The interplay between system nonlinearity and environmental noise can lead to counterintuitive phenomena that deterministic models are unable to explain. However, the underlying mechanisms are not fully understood. In this study, we proposed a stochastic single-species model driven by multiplicative noise that incorporates a double Allee effect to investigate such counter-intuitive phenomena, specifically dynamical and phenomenological bifurcations induced by noise. Our results underscore the critical role of parameter $ \pi $, which governs both the persistence and extinction of the species and determines the dynamical and phenomenological bifurcations in the system. Furthermore, our study offers significant biological insights, including: (i) Noise-induced state transitions that alter population density distributions and elevate extinction risk; and (ii) variations in the intensity of the Allee effect, which result in four distinct modifications in the shape of the density function and accelerate the extinction process for endangered species. These findings may have important implications for the management of ecological resources.
Citation: Liang Hong, Yanhua Yang. Dynamical and phenomenological bifurcations induced by multiplicative noise in a stochastic single-species model with double Allee effect[J]. AIMS Mathematics, 2025, 10(8): 19878-19895. doi: 10.3934/math.2025887
The interplay between system nonlinearity and environmental noise can lead to counterintuitive phenomena that deterministic models are unable to explain. However, the underlying mechanisms are not fully understood. In this study, we proposed a stochastic single-species model driven by multiplicative noise that incorporates a double Allee effect to investigate such counter-intuitive phenomena, specifically dynamical and phenomenological bifurcations induced by noise. Our results underscore the critical role of parameter $ \pi $, which governs both the persistence and extinction of the species and determines the dynamical and phenomenological bifurcations in the system. Furthermore, our study offers significant biological insights, including: (i) Noise-induced state transitions that alter population density distributions and elevate extinction risk; and (ii) variations in the intensity of the Allee effect, which result in four distinct modifications in the shape of the density function and accelerate the extinction process for endangered species. These findings may have important implications for the management of ecological resources.
| [1] | F. Courchamp, L. Berec, J. Gascoigne, Allee effects in ecology and conservation, Oxford University Press, 2008. |
| [2] |
J. C. Gascoigne, R. N. Lipcius, Allee effects driven by predation, J. Appl. Ecol., 41 (2004), 801–810. https://doi.org/10.1111/j.0021-8901.2004.00944.x doi: 10.1111/j.0021-8901.2004.00944.x
|
| [3] |
L. Berec, E. Angulo, F. Courchamp, Multiple Allee effects and population management, Trends Ecol. Evol., 22 (2007), 185–191. https://doi.org/10.1016/j.tree.2006.12.002 doi: 10.1016/j.tree.2006.12.002
|
| [4] | W. C. Allee, Animal aggregations: a study in general sociology, Chicago: The University of Chicago Press, 1931. https://doi.org/10.5962/bhl.title.7313 |
| [5] |
A. M. Kramer, L. Berec, J. M. Drake, Editorial: Allee effects in ecology and evolution, J. Anim. Ecol., 87 (2018), 7–10. https://doi.org/10.1111/1365-2656.12777 doi: 10.1111/1365-2656.12777
|
| [6] |
J. S. Cánovas, M. Muñoz-Guillermo, On a population model with density dependence and Allee efect, Theory Biosci., 142 (2023), 423–441. https://doi.org/10.1007/s12064-023-00407-y doi: 10.1007/s12064-023-00407-y
|
| [7] |
D. Senc, S. Ghorai, M. Banerjee, A. Morozov, Bifurcation analysis of the predator-prey model with the Allee effect in the predator, J. Math. Biol., 84 (2022), 7. https://doi.org/10.1007/s00285-021-01707-x doi: 10.1007/s00285-021-01707-x
|
| [8] |
D. Cammarota, N. Z. Monteiro, R. Menezes, H. Fort, A. M. Segura, Lotka-Volterra model with Allee effect: equilibria, coexistence and size scaling of maximum and minimum abundance, J. Math. Biol., 87 (2023), 82. https://doi.org/10.1007/s00285-023-02012-5 doi: 10.1007/s00285-023-02012-5
|
| [9] |
B. T. Li, G. Otto, Forced traveling waves in a reaction-diffusion equation with strong Allee effect and shifting habitat, Bull. Math. Biol., 85 (2023), 121. https://doi.org/10.1007/s11538-023-01221-9 doi: 10.1007/s11538-023-01221-9
|
| [10] |
F. Rao, Y. Kang, The complex dynamics of a diffusive prey-predator model with an Allee effect in prey, Ecol. Complexity, 28 (2016), 123–144. https://doi.org/10.1016/j.ecocom.2016.07.001 doi: 10.1016/j.ecocom.2016.07.001
|
| [11] |
Y. N. Zeng, P. Yu, Complex dynamics of predator-prey systems with Allee effect, Int. J. Bifur. Chaos, 32 (2022), 2250203. https://doi.org/10.1142/S0218127422502030 doi: 10.1142/S0218127422502030
|
| [12] |
E. Angulo, G. W. Roemer, L. Berec, J. Gascoigne, F. Courchamp, Double Allee effects and extinction in the island fox, Conserv. Biol., 21 (2007), 1082–1091. https://doi.org/10.1111/j.1523-1739.2007.00721.x doi: 10.1111/j.1523-1739.2007.00721.x
|
| [13] |
D. S. Boukal, M. W. Sabelis, L. Berec, How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses, Theoret. Popul. Biol., 72 (2007), 136–147. https://doi.org/10.1016/j.tpb.2006.12.003 doi: 10.1016/j.tpb.2006.12.003
|
| [14] |
X. S. Li, D. F. Pang, P. Wallhead, R. G. J. Bellerby, Dynamics of an aquatic diffusive predator-prey model with double Allee effect and pH-dependent capture rate, Chaos Solitons Fract., 169 (2023), 113234. https://doi.org/10.1016/j.chaos.2023.113234 doi: 10.1016/j.chaos.2023.113234
|
| [15] |
H. Barclay, M. Mackauer, The sterile insect release method for pest control: a density-dependent model, Environ. Entomol., 9 (1980), 810–817. https://doi.org/10.1093/ee/9.6.810 doi: 10.1093/ee/9.6.810
|
| [16] |
P. J. Pal, T. Saha, Qualitative analysis of a predator-prey system with double Allee effect in prey, Chaos Solitons Fract., 73 (2015), 36–63. https://doi.org/10.1016/j.chaos.2014.12.007 doi: 10.1016/j.chaos.2014.12.007
|
| [17] |
J. F. Jiao, C. Chen, Bogdanov-Takens bifurcation analysis of a delayed predator-prey system with double Allee effect, Nonlinear Dyn., 104 (2021), 1697–1707. https://doi.org/10.1007/s11071-021-06338-x doi: 10.1007/s11071-021-06338-x
|
| [18] |
M. K. Singh, B. S. Bhadauria, B. K. Singh, Bifurcation analysis of modified Leslie-Gower predator-prey model with double Allee effect, Ain Shams Eng. J., 9 (2018), 1263–1277. https://doi.org/10.1016/j.asej.2016.07.007 doi: 10.1016/j.asej.2016.07.007
|
| [19] |
J. L. Xiao, Y. H. Xia, Spatiotemporal dynamics in a diffusive predator-prey model with multiple Allee effect and herd behavior, J. Math. Anal. Appl., 529 (2024), 127569. https://doi.org/10.1016/j.jmaa.2023.127569 doi: 10.1016/j.jmaa.2023.127569
|
| [20] |
I. Bashkirtseva, L. Ryashko, B. Spagnolo, Combined impacts of the Allee effect, delay and stochasticity: persistence analysis, Commun. Nonlinear Sci. Numer. Simul., 84 (2020), 105148. https://doi.org/10.1016/j.cnsns.2019.105148 doi: 10.1016/j.cnsns.2019.105148
|
| [21] |
M. D. Asfaw, S. M. Kassa, E. M. Lungu, Stochastic plant-herbivore interaction model with Allee effect, J. Math. Biol., 79 (2019), 2183–2209. https://doi.org/10.1007/s00285-019-01425-5 doi: 10.1007/s00285-019-01425-5
|
| [22] |
A. Sau, B. Saha, S. Bhattacharya, An extended stochastic Allee model with harvesting and the risk of extinction of the herring population, J. Theor. Biol., 503 (2020), 110375. https://doi.org/10.1016/j.jtbi.2020.110375 doi: 10.1016/j.jtbi.2020.110375
|
| [23] |
B. Q. Zhou, D. Q. Jiang, T. Hayat, Analysis of a stochastic population model with mean-reverting Ornstein-Uhlenbeck process and Allee effects, Commun. Nonlinear Sci. Numer. Simul., 111 (2022), 106450. https://doi.org/10.1016/j.cnsns.2022.106450 doi: 10.1016/j.cnsns.2022.106450
|
| [24] |
X. W. Yu, Y. L. Ma, An avian influenza model with nonlinear incidence and recovery rates in deterministic and stochastic environments, Nonlinear Dyn., 108 (2022), 4611–4628. https://doi.org/10.1007/s11071-022-07422-6 doi: 10.1007/s11071-022-07422-6
|
| [25] |
X. W. Yu, Y. L. Ma, Complex dynamics of a dysentery diarrhoea epidemic model with treatment and sanitation under environmental stochasticity: persistence, extinction and ergodicity, IEEE Access, 9 (2021), 161129–161140. https://doi.org/10.1109/ACCESS.2021.3132386 doi: 10.1109/ACCESS.2021.3132386
|
| [26] |
F. Borgogno, P. D'Odorico, F. Laio, L. Ridolfi, Stochastic resonance and coherence resonance in groundwater-dependent plant ecosystems, J. Theor. Biol., 293 (2012), 65–73. https://doi.org/10.1016/j.jtbi.2011.09.015 doi: 10.1016/j.jtbi.2011.09.015
|
| [27] |
C. H. Zeng, C. Zhang, J. K. Zeng, H. C. Luo, D. Tian, H. L. Zhang, et al., Noises-induced regime shifts and -enhanced stability under a model of lake approaching eutrophication, Ecol. Complexity, 22 (2015), 102–108. https://doi.org/10.1016/j.ecocom.2015.02.005 doi: 10.1016/j.ecocom.2015.02.005
|
| [28] |
C. L. Luo, S. J. Guo, Stability and bifurcation of two-dimensional stochastic differential equations with multiplicative excitations, Bull. Malays. Math. Sci. Soc., 40 (2017), 795–817. https://doi.org/10.1007/s40840-016-0313-7 doi: 10.1007/s40840-016-0313-7
|
| [29] |
R. Mankin, T. Laas, A. Sauga, A. Ainsaa, E. Reiter, Colored-noise-induced Hopf bifurcations in predator-prey communities, Phys. Rev. E, 74 (2006), 021101. https://doi.org/10.1103/PhysRevE.74.021101 doi: 10.1103/PhysRevE.74.021101
|
| [30] |
C. Chiarella, X. Z. He, D. Wang, M. Zheng, The stochastic bifurcation behavior of speculative financial markets, Phys. A, 387 (2008), 3837–3846. https://doi.org/10.1016/j.physa.2008.01.078 doi: 10.1016/j.physa.2008.01.078
|
| [31] |
L. Arnold, N. S. Namachchivaya, K. R. Schenk-Hoppé, Toward an understanding of stochastic Hopf bifurcation: a case study, Int. J. Bifur. Chaos, 6 (1996), 1947–1975. https://doi.org/10.1142/S0218127496001272 doi: 10.1142/S0218127496001272
|
| [32] |
X. L. Zou, Y. T. Zheng, L. R. Zhang, J. L. Lv, Survivability and stochastic bifurcations for a stochastic Holling type II predator-prey model, Commun. Nonlinear Sci. Numer. Simul., 83 (2020), 105136. https://doi.org/10.1016/j.cnsns.2019.105136 doi: 10.1016/j.cnsns.2019.105136
|
| [33] |
N. S. Namachchivaya, Stochastic bifurcation, Appl. Math. Comput., 38 (1990), 101–159. https://doi.org/10.1016/0096-3003(90)90051-4 doi: 10.1016/0096-3003(90)90051-4
|
| [34] |
Y. Zhu, L. Wang, Z. P. Qiu, Threshold dynamics of a stochastic single population model with Allee effect, Appl. Math. Lett., 143 (2023), 108689. https://doi.org/10.1016/j.aml.2023.108689 doi: 10.1016/j.aml.2023.108689
|
| [35] |
C. Q. Xu, Effects of colored noises on the statistical properties of a population growth model with Allee effect, Phys. Scr., 95 (2020), 075215. https://doi.org/10.1088/1402-4896/ab93a8 doi: 10.1088/1402-4896/ab93a8
|
| [36] |
X. W. Yu, Y. L. Ma, Noise-induced dynamics in a single species model with Allee effect driven by correlated colored noises, J. Theor. Biol., 573 (2023), 111610. https://doi.org/10.1016/j.jtbi.2023.111610 doi: 10.1016/j.jtbi.2023.111610
|
| [37] |
R. M. May, P. M. Allen, Stability and complexity in model ecosystems, IEEE Trans. Syst. Man Cybernet., SMC-6 (2001), 887. https://doi.org/10.1109/TSMC.1976.4309488 doi: 10.1109/TSMC.1976.4309488
|
| [38] |
C. Carlos, C. A. Braumann, General population growth models with Allee effects in a random environment, Ecol. Complexity, 30 (2017), 26–33. https://doi.org/10.1016/j.ecocom.2016.09.003 doi: 10.1016/j.ecocom.2016.09.003
|
| [39] |
A. Potapov, H. Rajakaruna, Allee threshold and stochasticity in biological invasions: colonization time at low propagule pressure, J. Theor. Biol., 337 (2013), 1–14. https://doi.org/10.1016/j.jtbi.2013.07.031 doi: 10.1016/j.jtbi.2013.07.031
|
| [40] | I. Chueshov, Monotone random systems theory and applications, Berlin, Heidelberg: Springer, 2002. https://doi.org/10.1007/b83277 |
| [41] |
D. L. Zhao, S. L. Yuan, Critical result on the break-even concentration in a single-species stochastic chemostat model, J. Math. Anal. Appl., 434 (2016), 1336–1345. https://doi.org/10.1016/j.jmaa.2015.09.070 doi: 10.1016/j.jmaa.2015.09.070
|
| [42] | G. R. Munro, Mathematical bioeconomics and the evolution of modern fisheries economics, Bull. Math. Biol., 54 (1992), 163–184. |
| [43] |
M. M. Chen, R. Yuan, Maximum principle for the optimal harvesting problem of a size-stage-structured population model, Discrete Contin. Dyn. Syst. B, 27 (2022), 4619–4648. https://doi.org/10.3934/dcdsb.2021245 doi: 10.3934/dcdsb.2021245
|
| [44] |
X. Y. Meng, J. Li, Dynamical behavior of a delayed prey-predator-scavenger system with fear effect and linear harvesting, Int. J. Biomath., 14 (2021), 2150024. https://doi.org/10.1142/S1793524521500248 doi: 10.1142/S1793524521500248
|
| [45] |
S. K. Mandal, D. K. Jana, S. Poria, The role of harvesting in population control in the presence of correlated noise sources, Phys. Scr., 97 (2022), 065006. https://doi.org/10.1088/1402-4896/ac6f91 doi: 10.1088/1402-4896/ac6f91
|