This paper investigates the existence and uniqueness of solutions for a class of nonlinear $ \Omega $-Caputo fractional differential equations (CFDEs) supplemented with infinite-point boundary conditions. By constructing an appropriate operator framework and employing fixed-point (fp) theorems, including the Banach, the Schaefer, and the Schauder–Tychonoff fp theorems, we establish the existence and uniqueness criteria for the proposed boundary value problem (BVP). The analysis is conducted within suitable Banach spaces, taking into account the properties of the $ \Omega $-Caputo fractional derivative and the nonlocal nature of the boundary conditions. To substantiate the theoretical findings, a concrete example is presented to illustrate the applicability and effectiveness of the main results.
Citation: Özlem Batıt Özen, Aynur Şahin. Nonlinear $ \Omega $-Caputo fractional differential equations with infinite-point boundary conditions[J]. AIMS Mathematics, 2025, 10(9): 20273-20293. doi: 10.3934/math.2025906
This paper investigates the existence and uniqueness of solutions for a class of nonlinear $ \Omega $-Caputo fractional differential equations (CFDEs) supplemented with infinite-point boundary conditions. By constructing an appropriate operator framework and employing fixed-point (fp) theorems, including the Banach, the Schaefer, and the Schauder–Tychonoff fp theorems, we establish the existence and uniqueness criteria for the proposed boundary value problem (BVP). The analysis is conducted within suitable Banach spaces, taking into account the properties of the $ \Omega $-Caputo fractional derivative and the nonlocal nature of the boundary conditions. To substantiate the theoretical findings, a concrete example is presented to illustrate the applicability and effectiveness of the main results.
| [1] |
Y. Sun, Z. Zeng, J. Song, Existence and uniqueness for the boundary value problems of nonlinear fractional differential equation, Appl. Math., 8 (2017), 312–323. https://doi.org/10.4236/am.2017.83026 doi: 10.4236/am.2017.83026
|
| [2] |
C. Bai, Existence and uniqueness of solutions for fractional boundary value problems with $p$-Laplacian operator, Adv. Differ. Equ., 2018 (2018), 4. https://doi.org/10.1186/s13662-017-1460-3 doi: 10.1186/s13662-017-1460-3
|
| [3] |
D. Kasinathan, D. Chalishajar, R. Kasinathan, R. Kasinathan, Exponential stability of non-instantaneous impulsive second-order fractional neutral stochastic differential equations with state-dependent delay, J. Comput. Appl. Math., 451 (2024), 116012. https://doi.org/10.1016/j.cam.2024.116012 doi: 10.1016/j.cam.2024.116012
|
| [4] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
| [5] |
S. Alkan, A numerical method for solution of integro-differential equations of fractional order, Sakarya Univ. J. Sci., 21 (2017), 82–89. https://doi.org/10.16984/saufenbilder.296796 doi: 10.16984/saufenbilder.296796
|
| [6] |
S. Alkan, A. Seçer, A collocation method for solving boundary value problems of fractional order, Sakarya Univ. J. Sci., 22 (2018), 1601–1608. https://doi.org/10.16984/saufenbilder.352088 doi: 10.16984/saufenbilder.352088
|
| [7] |
S. Wang, Z. Bai, Existence and uniqueness of solutions for a mixed $p$-Laplace boundary value problem involving fractional derivatives, Adv. Differ. Equ., 2020 (2020), 694. https://doi.org/10.1186/s13662-020-03154-2 doi: 10.1186/s13662-020-03154-2
|
| [8] |
S. Çetinkaya, A. Demir, Time fractional equation with non-homogeneous Dirichlet boundary conditions, Sakarya Univ. J. Sci., 24 (2020), 1185–1190. https://doi.org/10.16984/saufenbilder.749168 doi: 10.16984/saufenbilder.749168
|
| [9] |
A. Alsaedi, M. Alghanmi, B. Ahmad, B. Alharbi, Uniqueness results for a mixed $p$-Laplacian boundary value problem involving fractional derivatives and integrals with respect to a power function, Electron. Res. Arch., 31 (2023), 367–385. https://doi.org/10.3934/era.2023018 doi: 10.3934/era.2023018
|
| [10] |
R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1–77. https://doi.org/10.1016/S0370-1573(00)00070-3 doi: 10.1016/S0370-1573(00)00070-3
|
| [11] |
B. Daşbaşı, The fractional-order mathematical modeling of bacterial resistance against multiple antibiotics in case of local bacterial infection, Sakarya Univ. J. Sci., 21 (2017), 442–453. https://doi.org/10.16984/saufenbilder.298934 doi: 10.16984/saufenbilder.298934
|
| [12] |
İ. Devecioğlu, R. Mutlu, A conformal fractional derivative-based leaky integrate-and-fire neuron model, Sakarya Univ. J. Sci., 26 (2022), 568–578. https://doi.org/10.16984/saufenbilder.1041088 doi: 10.16984/saufenbilder.1041088
|
| [13] |
R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
|
| [14] |
R. Almeida, A. B. Malinowska, M. T. Monteiro, Fractional differential equations with a Caputo derivative according to a Kernel function and their applications, Math. Meth. Appl. Sci., 41 (2018), 336–352. https://doi.org/10.1002/mma.4617 doi: 10.1002/mma.4617
|
| [15] |
M. S. Abdo, S. K. Panchal, A. M. Saeed, Fractional boundary value problem with $\psi$-Caputo fractional derivative, Proc. Math. Sci., 129 (2019), 65. https://doi.org/10.1007/s12044-019-0514-8 doi: 10.1007/s12044-019-0514-8
|
| [16] |
H. A. Wahash, M. Abdo, S. K. Panchal, Existence and stability of a nonlinear fractional differential equation involving a $\psi$-Caputo operator, Adv. Theory Nonlinear Anal. Appl., 4 (2023), 266–278. https://doi.org/10.31197/atnaa.664534 doi: 10.31197/atnaa.664534
|
| [17] |
A. E. Mfadel, S. Melliani, M. Elomari, Existence of solutions for nonlinear $\psi$-Caputo-type fractional hybrid differential equations with periodic boundary condititons, Asia Pac. J. Math., 9 (2022), 15. https://doi.org/10.28924/APJM/9-15 doi: 10.28924/APJM/9-15
|
| [18] |
Ö. B. Özen, Existence results for $\aleph$-Caputo fractional boundary value problems with $p$-Laplacian operator, J. New Theory, 47 (2024), 61–71. https://doi.org/10.53570/jnt.1472049 doi: 10.53570/jnt.1472049
|
| [19] |
K. Shah, S. Zeb, R. A. Khan, Existence and uniqueness of solutions for fractional order $m$-point boundary value problems, Fract. Differ. Calc., 5 (2015), 171–181. http://dx.doi.org/10.7153/fdc-05-15 doi: 10.7153/fdc-05-15
|
| [20] |
L. Guo, L. Liu, Y. Wu, Existence of positive solutions for singular fractional differential equations with infinite-point boundary conditions, Nonlinear Anal. Model. Control, 21 (2019), 635–650. http://dx.doi.org/10.15388/NA.2016.5.5 doi: 10.15388/NA.2016.5.5
|
| [21] |
Y. Jia, X. Zhang, Positive solutions for a class of fractional differential equation multi-point boundary value problems with changing sign nonlinearity, J. Appl. Math. Comput., 47 (2015), 15–31. http://dx.doi.org/10.1007/s12190-014-0758-5 doi: 10.1007/s12190-014-0758-5
|
| [22] |
A. Tudorache, R. Luca, On a singular Riemann-Liouville fractional boundary value problem with parameters, Nonlinear Anal. Model. Control, 26 (2021), 151–168. http://dx.doi.org/10.15388/namc.2021.26.21414 doi: 10.15388/namc.2021.26.21414
|
| [23] |
L. Guo, L. Liu, Unique iterative positive solutions for a singular $p$-Laplacian fractional differential equation system with infinite-point boundary conditions, Bound. Value Probl., 2019 (2019), 113. http://doi.org/10.1186/s13661-019-1227-8 doi: 10.1186/s13661-019-1227-8
|
| [24] | C. Li, F. Zeng, Numerical methods for fractional calculus, New York: Chapman and Hall/CRC, 2015. https://doi.org/10.1201/b18503 |
| [25] |
M. S. Abdo, A. G. Ibrahim, S. K. Panchal, Nonlinear implicit fractional differential equation involving $\psi$-Caputo fractional derivative, Proc. Jangjeon Math. Soc., 22 (2019), 387–400. http://dx.doi.org/10.17777/pjms2019.22.3.387 doi: 10.17777/pjms2019.22.3.387
|
| [26] |
S. Khatoon, I. Uddin, M. Başarır, A modified proximal point algorithm for a nearly asymptotically quasi-nonexpansive mapping with an application, Comp. Appl. Math. 40 (2021), 250. https://doi.org/10.1007/s40314-021-01646-9 doi: 10.1007/s40314-021-01646-9
|
| [27] |
S. Temir, Ö. Korkut, Approximating fixed points of generalized $\alpha$-nonexpansive mappings by the new iteration process, J. Math. Sci. Model., 5 (2022), 35–39. https://doi.org/10.33187/jmsm.993823 doi: 10.33187/jmsm.993823
|
| [28] |
N. Turan, M. Başarır, A. şahin, On the solutions of the second-order $(p, q)$-difference equation with an application to the fixed-point theory, AIMS Mathematics, 9 (2024), 10679–10697. https://doi.org/10.3934/math.2024521 doi: 10.3934/math.2024521
|
| [29] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. |
| [30] |
H. Schaefer, Über die Methode der a priori-Schranken, Math. Ann., 129 (1955), 415–416. https://doi.org/10.1007/BF01362380 doi: 10.1007/BF01362380
|
| [31] | D. R. Smart, Fixed point theorems, Cambridge University Press, 1974. |
| [32] |
X. Yang, Z. Zhang, On conservative, positivity preserving, nonlinear $FV$ scheme on distorted meshes for the multi-term nonlocal Nagumo-type equations, Appl. Math. Lett., 150 (2024), 108972. https://doi.org/10.1016/j.aml.2023.108972 doi: 10.1016/j.aml.2023.108972
|