Research article Special Issues

Complexiton and interaction solutions of the (1+1)-dimensional sixth-order Ramani equation

  • Published: 04 September 2025
  • MSC : 35A25, 35C08, 35Q35, 76B15

  • This study shows the attainability of solutions to the sixth-order Ramani equation through a procedure called the simplified Hirota method, which can be thought of as a special case of the Hirota direct method. This special case comes into sight by virtue of the transition between real and complex parameters. In this procedure, dispersion relations and phase shifts play a decisive role in finding solutions. Particularly, chosen cases of phase shifts provide us different kinds of solutions, such as soliton, complexiton, and interaction solutions.

    Citation: Sukri Khareng, Ömer Ünsal. Complexiton and interaction solutions of the (1+1)-dimensional sixth-order Ramani equation[J]. AIMS Mathematics, 2025, 10(9): 20262-20272. doi: 10.3934/math.2025905

    Related Papers:

  • This study shows the attainability of solutions to the sixth-order Ramani equation through a procedure called the simplified Hirota method, which can be thought of as a special case of the Hirota direct method. This special case comes into sight by virtue of the transition between real and complex parameters. In this procedure, dispersion relations and phase shifts play a decisive role in finding solutions. Particularly, chosen cases of phase shifts provide us different kinds of solutions, such as soliton, complexiton, and interaction solutions.



    加载中


    [1] N. Raza, A. Jhangeer, H. Rezazadeh, A. Bekir, Explicit solutions of the (2+1)-dimensional Hirota-Maccari system arising in nonlinear optics, Int. J. Mod. Phys. B, 33 (2019), 1950360. https://doi.org/10.1142/S0217979219503600 doi: 10.1142/S0217979219503600
    [2] E. Yusufoğlu, A. Bekir, Exact solutions of coupled nonlinear evolution equations, Chaos Soliton. Fract., 37 (2008), 842–848. https://doi.org/10.1016/j.chaos.2006.09.074 doi: 10.1016/j.chaos.2006.09.074
    [3] B. Ayhan, A. Bekir, The (G'/G)-expansion method for the nonlinear lattice equations, Commun. Nonlinear Sci., 17 (2012), 3490–3498. https://doi.org/10.1016/j.cnsns.2012.01.009 doi: 10.1016/j.cnsns.2012.01.009
    [4] A. C. Çevikel, A. Bekir, S. San, M. B. Gücen, Construction of periodic and solitary wave solutions for the complex nonlinear evolution equations, J. Franklin Inst., 351 (2014), 694–700. https://doi.org/10.1016/j.jfranklin.2013.04.017 doi: 10.1016/j.jfranklin.2013.04.017
    [5] A. C. Çevikel, A. Bekir, New solitons and periodic solutions for (2+1)-dimensional Davey-Stewartson equations, Chinese J. Phys., 51 (2013), 1–13.
    [6] A. C. Çevikel, Traveling wave solutions of conformable Duffing model in shallow water waves, Int. J. Mod. Phys. B., 36 (2022), 2250164. https://doi.org/10.1142/S0217979222501648 doi: 10.1142/S0217979222501648
    [7] M. Raheel, A. Bekir, K. U. Tariq, A. C. Çevikel, Soliton solutions to the generalized (1+1)-dimensional unstable space time-fractional nonlinear Schrödinger model, Opt. Quant. Electron., 54 (2022), 668. https://doi.org/10.1007/s11082-022-04088-7 doi: 10.1007/s11082-022-04088-7
    [8] W. X. Ma, Complexiton solutions to the Kortweg-de Vries equation, Phys. Lett. A., 301 (2002), 35–44. https://doi.org/10.1016/S0375-9601(02)00971-4 doi: 10.1016/S0375-9601(02)00971-4
    [9] W. X. Ma, Complexiton solutions to integrable equations, Nonlinear Anal.-Theor., 63 (2005), e2461–e2471. https://doi.org/10.1016/j.na.2005.01.068 doi: 10.1016/j.na.2005.01.068
    [10] Y. Zhou, W. X. Ma, Complexiton solutions to soliton equations by the Hirota method, J. Math. Phys., 58 (2017), 101511. https://doi.org/10.1063/1.4996358 doi: 10.1063/1.4996358
    [11] L. Cheng, Y. Zhang, W. X. Ma, Nonsingular complexiton solutions and resonant waves to an extended Jimbo–Miwa equation, Results Phys., 20 (2021), 103711. https://doi.org/10.1016/j.rinp.2020.103711 doi: 10.1016/j.rinp.2020.103711
    [12] Y. Zhou, W. X. Ma, Applications of linear superposition principle to resonant solitons and complexitons, Comput. Math. Appl., 73 (2017), 1697–1706. https://doi.org/10.1016/j.camwa.2017.02.015 doi: 10.1016/j.camwa.2017.02.015
    [13] H. Zhang, W. X. Ma, Extended transformed rational function method and applications to complexiton solutions, Appl. Math. Comput., 230 (2014), 509–515. https://doi.org/10.1016/j.amc.2013.12.156 doi: 10.1016/j.amc.2013.12.156
    [14] Y. Chen, Q. Wang, Multiple Riccati equations rational expansion method and complexiton solutions of the Whitham-Broer-Kaup equation, Phys. Lett. A., 347 (2005), 215–227. https://doi.org/10.1016/j.physleta.2005.08.015 doi: 10.1016/j.physleta.2005.08.015
    [15] W. Li, H. Zhang, A generalized sub-equatons rational expansion method for nonlinear evolution equations, Commun. Nonlinear Sci., 15 (2010), 1454–1461. https://doi.org/10.1016/j.cnsns.2009.06.030 doi: 10.1016/j.cnsns.2009.06.030
    [16] W. Li, H. Zhang, A new generalized compound Riccati equations rational expansion method to construct many new exact complexiton solutions of nonlinear evolution equations with symbolic computation, Chaos Soliton. Fract., 39 (2009), 2369–2377. https://doi.org/10.1016/j.chaos.2007.07.004 doi: 10.1016/j.chaos.2007.07.004
    [17] A. M. Wazwaz, Zhaqilao, Nonsingular complexiton solutions for two higher-dimensional fifth order nonlinear integrable equations, Phys. Scr., 88 (2013), 025001. http://doi.org/10.1088/0031-8949/88/02/025001 doi: 10.1088/0031-8949/88/02/025001
    [18] A. M. Wazwaz, New solutions for two integrable cases of a generalized fifth-order nonlinear equation, Mod. Phys. Lett. B., 29 (2015), 1550065. https://doi.org/10.1142/S0217984915500657 doi: 10.1142/S0217984915500657
    [19] Ö. Ünsal, A. Bekir, F. Taşcan, M. N. Özer, Complexiton solutions for two nonlinear partial differential equations via modification of simplified Hirota method, Waves Random Complex, 27 (2016), 117–128. https://doi.org/10.1080/17455030.2016.1205238 doi: 10.1080/17455030.2016.1205238
    [20] Ö. Ünsal, Complexiton solutions for (3+1) dimensional KdV-type equation, Comput. Math. Appl., 75 (2018), 2466–2472. https://doi.org/10.1016/j.camwa.2017.12.027 doi: 10.1016/j.camwa.2017.12.027
    [21] B. He, Q. Meng, Bilinear form and new interaction solutions for the sixth-order Ramani equation, Appl. Math. Lett., 98 (2019), 411–418. https://doi.org/10.1016/j.aml.2019.06.036 doi: 10.1016/j.aml.2019.06.036
    [22] A. M. Wazwaz, H. Triki, Multiple soliton solutions for the sixth-order Ramani equation and a coupled Ramani equation, Appl. Math. Comput., 216 (2010), 332–336. https://doi.org/10.1016/j.amc.2010.01.067 doi: 10.1016/j.amc.2010.01.067
    [23] A. Karsau-Kalkani, A. Karsau, A. Sakovich, S. Sarkovich, R. Turhan, A new intergrable generalization of the Korteweg-de-Vries equation, J. Math. Phys., 49 (2008), 073516. https://doi.org/10.1063/1.2953474 doi: 10.1063/1.2953474
    [24] J. X. Zhao, H. W. Tam, Soliton solutions of a coupled Ramani equation, Appl. Math. Lett., 19 (2006), 307–313. https://doi.org/10.1016/j.aml.2005.01.006 doi: 10.1016/j.aml.2005.01.006
    [25] J. B. Li, Existence of exact families of traveling wave solutions for the sixth-order Ramani equation and a coupled Ramani equation, Int. J. Bifurcat. Chaos, 22 (2012), 1250002. https://doi.org/10.1142/S0218127412500022 doi: 10.1142/S0218127412500022
    [26] D. D. Ganji, M. Abdollahzadeh, Exact traveling solutions of some nonlinear evolution equation by G'/G-expansion method, J. Math. Phys., 50 (2009), 013519. https://doi.org/10.1063/1.3052847 doi: 10.1063/1.3052847
    [27] A. Huber, Solitary solutions of some nonlinear evolution equations, Appl. Math. Comput., 166 (2005), 464–474. https://doi.org/10.1016/j.amc.2004.06.079 doi: 10.1016/j.amc.2004.06.079
    [28] A. I. Aliyu, M. Inc, A. Yusuf, D. Baleanu, Symmetry analysis explicit solutions and conservation laws of a sixth-order nonlinear Ramani equation, Symmetry, 10 (2018), 341. https://doi.org/10.3390/sym10080341 doi: 10.3390/sym10080341
    [29] W. X. Ma, Soliton solutions by means of Hirota bilinear forms, Partial Differ. Equ. Appl. Math., 5 (2022), 100220. https://doi.org/10.1016/j.padiff.2021.100220 doi: 10.1016/j.padiff.2021.100220
    [30] H. I. Abdel-Gawad, M. Inc, Rogue waves in a top-pattern and rogue waves with breathers in Ramani equation with $\omega $-time derivative. Stability of the steady state solution, Chaos Soliton. Fract., 180 (2024), 114554. https://doi.org/10.1016/j.chaos.2024.114554 doi: 10.1016/j.chaos.2024.114554
    [31] R. Hirota, The direct method in soliton theory, New York: Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511543043
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(420) PDF downloads(29) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog