u(x1 − x3).

(2.2)

To further simplify the analysis, let x1 = x, x2 = y, x3 = 1 − x − y, to reduce the dimensionality of
system (2.2). Substituting the expected payoff functions fk into the system and the two-dimensional
strategy space:

S ≡
{
(x, y, 1 − x − y) ∈ R2 : (x, y, 1 − x − y) ∈ ∆3

}
, (2.3)

the system (2.2) simplifies as follows: ẋ = e[30(x+y−1)2−30αy2−30xy(α+1)−30x(α+1)(x+y−1)]

A −x−µ(x − y),

ẏ = e[30x2−30α(x+y−1)2+30xy(α+1)+30y(α+1)(x+y−1)]

A −y−µ(x + 2y − 1),
(2.4)

where
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A = e[30x2−30α(x+y−1)2+30xy(α+1)+30y(α+1)(x+y−1)]

+ e[30y2−30αx2+30x(α+1)(x+y−1)−30y(α+1)(x+y−1)]

+ e[30(x+y−1)2−30αy2−30xy(α+1)−30x(α+1)(x+y−1)].

(2.5)

Finally, the system possesses an interior equilibrium point x∗ = (1
3 ,

1
3 ), which also serves as the Nash

equilibrium of the game. The stability of this equilibrium point will be analyzed in the subsequent
discussion.

2.2. Equilibrium stability and Hopf bifurcation analysis

In order to investigate how mutation µ affects the evolutionary dynamics of the game, we assume
the selection strength parameter σ to be constant and obtain the following theorem:

Theorem 2.1. When α > 1, let µ0 =
2σ(α−1)

27 − 2
3 . The reverse cyclic mutation affects system (2.4) as

follows:
Case 1. If µ > µ0, the equilibrium x∗ is asymptotically stable. If µ < µ0, the equilibrium x∗ becomes
unstable, and an unstable periodic solution bifurcates from it.
Case 2. When µ = µ0, denote the corresponding quantity as E = 630α + 13σ − 147ασ − 273α2σ −

169α3σ + 414α2 + 468. If E < 0, the system undergoes a supercritical Hopf bifurcation. If E ≥ 0, a
subcritical Hopf bifurcation occurs.

Proof. Linearizing the nonlinear system (2.4) at the equilibrium point x∗, we obtain the Jacobian matrix
of the system at x∗ as follows:

J(
1
3
,

1
3

) =

[
−µ−σ3−

ασ
9 −1 µ−4σ

9 −
4ασ

9
4σ
9 −µ+4ασ

9
σ
9−2µ+ασ

3 −1

]
, (2.6)

the characteristic equation of J(1/3, 1/3) is given by:

λ2 + λ(3µ + 2σ
9 −

2ασ
9 + 2) + 1 + 3µ +

2(σ−α)
9 −

µσ

3 + 22ασ2

81 + 3µ2 +
13σ2(1+α2)

81 − αµσ = 0, (2.7)

the corresponding eigenvalues are a pair of complex conjugate roots:

λ1,2 = γ ± iβ, (2.8)

where
γ =

(α−1)σ
9 − 3

2µ − 1, β =
√

3
2 µ −

2
√

3σ(1+α)
9 , (2.9)

when α > 1, setting γ = 0, we can obtain µ0 =
2σ(α−1)

27 − 2
3 . If µ > µ0, it follows that γ < 0, and thus

the equilibrium x∗ is asymptotically stable. Conversely, if µ < µ0, we have γ > 0, the equilibrium x∗

becomes unstable, the system undergoes a Hopf bifurcation at µ = µ0.
When µ = µ0, β(µ0) =

−
√

3(7σ+5ασ+9)
27 = β0, the system (2.4) can be simplified to:(

ẋ1

ẋ2

)
=

(
0 −β0

β0 0

) (
x1

x2

)
+

(
g(x1, x2, µ0)
h(x1, x2, µ0)

)
, (2.10)
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where g(x1, x2, µ0) and h(x1, x2, µ0) are given by:

g(x1, x2, µ0) = e[−σ(αy2−(x+y−1)2+xy(α+1)+x(α+1)(x+y−1))]

F − (x − y)( 2σ(α−1)
27 − 2

3 ) − x −
√

3y(7σ+5ασ+9)
27 ,

h(x1, x2, µ0) = e[σ(x2−α(x+y−1)2+xy(α+1)+y(α+1)(x+y−1))]

F − ( 2σ(α−1)
27 − 2

3 )(x + 2y − 1) − y +
√

3x(7σ+5ασ+9)
27 ,

(2.11)

F = e[−σ(αy2−(x+y−1)2+xy(α+1)+x(α+1)(x+y−1))] + e[−σ(αx2−y2−x(α+1)(x+y−1)+y(α+1)(x+y−1))]

+ e[σ(x2−α(x+y−1)2+xy(α+1)+y(α+1)(x+y−1))].

In polar coordinates, system (2.10) can be transformed into the following form:{
ṙ = r(dµ0 + ar2),
θ̇ = β0 + cµ0 + br2,

(2.12)

consider the first Lyapunov coefficient of the system at the equilibrium point (1
3 ,

1
3 , µ0),

a = 1
16 (gx1 x1 x1 + hx1 x2 x2 + hx2 x2 x2)+

1
16ω [gx1 x2(gx1 x1 + gx2 x2)

− hx1 x2(hx1 x1 + hx2 x2) − gx1 x1hx1 x1 + gx2 x2hx2 x2],
(2.13)

after calculation, the result is:

a = σ2

3888 (630α + 13σ − 147ασ − 273α2σ − 169α3σ + 414α2 + 468),
d = ∂

∂µ
(γ(µ)) = −3

2 < 0.
(2.14)

Setting E = 630α + 13σ − 147ασ − 273α2σ − 169α3σ + 414α2 + 468. If E < 0, a < 0, the
system undergoes a supercritical Hopf bifurcation. If E > 0, a > 0, the system undergoes a subcritical
Hopf bifurcation. When E = 0, i.e., σ = − 630α+414α2+468

13−147α−273α2−169α3 , it follows that a = 0. According to the
center manifold theory, the system near the Hopf bifurcation point can be reduced to the standard form
expressed in terms of a one-dimensional complex coordinate z:

ż = iw0z + l1z|z|2 + l2z|z|4 + O(|z|6), (2.15)

linearizing the nonlinear system (2.4) at the equilibrium point, we obtain the Jacobian matrix as
follows:

J0(
1
3
,

1
3
, µ0, σ) =

(
−m −n
n m

)
, (2.16)

where
m = 133α3+315α2+299α+117

169α3+273α2+147α−13 , n = 266α3+630α2+598α+234
169α3+273α2+147α−13 ,

the corresponding eigenvalues are a pair of purely imaginary roots: ±iw, with

w =

√
3(α + 1)(133α2 + 182α + 117)
(13α − 1)(13α2 + 22α + 13)

.

According to {
J0q = iw0q,
pT J0 = iw0 pT ,

(2.17)
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and p, q satisfying
〈p, q〉 = 1, (2.18)

we derive

q =

(
(
√

6i −
√

2)/4
√

2/2

)
, p =

(
−
√

6/3
(
√

2 −
√

6i)/6

)
,

substituting into the formula for the second Lyapunov coefficient,

l2 =
1

2w0
Re[〈p,C(q, q, q)〉 − 2

〈
p, B(q, J−1

0 B(q, q))
〉

+
〈
p, B(q, (J0 − 2iw0I)−1B(q, q))

〉
], (2.19)

we obtain:

l2 =
63(5α2 + 6α + 5)(23α2 + 35α + 26)2

2(13α − 1)2(1729α4 + 5292α3 + 7254α2 + 4940α + 1521)
, (2.20)

since α > 1, it follows that l2 > 0, and thus the system undergoes a subcritical Hopf bifurcation. �

From the theorem above, it can be seen that mutations significantly influence the dynamics of the
system. Specifically, when α > 1, if the mutation rate exceeds a certain critical value µ0 but remains
less than 1, the three strategies coexist stably in the long run. Conversely, if the mutation rate is below
this critical value µ0 but greater than 0, the three strategies exhibit periodic oscillations.

Next, considering µ as a constant, we examine how the selection intensity σ affects the game
dynamics, leading to the following theorem:

Theorem 2.2. When α > 1, let σ0 = 9
2

3µ+2
α−1 . If σ < σ0, the equilibrium x∗ is asymptotically stable. If

σ > σ0, the equilibrium x∗ becomes unstable, and an unstable periodic solution bifurcates from it. In
other words, the system undergoes a supercritical Hopf bifurcation at σ = σ0.

Proof. When α > 1, setting γ = 0, we obtain σ0 = 9
2

3µ+2
α−1 . If σ < σ0, it follows that γ < 0, and thus

the equilibrium x∗ is asymptotically stable. Conversely, if σ > σ0, we have γ > 0, the equilibrium x∗

becomes unstable, the system undergos a Hopf bifurcation at σ = σ0.
When σ = σ0, β(σ0) = −

√
3(4α+7µ+5αµ+4)

2(α−1) = β1, system (2.4) can be expressed as:(
ẋ1

ẋ2

)
=

(
0 −β1

β1 0

) (
x1

x2

)
+

(
g(x1, x2, σ0)
h(x1, x2, σ0)

)
, (2.21)

where g(x1, x2, σ0) and h(x1, x2, σ0) are given by:

g(x1, x2, σ0) = e[−(27µ/2+9)(αy2−(x+y−1)2+xy(α+1)+x(α+1)(x+y−1))/(α−1)]

M − x − µ(x − y)
−
√

3y(4α + 7µ + 5αµ + 4)/(2(α − 1)),

h(x1, x2, σ0) = e[(27µ/2+9)(x2−α(x+y−1)2+xy(α+1)+y(α+1)(x+y−1))/(α−1)]

M − µ(x + 2y − 1)
− y +

√
3x(4α + 7µ + 5αµ + 4)/(2(α − 1)),

(2.22)

with
M = e[−((27µ/2+9)(αy2−(x+y−1)2+xy(α+1)+x(α+1)(x+y−1)))/(α−1)]

+ e[−((27µ/2+9)(αx2−y2−x(α+1)(x+y−1)+y(α+1)(x+y−1)))/(α−1)]

+ e[(27µ/2+9)(x2−α(x+y−1)2+xy(α+1)+y(α+1)(x+y−1))/(α−1)].
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In polar coordinates, system (2.21) can be transformed into the following form:

{
ṙ = r(dσ0 + ar2),
θ̇ = β0 + cσ0 + br2,

(2.23)

analogous to the theorem above, calculations yield the first Lyapunov coefficient in this case as follows:

a = −
9(3µ+2)2(110α−13µ+147αµ+273α2µ+169α3µ+166α2+82α3+26)

128(α−1)3 < 0,
d = ∂

∂σ
(γ(σ)) = α−1

9 > 0,
(2.24)

in this case, the system undergoes a supercritical Hopf bifurcation. �

During the evolutionary game process, when the game is structured as a “high-risk, high-reward”
scenario, the selection intensity has a significant impact on the evolutionary outcomes. Specifically,
if the selection intensity is relatively low, the three strategies can coexist stably over the long term.
However, if the selection intensity exceeds a certain critical threshold, the three strategies exhibit
periodic oscillations. In summary, according to Theorems 2.1 and 2.2, although both the mutation
rate and selection intensity can induce Hopf bifurcations in the system, under certain conditions, the
directions of the bifurcations caused by these two factors may differ.

3. Numerical simulation

In the previous section, we explored the effects the impact of selection intensity and mutation rate
on the interior equilibrium of a three-player asymmetric RPS game. To further understand the dynamic
behaviors of this game model, we employ numerical simulations for validation and deeper exploration.
Specifically, MATLAB software is used to generate phase-space trajectories and time-series diagrams,
visually illustrating the system’s dynamic behavior under various parameter conditions.

Figure 1 summarizes the time series plots of system (2.4) under different values of the mutation rate
µ (panel (a)) and selection intensity σ (panel (b)), with initial conditions set as (0.2, 0.7). Specifically,
in panel (a), we set α = 4, σ = 5, from which it can be observed that the equilibrium (1

3 ,
1
3 ) is

asymptotically stable when µ > µ0 = 4
9 , whereas periodic oscillations appear when µ < µ0. This

illustrates that higher mutation levels stabilize coexistence among strategies. In panel (b), we set
α = 2, µ = 0.6, demonstrating that the equilibrium ( 1

3 ,
1
3 ) is asymptotically stable when σ < σ0 = 17.1,

but increasing σ beyond this threshold destabilizes the equilibrium, giving rise to sustained oscillations
around it. These observations are consistent with Theorems 2.1 and 2.2, providing numerical evidence
of Hopf bifurcations and highlighting how mutation and selection jointly shape the dynamic outcomes
of the asymmetric three-player RPS game.
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(a) Different values of µ. (b) Different values of σ.

Figure 1. Time series of system (2.4) with initial condition (0.2, 0.7), the equilibrium (1
3 ,

1
3 ) is

asymptotically stable when µ > µ0 or σ < σ0, while periodic oscillations emerge otherwise,
indicating a Hopf bifurcation.

Figure 2 illustrates the effects of varying values of µ on the reverse cyclic mutation logit system
under a fixed selection intensity ofσ. Both phase portraits and time series plots are presented. Selecting
the initial conditions as (0.2, 0.7), when α = 4, σ = 5, the corresponding value is µ0 = 4

9 . As shown in
panels (a) and (b), when µ = 8

9 > µ0, the trajectories converge, directly to the interior equilibrium (1
3 ,

1
3 ),

indicating asymptotic stability. Panels (c) and (d) depict the system at a critical state when µ = 4
9 = µ0,

where the trajectories circle around the equilibrium in a marginally stable manner, reflecting the onset
of a Hopf bifurcation. Finally, panels (e) and (f) demonstrate that when µ = 3

9 < µ0, the system exhibits
a limit cycle around the equilibrium point, as evidenced by the closed orbits in the phase portrait and
the sustained oscillations in the time series. Taken together, Figure 2 highlights the full transition from
stability to oscillation and visualizes the formation of periodic orbits, thereby providing clear numerical
evidence of Hopf bifurcation in the asymmetric three-player RPS game.

Figure 3 illustrates the influence of different σ values on the reverse-cyclic mutation logit system
under a fixed mutation rate µ. Both phase diagrams and time series plots are provided. Setting initial
conditions as (0.2, 0.7), we consider the scenario when α = 2, µ = 0.6, corresponding to the case
σ0 = 17.1. Panels (a) and (b) show that when σ = 5 < σ0, the trajectories stabilize over time,
converging smoothly to the interior equilibrium (1

3 ,
1
3 ), indicating asymptotic stability. In panels (c)

and (d), the system is at a critical state when σ = σ0 = 17.1, where the system oscillates around the
equilibrium without settling, signaling the onset of a Hopf bifurcation. Last, panels (e) and (f) illustrate
that the system exhibits a limit cycle around the equilibrium point when σ = 30 > σ0, as evidenced by
the closed orbit in the phase portrait and the sustained oscillations in the time series. Compared with
Figure 2, which emphasizes the role of the mutation rate, Figure 3 highlights how increasing rationality
(higher σ) destabilizes the equilibrium, demonstrating that mutation and selection can independently
induce Hopf bifurcations in the asymmetric three-player RPS game.
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(a) µ = 8
9 > µ0. (b) µ = 8

9 > µ0.

(c) µ = 4
9 = µ0. (d) µ = 4

9 = µ0.

(e) µ = 3
9 < µ0. (f) µ = 3

9 < µ0.

Figure 2. Phase portraits and time series of system (2.4) with α = 4, σ = 5, and initial
condition (0.2, 0.7). The equilibrium (1

3 ,
1
3 ) is asymptotically stable when µ > µ0 = 4

9 and
becomes marginally stable at µ = µ0, and loses stability with a stable limit cycle when
µ < µ0.
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(a) σ = 5 < σ0. (b) σ = 5 < σ0.

(c) σ = σ0 = 17.1. (d) σ = σ0 = 17.1.

(e) σ = 30 > σ0. (f) σ = 30 > σ0.

Figure 3. Phase portraits and time series of system (2.4) with α = 2, µ = 0.6, and initial
condition (0.2, 0.7). The equilibrium (1

3 ,
1
3 ) is asymptotically stable when σ < σ0 = 17.1,

becomes marginally stable at σ = σ0 and loses stability with a stable limit cycle when
σ > σ0, showing the occurrence of a Hopf bifurcation.
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4. Conclusions

In this paper, we focus on a three-player asymmetric RPS game by constructing an asymmetric
payoff matrix and subsequently establishing a reverse cyclic mutation logit system. The interior
equilibrium points of the system are then analyzed in depth. First, we investigate the effects of varying
values of µ on the dynamics of the system. It is revealed that the equilibrium x∗ is asymptotically stable
when µ exceeds the critical value µ0 but loses stability once µ drops below µ0, giving rise to an unstable
periodic orbit via a Hopf bifurcation. During the computations, when the first Lyapunov coefficient is
nonzero, the bifurcation type can be directly determined. However, if the first Lyapunov coefficient
equals zero, the system may experience a degenerate Hopf bifurcation. In this case, further analysis
is required, and the second Lyapunov coefficient is computed to determine the precise bifurcation
type: If E < 0, the system undergoes a supercritical Hopf bifurcation; and if E ≥ 0, a subcritical
Hopf bifurcation occurs. Furthermore, we explore how varying values of σ influence the system. The
results indicate that when σ < σ0, the equilibrium point x∗ is asymptotically stable. Conversely, when
σ > σ0, this equilibrium loses stability, and a stable periodic solution emerges around it, indicating
that the system undergoes a supercritical Hopf bifurcation at σ = σ0. Finally, numerical simulations
are performed to validate the theoretical findings, and the results are consistent with the theoretical
analysis, thereby confirming the accuracy of the conclusions drawn in this paper. Beyond these
results, future work could extend the present framework to other forms of asymmetric multiplayer
games, incorporate additional mechanisms such as time delays or stochastic perturbations, and explore
applications in socio-economic and biological systems where asymmetric strategic interactions are
prevalent.
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