This study examines a stochastic susceptible-exposed-infected-recovered-vaccinated $ ({\mathbf S} {\mathbf E}_1 {\mathbf E}_2 {\mathbf I} {\mathbf R} {\mathbf V}) $ model exhibiting the dynamics of the computer virus within the wireless sensor networks (WSNs) while considering the unpredictability of nodes and the impact of anti-virus measures. The model is formulated with reasonable assumptions, and the stochastic stability is performed with a derivation of a six-dimensional Fokker-Planck equation. To obtain an analytical representation of the probability density functions, a scheme is developed and subsequently implemented in MATLAB. The behavior of the model around the quasi-endemic state is numerically investigated, which reflects the main objective and unique novelty of the present work. On the basis of various parameter settings, graphical illustrations of the model are presented showing the authenticity of the analytical results and complex aspects of the phenomenon. The paper concludes with a brief summary of the study and important insights for future research.
Citation: Hassan Tahir, Anwarud Din, Wajahat Ali Khan, Mati ur Rahman. Numerical investigation of a wireless sensor network epidemic model with $ \alpha $-stable noise: A case study[J]. AIMS Mathematics, 2025, 10(9): 20312-20345. doi: 10.3934/math.2025908
This study examines a stochastic susceptible-exposed-infected-recovered-vaccinated $ ({\mathbf S} {\mathbf E}_1 {\mathbf E}_2 {\mathbf I} {\mathbf R} {\mathbf V}) $ model exhibiting the dynamics of the computer virus within the wireless sensor networks (WSNs) while considering the unpredictability of nodes and the impact of anti-virus measures. The model is formulated with reasonable assumptions, and the stochastic stability is performed with a derivation of a six-dimensional Fokker-Planck equation. To obtain an analytical representation of the probability density functions, a scheme is developed and subsequently implemented in MATLAB. The behavior of the model around the quasi-endemic state is numerically investigated, which reflects the main objective and unique novelty of the present work. On the basis of various parameter settings, graphical illustrations of the model are presented showing the authenticity of the analytical results and complex aspects of the phenomenon. The paper concludes with a brief summary of the study and important insights for future research.
| [1] |
Y. Y. Ghadi, T. Mazhar, T. Al Shloul, T. Shahzad, U. A. Salaria, A. Ahmed, et al., Machine learning solutions for the security of wireless sensor networks: A review, IEEE Access, 12 (2024), 12699–12719. https://doi.org/10.1109/access.2024.3355312 doi: 10.1109/access.2024.3355312
|
| [2] |
D. M. G. Preethichandra, L. Piyathilaka, U. Izhar, R. Samarasinghe, L. C. De Silva, Wireless body area networks and their applications: A review, IEEE Access, 11 (2023), 9202–9220. https://doi.org/10.1109/ACCESS.2023.3239008 doi: 10.1109/ACCESS.2023.3239008
|
| [3] |
M. Faris, M. N. Mahmud, M. F. M. Salleh, A. Alnoor, Wireless sensor network security: A recent review based on state-of-the-art works, Int. J. Eng. Bus. Manag., 15 (2023), 1–29. https://doi.org/10.1177/18479790231157220 doi: 10.1177/18479790231157220
|
| [4] | H. K. Patil, T. M. Chen, Wireless sensor network security, In: Computer and information security handbook, 2 Eds., San Francisco: Morgan Kaufmann, 2013,301–322. https://doi.org/10.1016/B978-0-12-394397-2.00016-7 |
| [5] |
N. U. Nilabar, A. Manikandan, C. Venkataramanan, R. Dhanapal, A score based link delay aware routing protocol to improve energy optimization in wireless sensor network, J. Eng. Res., 11 (2023), 404–413. https://doi.org/10.1016/j.jer.2023.100115 doi: 10.1016/j.jer.2023.100115
|
| [6] |
M. S. Haghighi, S. Wen, Y. Xiang, B. Quinn, W. L. Zhou, On the race of worms and patches: modeling the spread of information in wireless sensor networks, IEEE T. Inf. Foren. Sec., 11 (2016), 2854–2865. https://doi.org/10.1109/tifs.2016.2594130 doi: 10.1109/tifs.2016.2594130
|
| [7] |
K. Das, V. Madhusudanan, M. H. Kabir, M. O. Gani, Stability analysis of E-epidemic SIT model with Beddington–DeAngelis functional response for wireless sensor network, Discontinuity, Nonlinearity, and Complexity, 12 (2023), 737–756. https://doi.org/10.5890/DNC.2023.12.003 doi: 10.5890/DNC.2023.12.003
|
| [8] |
T. Lenard, A. Collen, M. Benyahya, N. A. Nijdam, B. Genge, Exploring trust modelling and management techniques in the context of distributed wireless networks: A literature review, IEEE Access, 11 (2023), 106803–106832. https://doi.org/10.1109/access.2023.3320945 doi: 10.1109/access.2023.3320945
|
| [9] |
P. De, Y. H. Liu, S. K. Das, Deployment-aware modeling of node compromise spread in wireless sensor networks using epidemic theory, ACM T. Sensor Network., 5 (2009), 1–33. https://doi.org/10.1145/1525856.1525861 doi: 10.1145/1525856.1525861
|
| [10] |
Á. M. del Rey, A novel model for malware propagation on wireless sensor networks, Math. Biosci. Eng., 21 (2024), 3967–3998. https://doi.org/10.3934/mbe.2024176 doi: 10.3934/mbe.2024176
|
| [11] |
H. Tahir, A. Din, K. Shah, B. Abdalla, T. Abdeljawad, Advances in stochastic epidemic modeling: tackling worm transmission in wireless sensor networks, Math. Comp. Model. Dyn., 30 (2024), 658–682. https://doi.org/10.1080/13873954.2024.2396480 doi: 10.1080/13873954.2024.2396480
|
| [12] |
S. M. A. Shah, H. Tahir, A. Khan, W. A. khan, A. Arshad, Stochastic model on the transmission of worms in wireless sensor network, Journal of Mathematical Techniques in Modeling, 1 (2024), 75–88. https://doi.org/10.56868/jmtm.v1i1.31 doi: 10.56868/jmtm.v1i1.31
|
| [13] |
Y. S. Liu, X. W. Dong, E. Zio, Y. Cui, Active resilient secure control for heterogeneous swarm systems under malicious cyber-attacks, IEEE Transactions on Systems Man and Cybernetics Systems, 2025 (2025), 1–10. https://doi.org/10.1109/tsmc.2025.3580940 doi: 10.1109/tsmc.2025.3580940
|
| [14] |
G. Xu, X. Y. Fan, S. Y. Xu, Y. B. Cao, X.-B. Chen, T. Shang, et al., Anonymity-enhanced sequential multi-signer ring signature for secure medical data sharing in IoMT, IEEE T. Inf. Foren. Sec., 20 (2025), 5647–5662. https://doi.org/10.1109/tifs.2025.3574959 doi: 10.1109/tifs.2025.3574959
|
| [15] |
V. Gowdhaman, R. Dhanapal, Hybrid deep learning-based intrusion detection system for wireless sensor network, International Journal of Vehicle Information and Communication Systems, 9 (2024), 239–255. https://doi.org/10.1504/ijvics.2024.139627 doi: 10.1504/ijvics.2024.139627
|
| [16] |
S. Y. Chen, H. B. Jiang, J. Y. Hu, T. Y. Zheng, M. Y. Wang, Z. Xiao, et al., Echoes of fingertip: unveiling POS terminal passwords through Wi-Fi beamforming feedback, IEEE T. Mobile Comput., 24 (2024), 662–676. https://doi.org/10.1109/tmc.2024.3465564 doi: 10.1109/tmc.2024.3465564
|
| [17] |
C. Rattanakul, I. Chaiya, A mathematical model for predicting and controlling COVID-19 transmission with impulsive vaccination, AIMS Mathematics, 9 (2024), 6281–6304. https://doi.org/10.3934/math.2024306 doi: 10.3934/math.2024306
|
| [18] |
J. J. Du, C. L. Qin, Y. X. Hui, Optimal control and analysis of a stochastic SEIR epidemic model with nonlinear incidence and treatment, AIMS Mathematics, 9 (2024), 33532–33550. https://doi.org/10.3934/math.20241600 doi: 10.3934/math.20241600
|
| [19] |
B. Li, H. J. Liang, Q. Z. He, Multiple and generic bifurcation analysis of a discrete Hindmarsh–Rose model, Chaos Soliton. Fract., 146 (2021), 110856. https://doi.org/10.1016/j.chaos.2021.110856 doi: 10.1016/j.chaos.2021.110856
|
| [20] |
A. Haghighi, N. Nyamoradi, Dynamics of a stochastic epidemic model for infectious diseases: inclusion of the environmental contamination factor, J. Appl. Math. Comput., (2025). https://doi.org/10.1007/s12190-025-02507-y doi: 10.1007/s12190-025-02507-y
|
| [21] |
P. J. Liu, A. Din, Comprehensive analysis of a stochastic wireless sensor network motivated by Black–Karasinski process, Sci. Rep., 14 (2024), 8799. https://doi.org/10.1038/s41598-024-59203-3 doi: 10.1038/s41598-024-59203-3
|
| [22] | Q. T. Ain, Nonlinear stochastic cholera epidemic model under the influence of noise, Journal of Mathematical Techniques in Modeling, 1 (2024), 52–74. |
| [23] |
Q. Liu, A. A. Aeshah, A. Din, Lévy impact on the transmission of worms in wireless sensor network: stochastic analysis, Results Phys., 52 (2023), 106757. https://doi.org/10.1016/j.rinp.2023.106757 doi: 10.1016/j.rinp.2023.106757
|
| [24] |
Z. W. Yin, Y. S. Tan, Threshold dynamics of stochastic SIRSW infectious disease model with multiparameter perturbation, AIMS Mathematics, 9 (2024), 33467–33492. https://doi.org/10.3934/math.20241597 doi: 10.3934/math.20241597
|
| [25] |
Y. Q. Qiao, J. H. Lü, T. Wang, K. X. Liu, B. C. Zhang, H. Snoussi, A multihead attention self-supervised representation model for industrial sensors anomaly detection, IEEE T. Ind. Inform., 20 (2024), 2190–2199. https://doi.org/10.1109/tii.2023.3280337 doi: 10.1109/tii.2023.3280337
|
| [26] |
Z. G. Xiong, Q. Q. Lou, Y. F. Li, H. Chen, X. M. Zhang, Y. Li, et al., NDLSC: A new deep learning-based approach to smart contract vulnerability detection, J. Sign. Process. Syst., 97 (2025), 49–68. https://doi.org/10.1007/s11265-025-01954-x doi: 10.1007/s11265-025-01954-x
|
| [27] |
X.-B. Zhang, X.-D. Wang, H.-F. Huo, Extinction and stationary distribution of a stochastic SIRS epidemic model with standard incidence rate and partial immunity, Physica A, 531 (2019), 121548. https://doi.org/10.1016/j.physa.2019.121548 doi: 10.1016/j.physa.2019.121548
|
| [28] |
M. El Fatini, I. Sekkak, Lévy noise impact on a stochastic delayed epidemic model with Crowly–Martin incidence and crowding effect, Physica A, 541 (2020), 123315. https://doi.org/10.1016/j.physa.2019.123315 doi: 10.1016/j.physa.2019.123315
|
| [29] |
Y.-A. Dong, Y.-F. Dong, T.-T. Lin, Dynamics of a stochastic rumor propagation model incorporating media coverage and driven by Lévy noise, Chinese Phys. B, 30 (2021), 080201. https://doi.org/10.1088/1674-1056/ac0423 doi: 10.1088/1674-1056/ac0423
|