This paper presents the construction of a 5D Euler equation using four sub-Euler equations with the coupling parameters and analyzes the conservation of Hamiltonian and Casimir energy. By breaking the conservation of Casimir energy, a 5D Hamiltonian conservative hyperchaotic system is developed. Phase diagrams, Lyapunov exponent spectra, and bifurcation diagrams are employed to investigate the nonlinear properties of the system. It is discovered that the system possesses dynamic characteristics such as amplitude control, multistability, transient quasi-period, and a wide constant range. The statistical properties of the pseudo-random sequences produced by the system are assessed via the National Institute of Standards and Technology (NIST). Lastly, the circuit simulation and STM32 platform are used to confirm the viability of the system.
Citation: Birong Xu, Zhitao Xu. Constructing a 5D Hamiltonian conservative hyperchaotic system with amplitude control, multistability, and wide constant range[J]. AIMS Mathematics, 2025, 10(9): 20346-20367. doi: 10.3934/math.2025909
This paper presents the construction of a 5D Euler equation using four sub-Euler equations with the coupling parameters and analyzes the conservation of Hamiltonian and Casimir energy. By breaking the conservation of Casimir energy, a 5D Hamiltonian conservative hyperchaotic system is developed. Phase diagrams, Lyapunov exponent spectra, and bifurcation diagrams are employed to investigate the nonlinear properties of the system. It is discovered that the system possesses dynamic characteristics such as amplitude control, multistability, transient quasi-period, and a wide constant range. The statistical properties of the pseudo-random sequences produced by the system are assessed via the National Institute of Standards and Technology (NIST). Lastly, the circuit simulation and STM32 platform are used to confirm the viability of the system.
| [1] |
G. Li, X. Xu, H. Zhong, A image encryption algorithm based on coexisting multi-attractors in a spherical chaotic system, Multimed Tools Appl., 81 (2022), 32005–32031. https://doi.org/10.1007/s11042-022-12853-9 doi: 10.1007/s11042-022-12853-9
|
| [2] |
N. F. Karagiorgos, S. G. Stavrinides, C. de Benito, S. Nikolaidis, R. Picos, Unconventional security for IoT: Hardware and software implementation of a digital Chaotic encrypted communication scheme, IEEE Internet Things J., 11 (2024), 19914–19925. https://doi.org/10.1109/JIOT.2024.3371091 doi: 10.1109/JIOT.2024.3371091
|
| [3] |
T. Abdeljawad, M. Sher, K. Shah, M. Sarwar, I. Amacha, M. Alqudah, et al., Analysis of a class of fractal hybrid fractional differential equation with application to a biological model, Sci. Rep., 14 (2024), 18937. https://doi.org/10.1038/s41598-024-67158-8 doi: 10.1038/s41598-024-67158-8
|
| [4] |
K. Morijiri, K. Takehana, T. Mihana, K. Kanno, M. Naruse, A. Uchida, Parallel photonic accelerator for decision making using optical spatiotemporal chaos, Optica, 10 (2023), 339–348. https://doi.org/10.1364/OPTICA.477433 doi: 10.1364/OPTICA.477433
|
| [5] |
X. Wu, Y. Sun, Y. Wang, Y. Chen, Passive chaos suppression for the planar slider-crank mechanism with a clearance joint by attached vibro-impact oscillator, Mech. Mach. Theory, 174 (2022), 104882. https://doi.org/10.1016/j.mechmachtheory.2022.104882 doi: 10.1016/j.mechmachtheory.2022.104882
|
| [6] |
Q. Wang, Y. Yang, X. Zhang, Weak signal detection based on Mathieu-Duffing oscillator with time-delay feedback and multiplicative noise, Chaos Soliton. Fract., 137 (2020), 109832. https://doi.org/10.1016/j.chaos.2020.109832 doi: 10.1016/j.chaos.2020.109832
|
| [7] |
M. D. Vijayakumar, H. Natiq, M. I. T. Meli, G. D. Leutcho, Z. T. Njitacke, Hamiltonian energy computation of a novel memristive mega-stable oscillator (MMO) with dissipative, conservative and repelled dynamics, Chaos Soliton. Fract., 155 (2022), 111765. https://doi.org/10.1016/j.chaos.2021.111765 doi: 10.1016/j.chaos.2021.111765
|
| [8] |
S. Wu, G. Li, W. Xu, X. Xu, H. Zhong, Modelling and dynamic analysis of a novel seven-dimensional Hamilton conservative hyperchaotic systems with wide range of parameter, Phys. Scr., 98 (2023), 055218. https://doi.org/10.1088/1402-4896/accd2c doi: 10.1088/1402-4896/accd2c
|
| [9] |
S. Cang, Y. Li, W. Xue, Z. Wang, Z. Chen, Conservative chaos and invariant tori in the modified Sprott A system, Nonlinear Dyn., 99 (2020), 1699–1708. https://doi.org/10.1007/s11071-019-05385-9 doi: 10.1007/s11071-019-05385-9
|
| [10] |
E. Dong, M. Yuan, S. Du, Z. Chen, A new class of Hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator, Appl. Math. Model., 73 (2019), 40–71. https://doi.org/10.1016/j.apm.2019.03.037 doi: 10.1016/j.apm.2019.03.037
|
| [11] |
S. Cang, A. Wu, Z. Wang, Z. Chen, Four-dimensional autonomous dynamical systems with conservative flows: two-case study, Nonlinear Dyn., 89 (2017), 2495–2508. https://doi.org/10.1007/s11071-017-3599-6 doi: 10.1007/s11071-017-3599-6
|
| [12] |
F. Yu, B. Tan, T. He, S. He, Y. Huang, S. Cai, et al., A wide-range adjustable conservative memristive hyperchaotic system with transient quasi-periodic characteristics and encryption application, Mathematics, 13 (2025), 726. https://doi.org/10.3390/math13050726 doi: 10.3390/math13050726
|
| [13] |
G. Qi, Modelings and mechanism analysis underlying both the 4D Euler equations and Hamiltonian conservative chaotic systems, Nonlinear Dyn., 95 (2019), 2063–2077. https://doi.org/10.1007/s11071-018-4676-1 doi: 10.1007/s11071-018-4676-1
|
| [14] |
G. Qi, J. Hu, Z. Wang, Modeling of a Hamiltonian conservative chaotic system and its mechanism routes from periodic to quasiperiodic, chaos and strong chaos, Appl. Math. Model., 78 (2020), 350–365. https://doi.org/10.1016/j.apm.2019.08.023 doi: 10.1016/j.apm.2019.08.023
|
| [15] |
G. Qi, J. Hu, Modelling of both energy and volume conservative chaotic systems and their mechanism analyses, Commun. Nonlinear Sci., 84 (2020), 105171. https://doi.org/10.1016/j.cnsns.2020.105171 doi: 10.1016/j.cnsns.2020.105171
|
| [16] |
F. Yu, Y. Yuan, C. Wu, W. Yao, C. Xu, S. Cai, et al., Modeling and hardware implementation of a class of Hamiltonian conservative chaotic systems with transient quasi-period and multistability, Nonlinear Dyn., 112 (2024), 2331–2347. https://doi.org/10.1007/s11071-023-09148-5 doi: 10.1007/s11071-023-09148-5
|
| [17] |
E. Dong, X. Jiao, S. Du, Z. Chen, G. Qi, Modeling, synchronization, and FPGA implementation of Hamiltonian conservative hyperchaos, Complexity, 2020 (2020), 4627597. https://doi.org/10.1155/2020/4627597 doi: 10.1155/2020/4627597
|
| [18] |
Z. Zhang, L. Huang, J. Xiang, S. Liu, Dynamic study of a new five-dimensional conservative hyperchaotic system with wide parameter range, Acta Phys. Sin., 70 (2021), 230501. https://doi.org/10.7498/aps.70.20210592 doi: 10.7498/aps.70.20210592
|
| [19] |
Z. Zhang, L. Huang, A new 5D Hamiltonian conservative hyperchaotic system with four center type equilibrium points, wide range and coexisting hyperchaotic orbits, Nonlinear Dyn., 108 (2022), 637–652. https://doi.org/10.1007/s11071-021-07197-2 doi: 10.1007/s11071-021-07197-2
|
| [20] |
L. Huang, Y. Ma, C. Li, Characteristic analysis of 5D symmetric Hamiltonian conservative hyperchaotic system with hidden multiple stability, Chin. Phys. B, 33 (2024), 010503. https://doi.org/10.1088/1674-1056/acf9e7 doi: 10.1088/1674-1056/acf9e7
|
| [21] |
X. Ning, Q. Dong, S. Zhou, Q. Zhang, N. K. Kasabov, Construction of new 5D Hamiltonian conservative hyperchaotic system and its application in image encryption, Nonlinear Dyn., 111 (2023), 20425–20446. https://doi.org/10.1007/s11071-023-08866-0 doi: 10.1007/s11071-023-08866-0
|
| [22] |
G. D. Leutcho, G. Gandubert, L. Woodward, F. Blanchard, Electric-field-biased control of irregular oscillations via multistability in a nonlinear terahertz meta-atom, Chaos Soliton. Fract., 198 (2025), 116586. https://doi.org/10.1016/j.chaos.2025.116586 doi: 10.1016/j.chaos.2025.116586
|
| [23] |
S. Ding, H. Lin, X. Deng, W. Yao, J. Jin, A hidden multiwing memristive neural network and its application in remote sensing data security, Expert Syst. Appl., 277 (2025), 127168. https://doi.org/10.1016/j.eswa.2025.127168 doi: 10.1016/j.eswa.2025.127168
|
| [24] |
M. V. Shamolin, Classification of complete integrability cases in four-dimensional symmetric rigid-body dynamics in a nonconservative field, J. Math. Sci., 165 (2010), 743–754. https://doi.org/10.1007/s10958-010-9838-8 doi: 10.1007/s10958-010-9838-8
|
| [25] |
G. Vivekanandhan, J. C. Chedjou, K. Jacques, K. Rajagopal, A unique self-driven 5D hyperjerk circuit with hyperbolic sine function: hyperchaos with three positive exponents, complex transient behavior and coexisting attractors, Chaos Soliton. Fract., 186 (2024), 115276. https://doi.org/10.1016/j.chaos.2024.115276 doi: 10.1016/j.chaos.2024.115276
|
| [26] | A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, et al., A statistical test suite for random and pseudorandom number generators for cryptographic applications, 2010. |
| [27] | L. G. D. L. Fraga, J. D. Rodríguez-Muñoz, E. Tlelo-Cuautle, Random number generators: Verilog description, hardware implementation and applications, Cham: Springer, 2025. https://doi.org/10.1007/978-3-031-82865-2 |