This paper presents a survey of a geometrically exact beam theory formulated within the framework of Lie groups, aimed at providing a mathematically consistent description of slender structures undergoing large displacements and rotations. The beam configuration is modeled as a curve in the space $ {{{\mathbb{SO}(3)}}}\times{{{\mathbb{R}}}}^3 $, enabling a coordinate-free expression of the governing equations. A variational formulation serves as the basis for deriving the equations of motion, which emerge as nonstandard Euler-Lagrange equations on the configuration space. Strain measures arising from the group structure define the internal forces and moments, which couple to the dynamics via balance laws. The formulation automatically incorporates conservation of energy, linear momentum, and angular momentum, and reveals the underlying geometric structure through the appearance of Lie brackets in the angular momentum equation. This framework emphasizes the connection between geometry and mechanics, offering advantages in both physical fidelity and computational stability.
Citation: Simone Fiori. Variational formulation of a fully-three-dimensional non-linear beam dynamics by a Lie-group representation[J]. AIMS Mathematics, 2025, 10(9): 21953-21993. doi: 10.3934/math.2025978
This paper presents a survey of a geometrically exact beam theory formulated within the framework of Lie groups, aimed at providing a mathematically consistent description of slender structures undergoing large displacements and rotations. The beam configuration is modeled as a curve in the space $ {{{\mathbb{SO}(3)}}}\times{{{\mathbb{R}}}}^3 $, enabling a coordinate-free expression of the governing equations. A variational formulation serves as the basis for deriving the equations of motion, which emerge as nonstandard Euler-Lagrange equations on the configuration space. Strain measures arising from the group structure define the internal forces and moments, which couple to the dynamics via balance laws. The formulation automatically incorporates conservation of energy, linear momentum, and angular momentum, and reveals the underlying geometric structure through the appearance of Lie brackets in the angular momentum equation. This framework emphasizes the connection between geometry and mechanics, offering advantages in both physical fidelity and computational stability.
| [1] |
K. G. Aktas, I. Esen, State-space modeling and active vibration control of smart flexible cantilever beam with the use of finite element method, Eng. Technol. Appl. Sci. Res., 10 (2020), 6549–6556. https://doi.org/10.48084/etasr.3949 doi: 10.48084/etasr.3949
|
| [2] |
I. I. Andrianov, J. Awrejcewicz, W. T. van Horssen, On the Bolotin's reduced beam model versus various boundary conditions, Mech. Res. Commun., 105 (2020), 103505. https://doi.org/10.1016/j.mechrescom.2020.103505 doi: 10.1016/j.mechrescom.2020.103505
|
| [3] | S. S. Antman, Nonlinear problems of elasticity, In: Applied mathematical sciences, 2 Eds., New York: Springer, 2005. |
| [4] |
G. Aretusi, C. Cardillo, A. Salvatori, E. Bednarczyk, R. Fedele, A simple extension of Timoshenko beam model to describe dissipation in cementitious elements, Zeitschrift Angewandte Math. Phys., 75 (2024), 166. https://doi.org/10.1007/s00033-024-02304-w doi: 10.1007/s00033-024-02304-w
|
| [5] |
J. M. Aristoff, C. Clanet, J. W. Bush, The elastochrone: The descent time of a sphere on a flexible beam, Proce. Royal Soc. A: Math. Phys. Eng. Sci., 465 (2009), 2293–2311. https://doi.org/10.1098/rspa.2009.0048 doi: 10.1098/rspa.2009.0048
|
| [6] |
E. M. Bakr, A. A. Shabana, Application of Timoshenko beam theory to the dynamics of flexible legged locomotion, J. Mech. Trans. Autom. Design, 110 (1988), 28–34. https://doi.org/10.1115/1.3258900 doi: 10.1115/1.3258900
|
| [7] |
S. Bali, Tukovi´c, P. Cardiff, A. Ivankovi´c, V. Pakrashi, A cell-centered finite volume formulation of geometrically exact simo–reissner beams with arbitrary initial curvatures, Int. J. Numer. Meth. Eng., 123 (2022), 3950–3973. https://doi.org/10.1002/nme.6994 doi: 10.1002/nme.6994
|
| [8] | P. Betsch, Structure-preserving integrators in nonlinear structural dynamics and flexible multibody dynamics, Cham: Springer, 2016. https://doi.org/10.1007/978-3-319-31879-0 |
| [9] | A. Bloch, J. Marsden, D. Zenkov, Nonholonomic dynamics, Notices AMS, 52 (2005), 320–329. |
| [10] |
F. Boyer, G. De Nayer, A. Leroyer, M. Visonneau, Geometrically exact Kirchhoff beam theory: Application to cable dynamics, J. Comput. Nonlinear Dyn., 6 (2011), 041004. https://doi.org/10.1115/1.4003625 doi: 10.1115/1.4003625
|
| [11] |
G. Carcassi, C. Aidala, Geometric and physical interpretation of the action principle, Sci. Rep., 13 (2023), 12138. https://doi.org/10.1038/s41598-023-39145-y doi: 10.1038/s41598-023-39145-y
|
| [12] | E. Cosserat, F. Cosserat, Théorie des corps déformables, Paris: Hermann et Fils, 1909. |
| [13] | O. Cosserat, L. L. Marrec, Timoshenko beam under finite and dynamic transformations: Lagrangian coordinates and Hamiltonian structures, preprint paper, 2025. https://doi.org/10.48550/arXiv.2407.14453 |
| [14] |
M. De Rosa, M. Lippiello, I. Elishakoff, Variational derivation of truncated Timoshenko- Ehrenfest beam theory, J. Appl. Comput. Mech., 8 (2022), 996–1004. https://doi.org/10.22055/jacm.2022.39354.3394 doi: 10.22055/jacm.2022.39354.3394
|
| [15] |
F. Demoures, F. Gay-Balmaz, S. Leyendecker, S. Ober-Blöbaum, T. S. Ratiu, Y. Weinand, Discrete variational Lie group formulation of geometrically exact beam dynamics, Numer. Math., 130 (2015), 73–123. https://doi.org/10.1007/s00211-014-0659-4 doi: 10.1007/s00211-014-0659-4
|
| [16] | D. J. Dichmann, Y. Li, J. H. Maddocks, Hamiltonian formulations and symmetries in rod mechanics, New York: Springer, 1996. https://doi.org/10.1007/978-1-4612-4066-2_6 |
| [17] |
E. Dowell, K. McHugh, Equations of motion for an inextensible beam undergoing large deflections, J. Appl. Mech., 83 (2016), 051007. https://doi.org/10.1115/1.4032795 doi: 10.1115/1.4032795
|
| [18] |
H. Essén, A. Nordmark, A simple model for the falling cat problem, European J. Phys., 39 (2018), 035004. https://doi.org/10.1088/1361-6404/aaac06 doi: 10.1088/1361-6404/aaac06
|
| [19] | S. R. Eugster, J. Harsch, A variational formulation of classical nonlinear beam theories, In: Developments and novel approaches in nonlinear solid body mechanics, Cham: Springer International Publishing, 2020. https://doi.org/10.1007/978-3-030-50460-1_9 |
| [20] |
H. Farokhi, Y. Xia, A. Erturk, Experimentally validated geometrically exact model for extreme nonlinear motions of cantilevers, Nonlinear Dyn., 105 (2021), 3005–3022. https://doi.org/10.1007/s11071-021-07023-9 doi: 10.1007/s11071-021-07023-9
|
| [21] |
S. Fiori, Coordinate-free Lie-group-based modeling and simulation of a submersible vehicle, AIMS Math., 9 (2024), 10157–10184. https://doi.org/10.3934/math.2024497 doi: 10.3934/math.2024497
|
| [22] |
S. Fiori, Lie-group modeling and simulation of a spherical robot, actuated by a yoke–pendulum system, rolling over a flat surface without slipping, Robot. Auton. Syst., 175 (2024), 104660. https://doi.org/10.1016/j.robot.2024.104660 doi: 10.1016/j.robot.2024.104660
|
| [23] |
S. Fiori, L. Sabatini, F. Rachiglia, E. Sampaolesi, Modeling, simulation and control of a spacecraft: Automated reorientation under directional constraints, Acta Astronaut., 216 (2024), 214–228. https://doi.org/10.1016/j.actaastro.2023.12.053 doi: 10.1016/j.actaastro.2023.12.053
|
| [24] | G. B. Folland, Real analysis: Modern techniques and their applications, 2 Eds., Hoboken: John Wiley & Sons, 1999. |
| [25] |
C. Frohlich, The physics of somersaulting and twisting, Sci. Amer., 242 (1980), 154–165. https://doi.org/10.1038/scientificamerican0380-154 doi: 10.1038/scientificamerican0380-154
|
| [26] |
J. Gerstmayr, M. K. Matikainen, A. M. Mikkola, A geometrically exact beam element based on the absolute nodal coordinate formulation, Multibody Syst. Dyn., 20 (2008), 359–384. https://doi.org/10.1007/s11044-008-9125-3 doi: 10.1007/s11044-008-9125-3
|
| [27] |
S. Ghuku, K. N. Saha, A review on stress and deformation analysis of curved beams under large deflection, Int. J. Eng. Technol., 11 (2017), 13–39. https://doi.org/10.56431/p-48538j doi: 10.56431/p-48538j
|
| [28] |
C. A. González-Cruz, J. C. Jauregui-Correa, G. Herrera-Ruiz, Nonlinear response of cantilever beams due to large geometric deformations: Experimental validation, J. Mech. Eng., 62 (2016), 187–196. https://doi.org/10.5545/sv-jme.2015.2964 doi: 10.5545/sv-jme.2015.2964
|
| [29] |
S. Gu, J. Chen, Q. Tian, An adaptive time-step energy-preserving variational integrator for flexible multibody system dynamics, Appl. Math. Model., 138 (2025), 115759. https://doi.org/10.1016/j.apm.2024.115759 doi: 10.1016/j.apm.2024.115759
|
| [30] |
Z. V. Guo, L. Mahadevan, Limbless undulatory propulsion on land, Proc. National Acad. Sci., 105 (2008), 3179–3184. https://doi.org/10.1073/pnas.0705442105 doi: 10.1073/pnas.0705442105
|
| [31] |
M. Herrmann, S. Leyendecker, Relative-kinematic formulation of geometrically exact beam dynamics based on Lie group variational integrators, Comput. Meth. Appl. Mech. Eng., 432 (2024), 117375. https://doi.org/10.1016/j.cma.2024.117375 doi: 10.1016/j.cma.2024.117375
|
| [32] |
C. Howcroft, R. G. Cook, S. A. Neild, M. H. Lowenberg, J. E. Cooper, E. B. Coetzee, On the geometrically exact low-order modelling of a flexible beam: Formulation and numerical tests, Proc. Royal Soc. A: Math. Phys. Eng. Sci., 474 (2018), 0423. https://doi.org/10.1098/rspa.2018.0423 doi: 10.1098/rspa.2018.0423
|
| [33] |
K. Huang, X. Cai, M. Wang, Bernoulli-Euler beam theory of single-walled carbon nanotubes based on nonlinear stress-strain relationship, Mater. Res. Express, 7 (2020), 125003. https://doi.org/10.1088/2053-1591/abce86 doi: 10.1088/2053-1591/abce86
|
| [34] |
G. Huber, D. Wollherr, M. Buss, A concise and geometrically exact planar beam model for arbitrarily large elastic deformation dynamics, Front. Robot. AI, 7 (2021), 609478. https://doi.org/10.3389/frobt.2020.609478 doi: 10.3389/frobt.2020.609478
|
| [35] |
M. Javanmard, M. Bayat, A. Ardakani, Nonlinear vibration of Euler-Bernoulli beams resting on linear elastic foundation, Steel Compos. Struct., 15 (2013), 439. https://doi.org/10.12989/scs.2013.15.4.439 doi: 10.12989/scs.2013.15.4.439
|
| [36] |
G. Jelenic, M. Crisfield, Geometrically exact 3D beam theory: Implementation of a strain-invariant finite element for statics and dynamics, Comput. Meth. Appl. Mech. Eng., 171 (1999), 141–171. https://doi.org/10.1016/S0045-7825(98)00249-7 doi: 10.1016/S0045-7825(98)00249-7
|
| [37] | P. Jung, S. Leyendeckery, J. Linnz, M. Ortiz, Discrete Lagrangian mechanics and geometrically exact Cosserat rods, In: Multibody Dynamics 2009, ECCOMAS Thematic Conference, Warsaw, Poland, 2009. |
| [38] |
P. L. Kinon, P. Betsch, S. Schneider, Structure-preserving integrators based on a new variational principle for constrained mechanical systems, Nonlinear Dyn., 111 (2023), 14231–14261. https://doi.org/10.1007/s11071-023-08542-4 doi: 10.1007/s11071-023-08542-4
|
| [39] |
S. K. Kota, S. Kumar, B. Giovanardi, A discontinuous Galerkin/cohesive zone model approach for the computational modeling of fracture in geometrically exact slender beams, Comput. Mech., 75 (2025), 595–612. https://doi.org/10.1007/s00466-024-02521-0 doi: 10.1007/s00466-024-02521-0
|
| [40] |
H. Lang, J. Linn, M. Arnold, Multibody dynamics simulation of geometrically exact Cosserat rods, Multibody Syst. Dyn., 25 (2011), 285–312. https://doi.org/10.1007/s11044-010-9223-x doi: 10.1007/s11044-010-9223-x
|
| [41] | T. Leitz, S. Ober-Blobaum, S. Leyendecker, Variational Lie group formulation of geometrically exact beam dynamics, In: Synchronous and asynchronous integration, Cham: Springer International Publishing, 175–203, 2014. https://doi.org/10.1007/978-3-319-07260-9_8 |
| [42] |
T. Leitz, R. T. Sato, M. de Almagro, S. Leyendecker, Multisymplectic Galerkin Lie group variational integrators for geometrically exact beam dynamics based on unit dual quaternion interpolation-no shear locking, Comput. Meth. Appl. Mech. Eng., 374 (2021), 113475. https://doi.org/10.1016/j.cma.2020.113475 doi: 10.1016/j.cma.2020.113475
|
| [43] |
N. Lemos, Complete inequivalence of nonholonomic and vakonomic mechanics, Acta Mech., 233 (2021), 47–56. https://doi.org/10.1007/s00707-021-03106-1 doi: 10.1007/s00707-021-03106-1
|
| [44] |
M. Levinson, A new rectangular beam theory, J. Sound Vibr., 74 (1981), 81–87. https://doi.org/10.1016/0022-460X(81)90493-4 doi: 10.1016/0022-460X(81)90493-4
|
| [45] |
V. L. Litvinov, Variational formulation of the problem on vibrations of a beam with a moving spring-loaded support, Theoret. Math. Phys., 215 (2023), 709–715. https://doi.org/10.1134/S0040577923050094 doi: 10.1134/S0040577923050094
|
| [46] |
Y. Lu, X. Liu, H. Zhang, Dynamics of slender beam based on geometrically exact Kirchhoff beam theory formulated on SO(3) group, Acta Mech. Sinica, 40 (2024), 623017. https://doi.org/10.1007/s10409-023-23017-x doi: 10.1007/s10409-023-23017-x
|
| [47] |
Z. Lu, Z. Zhang, Y. Yang, L. Dong, S. N. Atluri, Framework of physically consistent homogenization and multiscale modeling of beam structures, AIAA J., 62 (2024), 4855–4869. https://doi.org/10.2514/1.J063902 doi: 10.2514/1.J063902
|
| [48] |
C. Ma, M. Shao, J. Ma, C. Liu, K. Gao, Fluid structure interaction analysis of flexible beams vibrating in a time-varying fluid domain, Proc. Inst. Mech. Eng. Part C, 234 (2020), 1913–1927. https://doi.org/10.1177/0954406220902163 doi: 10.1177/0954406220902163
|
| [49] |
D. Manta, R. Gonçalves, A geometrically exact Kirchhoff beam model including torsion warping, Comput. Struct., 177 (2016), 192–203. https://doi.org/10.1016/j.compstruc.2016.08.013 doi: 10.1016/j.compstruc.2016.08.013
|
| [50] |
T. McDonnell, A. Ning, Geometrically exact beam theory for gradient-based optimization, Comput. Struct., 298 (2024), 107373. https://doi.org/10.1016/j.compstruc.2024.107373 doi: 10.1016/j.compstruc.2024.107373
|
| [51] |
C. Meier, A. Popp, W. Wall, Geometrically exact finite element formulations for slender beams: Kirchhoff–Love theory versus Simo-Reissner theory, Arch. Comput. Meth. Eng., 26 (2019), 163–243. https://doi.org/10.1007/s11831-017-9232-5 doi: 10.1007/s11831-017-9232-5
|
| [52] | J. Nabeshima, M. H. D. Y. Saraiji, K. Minamizawa, Arque: Artificial biomimicry-inspired tail for extending innate body functions, In: ACM SIGGRAPH 2019 Posters, SIGGRAPH '19, 2019, 52. https://doi.org/10.1145/3306214.3338573 |
| [53] |
R. Nzengwa, Lagrange multiplier and variational equations in mechanics, J. Eng. Math., 144 (2024), 5. https://doi.org/10.1007/s10665-023-10299-y doi: 10.1007/s10665-023-10299-y
|
| [54] |
P. F. Pai, Geometrically exact beam theory without Euler angles, Int. J. Solids Struct., 48 (2011), 3075–3090. https://doi.org/10.1016/j.ijsolstr.2011.07.003 doi: 10.1016/j.ijsolstr.2011.07.003
|
| [55] |
N. Peres, R. Gonçalves, D. Camotim, A geometrically exact beam finite element for curved thin-walled bars with deformable cross-section, Comput. Meth. Appl. Mech. Eng., 381 (2021), 113804. https://doi.org/10.1016/j.cma.2021.113804 doi: 10.1016/j.cma.2021.113804
|
| [56] | J. N. Reddy, Mechanics of laminated composite plates and shells: Theory and analysis, Boca Raton: CRC Press, 1993. |
| [57] | L. Reti, The unknown Leonardo, New York: McGraw-Hill, 1974. |
| [58] |
C. Rodriguez, Networks of geometrically exact beams: Well-posedness and stabilization, Math. Control Related Fields, 12 (2022), 49–80. https://doi.org/10.3934/mcrf.2021002 doi: 10.3934/mcrf.2021002
|
| [59] |
C. Rodriguez, G. Leugering, Boundary feedback stabilization for the intrinsic geometrically exact beam model, SIAM J. Control Optim., 58 (2020), 3533–3558. https://doi.org/10.1137/20M1340010 doi: 10.1137/20M1340010
|
| [60] |
M. Shao, C. Ma, S. Hu, C. Sun, D. Jing, Effects of time-varying fluid on dynamical characteristics of cantilever beams: Numerical simulations and experimental measurements, Math. Probl. Eng., 2020 (2020), 6679443. https://doi.org/10.1155/2020/6679443 doi: 10.1155/2020/6679443
|
| [61] | R. W. Sharpe, Differential geometry: Cartan's generalization of Klein's erlangen program, New York: Springer, 1997. https://doi.org/10.1007/978-1-4612-0691-2 |
| [62] |
J. Simo, L. Vu-Quoc, A three-dimensional finite-strain rod model. Part Ⅱ: Computational aspects, Comput. Meth. Appl. Mech. Eng., 58 (1986), 79–116. https://doi.org/10.1016/0045-7825(86)90079-4 doi: 10.1016/0045-7825(86)90079-4
|
| [63] |
N. Singh, I. Sharma, S. S. Gupta, Dynamics of variable length geometrically exact beams in three-dimensions, Int. J. Solids Struct., 191-192 (2020), 614–627. https://doi.org/10.1016/j.ijsolstr.2019.11.005 doi: 10.1016/j.ijsolstr.2019.11.005
|
| [64] |
V. Sonneville, A. Cardona, O. Brüls, Geometrically exact beam finite element formulated on the special Euclidean group SE(3), Comput. Meth. Appl. Mech. Eng., 268 (2014), 451–474. https://doi.org/10.1016/j.cma.2013.10.008 doi: 10.1016/j.cma.2013.10.008
|
| [65] |
A. Tariverdi, V. K. Venkiteswaran, Ø. G. Martinsen, O. J. Elle, J. Tørresen, S. Misra, Dynamic modeling of soft continuum manipulators using Lie group variational integration, PLoS One, 15 (2020), e0236121. https://doi.org/10.1371/journal.pone.0236121 doi: 10.1371/journal.pone.0236121
|
| [66] | S. P. Timoshenko, J. M. Gere, Strength of materials, Part 1: Elementary theory and problems, 2 Eds., New York: Van Nostrand, 1955. |
| [67] |
V. Tojaga, T. C. Gasser, A. Kulachenko, S. Östlund, A. Ibrahimbegovic, Geometrically exact beam theory with embedded strong discontinuities for the modeling of failure in structures. Part Ⅰ: Formulation and finite element implementation, Comput. Meth. Appl. Mech. Eng., 410 (2023), 116013. https://doi.org/10.1016/j.cma.2023.116013 doi: 10.1016/j.cma.2023.116013
|
| [68] | A. P. Tzes, S. Yurkovich, F. D. Langer, A method for solution of the Euler-Bernoulli beam equation in flexible-link robotic systems, In: IEEE 1989 International Conference on Systems Engineering, 1989, 557–560. https://doi.org/10.1109/ICSYSE.1989.48736 |
| [69] |
K. Wu, G. Zheng, A comprehensive static modeling methodology via beam theory for compliant mechanisms, Mech. Mach. Theory, 169 (2022), 104598. https://doi.org/10.1016/j.mechmachtheory.2021.104598 doi: 10.1016/j.mechmachtheory.2021.104598
|
| [70] | Q. Wu, N. Zhao, M. Yao, Y. Niu, C. Wang, Free vibrations and frequency sensitivity of bionic microcantilevers with stress concentration effect, Int. J. Struct. Stability Dyn., 2025. https://doi.org/10.1142/S0219455426502226 |
| [71] |
W. S. Yoo, J. H. Lee, S. J. Park, J. H. Sohn, O. Dmitrochenko, D. Y. Pogorelov, Large oscillations of a thin cantilever beam: Physical experiments and simulation using the absolute nodal coordinate formulation, Nonlinear Dyn., 34 (2003), 3–29. https://doi.org/10.1023/B:NODY.0000014550.30874.cc doi: 10.1023/B:NODY.0000014550.30874.cc
|