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Abstract: The interplay between system nonlinearity and environmental noise can lead to
counterintuitive phenomena that deterministic models are unable to explain. However, the underlying
mechanisms are not fully understood. In this study, we proposed a stochastic single-species model
driven by multiplicative noise that incorporates a double Allee effect to investigate such counter-
intuitive phenomena, specifically dynamical and phenomenological bifurcations induced by noise.
Our results underscore the critical role of parameter π, which governs both the persistence and
extinction of the species and determines the dynamical and phenomenological bifurcations in the
system. Furthermore, our study offers significant biological insights, including: (i) Noise-induced state
transitions that alter population density distributions and elevate extinction risk; and (ii) variations
in the intensity of the Allee effect, which result in four distinct modifications in the shape of the
density function and accelerate the extinction process for endangered species. These findings may
have important implications for the management of ecological resources.
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1. Introduction

A key feature of the logistic population model is the gradual decrease in the per capita growth rate
as the population abundance increases due to competition for resources. However, some ecosystems
show a different pattern at low densities, where the per capita growth rate increases with the population
size [1–3]. This phenomenon, known as the Allee effect, is named after ecologist W. C. Allee [4]. In a
strong Allee effect, the per capita growth rate can become negative, while in a weak Allee effect, the per
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capita growth rate remains positive, albeit at a low level. The Allee effect has significant implications
in ecology and evolution [5], especially in population dynamics [6, 7]. For example, Cammarota [8]
proposed a modified multi-species competition model that incorporates the mortality-related Allee
effect to explore species coexistence. Li and Otto [9] studied traveling waves in a reaction-diffusion
model with a strong Allee effect. Rao and Kang [10] investigated a predator-prey reaction-diffusion
model with an Allee effect in prey, showing the role of the strength of the Allee effect in shaping
distinct spatial patterns. Zeng and Yu [11] established four predator-prey systems with the Allee effect,
concluding that these models exhibit more complex dynamical behaviors.

Various mechanisms contributing to the Allee effect have been identified, including but not limited
to difficulties in mate finding, reduced anti-predator defense, and inhibition of inbreeding [3]. A simple
mathematical form to describe the Allee effect from a single mechanism is through a multiplicative
Allee factor, i.e.,

dx
dt
= rx(1 −

x
K

)(x − m), (1.1)

where x = x(t) is the population density, K denotes the environmental carrying capacity, and r is
the intrinsic growth rate. When 0 < m ≪ K, model (1.1) characterizes a strong Allee effect, as
the per capita growth rate becomes negative if the initial population size falls below m. Conversely,
when −K < m < 0, the model describes a weak Allee effect, where the per capita growth rate remains
positive. More importantly, as noted by the authors of [3], two or more mechanisms can simultaneously
contribute to the Allee effect within the same population, generating multiple Allee effects. For
example, Urocyon littoralis, an endangered species native to California’s six Channel Islands, faces
threats from predation by Aquila chrysaetos and low reproduction rates in low-density environments
due to mate limitation [12]. Consequently, the growth of Urocyon littoralis populations is influenced by
the Allee effect arising from both predation pressure and reproductive challenges, resulting in a double
Allee effect. To include this phenomenon, Boukal et al. [13] proposed the following single-species
model:

dx
dt
=

rx
x + n

(1 −
x
K

)(x − m) ≜ xp(x), (1.2)

where the function p(x) = r
x+n (1 − x

K )(x − m) represents the per capita growth rate, and the auxiliary
parameter n > 0 quantifies the strength of the Allee effect [14], with m > −n. The term x−m is the Allee
effect discussed in model (1.1), while the term rx

x+n represents another one caused by external difficulties
such as a non-fertile population [15]. So far, various population dynamic models with the double Allee
effect have been well studied. Pal and Saha [16] proposed a ratio-dependent prey-predator system by
incorporating this effect in prey growth, analyzing its stability and bifurcation dynamics. Later, Jiao
and Chen [17] modified this model by introducing predator digestion delay and performed Bogdanov-
Takens bifurcation analysis. Singh et al. [18] investigated a modified Leslie-Gower model where the
double Allee effect influences the prey population. Xiao and Xia [19] explored Turing instability and
bifurcation behaviors in a diffusive predator-prey model with multiple Allee effects and herd behavior.

Research on the impact of stochasticity on population dynamics has attracted increasing attention,
especially in conjunction with the Allee effect (for example, [20, 21] and references therein). While
noise is often linked to system disorder [22–25], studies show that its interaction with system
nonlinearity can produce counter-intuitive phenomena such as stochastic resonance, noise-enhanced
stability, and pattern formation [26,27]. These phenomena play a constructive role in various systems.
Stochastic bifurcation, a noise-induced phenomenon, is widely observed and applied across fields [28].
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For example, stochastic bifurcation explains patterns in animal behavior in biology [29] and is a
useful tool for analyzing market price fluctuations in economics [30]. There are two main types:
dynamical bifurcation (D-bifurcation) and phenomenological bifurcation (P-bifurcation) [31]. D-
bifurcation focuses on new invariant measures derived from reference measures, particularly the
system’s stationary probability density [32]. P-bifurcation examines how invariant measures change
shape as parameters vary [33]. Moreover, studying stochastic bifurcation is more complex and remains
in its early stages both theoretically and methodologically compared to deterministic bifurcation.

Based on the aforementioned analysis, we need to pay more attention to stochastic bifurcation
dynamics in population models with the double Allee effect. Despite conducted, unresolved issues
remain. First, most researchers have primarily considered environmental noise and the single Allee
effect [20, 21], with rarely an attention given to the double Allee effect. Second, researchers have
mostly focused on the persistence and extinction of species and the existence of stationary distributions
in systems [22,23], with limited attention given to bifurcation dynamics [34–36]. Motivated by this, we
investigate the bifurcation dynamics of a stochastic single-species model with the double Allee effect.
Our results highlight the role of parameter π, which not only governs the persistence and extinction
of species but also determines D-bifurcation and P-bifurcation in the system. Furthermore, our study
offers significant biological insights, including: (i) Noise-induced state transitions that alter population
density distributions and increase the risk of extinction; and (ii) variations in the strength of the Allee
effect that result in four distinct modifications to the shape of the density function, accelerating the
extinction process for endangered species. These findings have potential implications for ecological
resource management.

The paper is structured as follows: In Section 2, we present the model construction and major
findings. In Section 3, we provide proofs of these findings. In Section 4, we provide numerical results
to examine the impact of noise and the Allee effect. In Section 5, we conclude with an emphasis on the
approach’s broad applicability and potential for extending to other models.

2. Model description and main results

2.1. Model description

May [37] pointed out that due to the unpredictability of factors such as rainfall, light intensity, and
nutrient availability, parameters in population dynamics are not constants but should exhibit a certain
degree of randomness. Theoretically, all parameters (including r and K) in model (1.2) may be subject
to random fluctuations, but from a mathematical calculation perspective, this assumption is unrealistic
and meaningless in practical applications. In this paper, we assume that environmental noise mainly
affects the per capita growth rate, which is also a common practice in the literature [38,39]. Therefore,
p(x) in model (1.2) can be expressed as an average growth rate with a noise term. In cases where the
correlation time is short, the noise can be approximated by white noise σϵ(t), where ϵ(t) is standard
white noise and σ denotes the noise intensity. Thus, we have

1
x

dx
dt
= p(x) + σϵ(t). (2.1)

AIMS Mathematics Volume 10, Issue 8, 19878–19895.



19881

Since the accumulated noise up to time t is given by σWt, where Wt =
∫ t

0
ϵ(τ)dτ is a standard Wiener

process, Eq (2.1) can be rewritten in the following standard form:

dx =
rx

x + n
(1 −

x
K

)(x − m)dt + σxdWt. (2.2)

Our main purpose is to study bifurcation dynamics of stochastic model (2.2) and explore how the
double Allee effect influences it. Without loss of generality, assuming − nK

n+K < m < 0, we focus only
on the weak Allee effect in model (2.2), using a similar approach for the strong Allee effect.

2.2. Main results

One of our goals is to investigate the D-bifurcation of model (2.2) in fluctuating environments. Let

π =
mr
n
+
σ2

2
.

We then derive the following inferences about the extinction and persistence of species for stochastic
model (2.2).

Theorem 2.1. (i) If π > 0, the trivial solution exhibits stochastic asymptotic stability.

(ii) If π < 0, model (2.2) has a unique stationary distribution, where the density function is

ρ(x) =
x−

2π
σ2 −1(x + n)

2r
σ2 (1+m+n

K +
m
n )e−

2r
σ2K

x∫ ∞
0
θ−

2π
σ2 −1(θ + n)

2r
σ2 (1+m+n

K +
m
n )e−

2r
σ2K
θdθ
. (2.3)

Remark 2.1. Theorem 2.1 shows that when π > 0, model (2.2) has a unique stable invariant measure,
the Dirac measure δ∗ concentrated at 0. When π < 0, this stability is lost, and a new stable invariant
measure appears. Thus, model (2.2) undergoes a D-bifurcation as π crosses 0. Consequently, we can
draw the following conclusion.

Theorem 2.2. Parameter π = 0 is the D-bifurcation point of model (2.2).

The following result can be further obtained at the D-bifurcation point.

Theorem 2.3. If π = 0, then lim
t→∞

x(t) = 0 in probability.

Remark 2.2. Theorems 2.1 and 2.3 show that parameter π determines population survival: Extinction
occurs for π ≥ 0, and persistence for π < 0. Thus, π is the critical threshold that distinguishes
population extinction and persistence. Ecologically, parameter π reflects that population survival is
determined not only by its intrinsic growth rate and the intensity of the Allee effect, but more critically,
by its capacity to withstand the detrimental impacts of environmental stochasticity.

Another goal of ours is to investigate the P-bifurcation of model (2.2). Since P-bifurcation
characterizes changes in the shape of invariant measures under varying parameters, analyzing the
extreme points of ρ(x) is essential. A maximum point of ρ(x) suggests that sample trajectories are
more likely to concentrate around this point, thereby reflecting stability in probability. Conversely, a
minimum point of ρ(x) indicates instability.
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From dρ(x)
dx = 0, we know that

x−
2π
σ2 −2(x + n)

2r
σ2 (1+m+n

K +
m
n )−1(d1x2 + d2x + d3) = 0, (2.4)

with d1 = −
2r
σ2K , d2 =

2r
σ2 (1 + m

K ) − 2, d3 = −n( 2π
σ2 + 1). Then, Eq (2.4) may possess either a zero root or

a maximum two positive roots, as listed in Table 1.

Table 1. Positive roots of Eq (2.4) and shapes of ρ(x).

Parameter Positive root Shape of ρ(x)
π < −1

2σ
2 1 A peak

π > −1
2σ

2 d2 − 2
√

d1d3 > 0 2 A peak and a valley
d2 − 2

√
d1d3 < 0 0 Monotonous

Based on the expression of ρ(x) and the distribution of extreme points presented in Table 1, we
conclude:

(i) If π < −σ2, Eq (2.4) has a zero root and a positive root, making ρ(x) unimodal with a peak. It
reaches its minimum at x = 0 and is differentiable there.

(ii) If −σ2 < π < −1
2σ

2, ρ(x) has a similar shape as in (i) but is not differentiable at x = 0.
(iii) If −1

2σ
2 < π < 0, Eq (2.4) has either no roots or two positive roots, making ρ(x) either

monotonic or unimodal with a peak and a valley. Additionally, lim
x→+∞

ρ(x) = 0 and lim
x→0+
ρ(x) = +∞.

The above analysis shows that as parameter π crosses the thresholds of −σ2 and −1
2σ

2, the shape of
ρ(x) transitions from unimodal to one with a peak and valley, and finally to monotonic. Therefore, we
reach the following conclusion.

Theorem 2.4. Stochastic model (2.2) exhibits P-bifurcations when parameter π crosses −σ2 and −1
2σ

2.

Remark 2.3. When parameter π crosses zero, ρ(x) transitions from a Dirac delta function to a power
law function, indicating a significant change in the shape of the density function. In a broader context,
it can be said that stochastic model (2.2) exhibits a P-bifurcation at this critical point.

3. Proofs of main results

We now provide supplementary findings and proofs for the major results in Section 2.2.

3.1. Preliminaries

Let Ck,δ
b (R+) denote the space of continuous functions f (x) from R+ to R satisfying ∥ f ∥k,δ< ∞ for

any k ∈ Z+ and 0 < δ ≤ 1. Here,

∥ f ∥k,0= sup
x∈R+

| f (x)|
1 + |x|

+
∑

1≤l≤k

sup
x∈R+
|dl f (x)|,

∥ f ∥k,δ=∥ f ∥k,0 +
∑
l=k

sup
x,y

|dl f (x) − dl f (y)|
|x − y|δ

.
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Consider the Stratonovich stochastic differential equation,

dx(t) = f (x)dt + g(x) ◦ dWt, (3.1)

where the initial value is given x0, and f (x) ∈ C1,δ
b (R+), g(x) ∈ C2,δ

b (R+) and 1
2g(x)g′(x) ∈ C1,δ

b (R+).
Then, we present the following results regarding this equation.

Lemma 3.1. [40] For the Stratonovich stochastic differential equation (3.1), there exists a unique
continuous random dynamical system (RDS) (θ, φ) over the metric dynamical system θ associated with
the Wiener process Wt such that x(t, ω) = φ(t, ω)x0 represents a solution to (3.1) with a given initial
value x0.

Let m(dx) represent the speed measure on R+, defined as

m(A) =
∫

A

e2
∫ x

1
f (ξ)

g2(ξ)
dξ

|g(x)|
dx, A ∈ B(R+), (3.2)

where B(R+) represents the Borel σ-algebra of sets in R+.

Lemma 3.2. [40] LetA(ω) denote the random attractor in the universe D consisting of all tempered
subsets of R+ for the RDS generated by (3.1). We assume that the following conditions are satisfied:

(a1) f (0) = 0 and f (x) ≤ k1x + k2, where k1, k2 ∈ R+;

(a2) g(0) = 0 and |g′(0)| > 0;

(a3) lim sup
x→∞

f (x)
x < 0 and |g(x)|

x = κ + O(x−γ), where both κ and γ are positive constants.

Then, we can conclude the following:

(b1) If m(0, 1] = ∞,A(ω) = {0} almost surely;

(b2) If m(0, 1] < ∞, there exists a F -measurable equilibrium u(ω) such that A(ω) = [0, u(ω)] with
u(ω) > 0 almost surely. Moreover, there is no other F -measurable equilibrium in the set (0, u(ω)]
and

lim
t→∞
P{ω : φ(t, ω)x ∈ A} = P{ω : u(ω) ∈ A} =

m(A)
m(R+)

, (3.3)

for all x > 0 and A ∈ B(R+).

Lemma 3.3. [41] Consider the following Itô stochastic differential equation:

dx(t) = η(x)dt + dWt, (3.4)

where η(x) is continuously differentiable. If the scale functions

Ψ(y) =
∫ y

0
e
∫ v

0 2η(ξ)dξdv and Φ(y) =
∫ y

0
e−
∫ v

0 2η(ξ)dξdv

satisfyΨ(−∞) = −∞,Ψ(∞) < ∞,Φ(−∞) = −∞ and Φ(+∞) = +∞, then lim
t→+∞

x(t) = −∞ in probability.

By employing the established method proposed by Zou et al. [32], the following outcome can be
achieved.

Lemma 3.4. For any initial value x0 ∈ R+, model (2.2) exhibits a unique solution x(t) ∈ R+ for all
t ≥ 0 almost surely.
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3.2. Proof of Theorem 2.1

Stochastic model (2.2) can be transformed into the following Stratonovich form of equivalent
nature:

dx = [
rx

x + n
(1 −

x
K

)(x − m) −
1
2
σ2x]dt + σx ◦ dWt. (3.5)

Denote
f (x) =

rx
x + n

(1 −
x
K

)(x − m) −
1
2
σ2x, g(x) = σx.

For the stochastic system (3.5), Lemma 3.1 guarantees the existence of a unique RDS. We further
compute that

ϕ(x) ≜e2
∫ x

1
f (θ)

g2(θ)
dθ

=e2
∫ x

1

rθ
θ+n (1− θK )(θ−m)− 1

2σ
2θ

σ2θ2
dθ

=e
2
σ2

∫ x
1 [−( mr

n +
σ2
2 ) 1
θ+r(1+m+n

K +
m
n ) 1
θ+n−

r
K ]dθ

=c1x−
2π
σ2 (x + n)

2r
σ2 (1+m+n

K +
m
n )e−

2r
σ2K

x,

(3.6)

and here, c1 = (1 + n)−
2r
σ2 (1+m+n

K +
m
n )e

2r
σ2K . Thus, m(0, 1] in Lemma 3.2 can be expressed by

m(0, 1] =
∫ 1

0

ϕ(x)
σx

dx

=
c1

σ

∫ 1

0
x−

2π
σ2 −1(x + n)

2r
σ2 (1+m+n

K +
m
n )e−

2r
σ2K

xdx.
(3.7)

(i) When π > 0, we have

m(0, 1] ≥
c1n

2r
σ2 (1+m+n

K +
m
n )e−

2r
σ2K

σ

∫ 1

0
x−

2π
σ2 −1dx = ∞,

implying that A(ω) = {0} almost surely by Lemma 3.2. In other words, the trivial solution is
stochastically asymptotically stable.

(ii) When π < 0, we have

m(0, 1] ≤
c1(1 + n)

2r
σ2 (1+m+n

K +
m
n )

σ

∫ 1

0
x−

2π
σ2 −1dx < ∞.

Based on Lemma 3.2, system (3.5) exhibits a unique stationary distribution; similarly, model (2.2) also
possesses this characteristic.

Denote
ρ(x) =

ϕ(x)
g(x)m(R+)

.

It is easy to verify that ρ(x) is the solution of the following Fokker-Planck equation corresponding to
model (3.5):

d
dx

[( f (x) +
1
2

g′(x)g(x))ρ(x)] −
1
2

d2

dx2 [g2(x)ρ(x)] = 0.

Therefore, ρ(x) can be explicitly expressed as

ρ(x) =
x−

2π
σ2 −1(x + n)

2r
σ2 (1+m+n

K +
m
n )e−

2r
σ2K

x∫ ∞
0
θ−

2π
σ2 −1(θ + n)

2r
σ2 (1+m+n

K +
m
n )e−

2r
σ2K
θdθ
.
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3.3. Proof of Theorem 2.3

Let ϖ(t) = ln x(t)
σ
. Applying Itô’s formula to ϖ(t), we obtain dϖ(t) = η(ϖ)dt + dWt, where

η(ϖ) =
1
σ

[
r

eσϖ + n
(1 −

eσϖ

K
)(eσϖ − m) −

σ2

2
].

After basic algebraic calculations,∫ v

0
2η(θ)dθ =

2
σ

∫ v

0
[

r
eσθ + n

(1 −
eσθ

K
)(eσθ − m) −

σ2

2
]dθ

=
2
σ2

∫ eσv

1
[−(

mr
n
+
σ2

2
)
1
ξ
+ r(1 +

m + n
K
+

m
n

)
1
ξ + n

−
r
K

]dξ

=
2
σ2 [−(

mr
n
+
σ2

2
)σv + r(1 +

m + n
K
+

m
n

) ln(eσv + n) −
r
K

eσv] + c2

=
2
σ2 [r(1 +

m + n
K
+

m
n

) ln(eσv + n) −
r
K

eσv] + c2,

and here, c2 = −r(1 + m+n
K +

m
n ) ln(1 + n) + r

K . Consequently, Ψ(y) defined in Lemma 3.3 can be
expresses as

Ψ(y) =
∫ y

0
e
∫ v

0 2η(θ)dθdv

=

∫ y

0
e

2
σ2 [r(1+m+n

K +
m
n ) ln(eσv+n)− r

K eσv]+c2dv

=ec2

∫ y

0
(eσv + n)

2r
σ2 (1+m+n

K +
m
n )e−

2r
σ2K

eσv
dv

=
ec2

σ

∫ eσy

1

(ξ + n)
2r
σ2 (1+m+n

K +
m
n )e−

2r
σ2K
ξ

ξ
dξ.

Due to lim
y→−∞

eσy = 0 and lim
y→+∞

eσy = +∞,

Ψ(−∞) = −
ec2

σ

∫ 1

0

(ξ + n)
2r
σ2 (1+m+n

K +
m
n )e−

2r
σ2K
ξ

ξ
dξ

≤ −
ec2

σ

∫ 1

0

n
2r
σ2 (1+m+n

K +
m
n )e−

2r
σ2K

ξ
dξ

= −
n

2r
σ2 (1+m+n

K +
m
n )ec2−

2r
σ2K

σ

∫ 1

0

1
ξ

dξ = −∞,

and

Ψ(+∞) =
ec2

σ

∫ +∞

1

(ξ + n)
2r
σ2 (1+m+n

K +
m
n )e−

2r
σ2K
ξ

ξ
dξ.

To prove the boundedness of Ψ(+∞), we split the integration interval [1,+∞) into two sub-intervals:
[1,max 1, n] and [max 1, n,+∞). Then,

Ψ(+∞) =
ec2

σ

∫ max{1,n}

1

(ξ + n)
2r
σ2 (1+m+n

K +
m
n )e−

2r
σ2K
ξ

ξ
dξ +

ec2

σ

∫ +∞

max{1,n}

(ξ + n)
2r
σ2 (1+m+n

K +
m
n )e−

2r
σ2K
ξ

ξ
dξ.
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By the continuity of
(ξ + n)

2r
σ2 (1+m+n

K +
m
n )e−

2r
σ2K
ξ

ξ

on [1,max{1, n}], there exists a positive constant K1 such that

ec2

σ

∫ max{1,n}

1

(ξ + n)
2r
σ2 (1+m+n

K +
m
n )e−

2r
σ2K
ξ

ξ
dξ ≤ K1.

Furthermore,

ec2

σ

∫ +∞

max{1,n}

(ξ + n)
2r
σ2 (1+m+n

K +
m
n )e−

2r
σ2K
ξ

ξ
dξ

≤
ec2

σ

∫ +∞

max{1,n}

(2ξ)
2r
σ2 (1+m+n

K +
m
n )e−

2r
σ2K
ξ

ξ
dξ

=
ec2

σ
(
σ2K

r
)

2r
σ2 (1+m+n

K +
m
n )
∫ +∞

2r max{1,n}
σ2K

t
2r
σ2 (1+m+n

K +
m
n )−1e−tdt

≤
ec2

σ
(
σ2K

r
)

2r
σ2 (1+m+n

K +
m
n )
Γ(

2r
σ2 (1 +

m + n
K
+

m
n

)) ≜ K2,

where Γ(·) is the Gamma function. Then, we have

Ψ(+∞) ≤ K1 + K2 < +∞.

Furthermore, Φ(−∞) = −∞ and Φ(+∞) = +∞ can be obtained similarly. Therefore, lim
t→∞

x(t) = 0 in
probability by Lemma 3.3.

4. Numerical results

Numerical simulations are performed in this section to validate the theoretical findings and explore
the impact of environmental noise for the stochastic model (2.2).

4.1. The impact of noise intensity on survival and D-bifurcation

Let r = 1, n = 2, m = −1, and K = 10. If σ = 1.5, we have π = mr
n +

σ2

2 = 0.63 > 0. According
to Theorem 2.1, the population tends to extinction, as shown in Figure 1(a1). If σ = 1, one has π = 0,
which also results in population extinction; see Figure 1(b1). Both scenarios exhibit a unique stable
invariant measure concentrated at 0, as observed from Figures 1(a2) and (b2). However, when selecting
σ = 0.5, we find that π = −0.38 < 0. In this case, the population persists with a nontrivial stationary
distribution, illustrated in Figures 1(c1) and (c2). From an ecological perspective, parameter π governs
both persistence and extinction of the population and acts as a D-bifurcation point.

When considering a smaller noise level of σ = 0.1 that satisfies π = −0.5, sample paths exhibit
minor oscillations around the deterministic attractor, as illustrated in Figures 1(d1) and (d2). By
comparing the various subgraphs in Figure 1, it can be observed that lower-level noise has minimal
impact on the original dynamics, while higher-level noise lead to population extinction regardless of
the persistence in the deterministic system. This phenomenon is further elucidated in Figure 2.
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Figure 1. The upper half-plane shows the trajectories of stochastic model (2.2) and its
deterministic counterpart under different noise intensities σ. Specifically, (a1) σ = 1.5
satisfies π = 0.63 > 0, (b1) σ = 1 satisfies π = 0, (c1) σ = 0.5 satisfies π = −0.38 < 0,
and (d1) σ = 0.1 satisfies π = −0.5 < 0. The lower half-plane displays the corresponding
histograms.

Figure 2. The relationship between the critical threshold π and the noise intensity σ.

4.2. The impact of noise intensity on P-bifurcation

Let n = 2, m = −1, and K = 10. Figure 3 shows a bifurcation diagram in the σ2−r plane, illustrating
how noise intensity affects bifurcation dynamics. We note that the plane is divided into five zones by
the following curves:

L1 : π = 0; L2 : π = −
σ2

2
; L3 : π = −σ2; L4 : d2 − 2

√
d1d3 = 0.

Here, zone 1O indicates the extinction of the population , while zones 2O– 5O indicate the persistence of
the population. Specifically, in zone 2O, the density function ρ(x) exhibits monotonic behavior, while
in zone 3O, it exhibits a unimodal structure with both a peak and a valley. Moreover, zones 4O and 5O
display a unimodal structure for the density function but only with a peak. Notably, the density function
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is not differentiable at x = 0 in zone 4O but is differentiable in zone 5O. Therefore, the system undergoes
four P-bifurcations as noise intensity changes.

Figure 3. The bifurcation diagram of model (2.2) shows that the σ2 − r plane is divided
into five distinct zones. There is no nontrivial stationary distribution in zone 1O, while it
exists in zones 2O– 5O. In zone 2O, the density function ρ(x) exhibits monotonic behavior.
In contrast, zones 3O, 4O, and 5O exhibit a unimodal structure with distinct characteristics:
Zone 3O features both a peak and a valley, whereas zones 4O and 5O exhibit only a peak.
Notably, the density function is non-differentiable at x = 0 in zone 4O but is differentiable in
zone 5O.

Figure 4. The graph illustrates different structures of the density function ρ(x) under different
noise intensities σ: (a) monotonous structure; (b) unimodal structure with a peak and a
valley; (c) unimodal structure with only a peak, non-differentiable at x = 0; and (d) unimodal
structure with only a peak, differentiable at x = 0.

To demonstrate bifurcation dynamics more intuitively, we present numerical results with r = 5.
Here, the critical noise levels are σ2

1 = 5, σ2
2 = 3.04, σ2

3 = 2.5, and σ2
4 = 1.67. For any noise intensity

satisfying σ2 > 5, the population tends toward extinction, resulting in the absence of a nontrivial
stationary distribution. Sample paths for this case are similar to Figure 1(a1) and thus omitted. When
σ = 2 (i.e., 3.04 < σ2 < 5), the density function shows monotonic behavior, as shown in Figure 4(a).
Upon decreasing the noise intensity to

√
2.8 (i.e., 2.5 < σ2 < 3.04), a unimodal density function

characterized by both a peak and a valley emerges (see Figure 4(b)). Notably, in both cases, it can be
observed that lim

x→+∞
ρ(x) = 0 and lim

x→0+
ρ(x) = +∞. Moreover, further reducing the noise intensity to

√
2
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(i.e., 1.67 < σ2 < 2.5) results in a unimodal density function with only a peak and is not differentiable
at x = 0 (see Figure 4(c)). Finally, setting σ =

√
0.8 (i.e., σ2 < 1.67) yields a density function similar

to Figure 4(c) but it is differentiable at x = 0 (see Figure 4(d)).
In summary, as noise intensity decreases, the density function undergoes four P-bifurcations.

From an ecological standpoint, noise can induce state transitions within the system, thereby altering
population density distributions and increasing the risk of population extinction. This conclusion is
also supported by Figure 5, which visually demonstrates the effects of varying noise intensity for both
the extreme points and peak values of the density function ρ(x).

Figure 5. (a) The relationship between the extreme points (solid line for maximum, dashed
line for minimum) of ρ(x), and the noise intensity σ is shown; and (b) the relationship
between the peak values of ρ(x), and the noise intensity σ is illustrated.

4.3. The impact of Allee effect on stochastic dynamics

Considering the auxiliary parameter n as a quantification of the intensity of the Allee effect, we
set r = 1, m = −1, K = 10, σ = 0.5, and enable variations in n to examine its impact on
stochastic dynamics. Initially, we plot the relationship between the critical threshold π and the auxiliary
parameter, with n plotted first, as depicted in Figure 6. Evidently, this graph vividly demonstrates that
a stronger Allee effect has an adverse impact on population sustainability.

Figure 6. The relationship between the critical threshold π and auxiliary parameter n.

The impact of auxiliary parameter n on both the extreme points and peak values of ρ(x) is shown
in Figure 7. It can be observed that as n gradually increases, ρ(x) transitions from exhibiting a single
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maximum point to displaying both maximum and minimum points before vanishing. Furthermore,
its peak value decreases progressively. To further clarify this behavior, we present the graph of ρ(x)
under varying values of n, as shown in Figure 8. As the auxiliary parameter values decrease, the
shape structure of the density function undergoes four distinct changes. By comparing Figure 4 with
8, it is evident that both the Allee effect and noise intensity have analogous impacts, resulting in four
characteristic changes in the shape of the density function, namely four P-bifurcations.

Figure 7. (a) The relationship between the extreme points (solid line for maximum and
dashed line for minimum) of ρ(x), and the auxiliary parameter n is shown; and (b) the
relationship between the peak values of ρ(x), and the auxiliary parameter n is illustrated.

Figure 8. The graph shows different structures of the density function ρ(x) under different
auxiliary parameters n. The red line represents a unimodal structure with a peak that is
differentiable at x = 0. The dark red depicts a unimodal structure with a peak that is not
differentiable at x = 0. The blue line illustrates a unimodal structure characterized by both a
peak and a valley. The green line exhibits a monotonic structure.

5. Discussion

Our focus of this paper lies in examining the bifurcation dynamics observed in a stochastic single-
species model featuring a double Allee effect driven by multiplicative noise. Theoretical and numerical
results demonstrate that the original dynamic behavior remains largely unaffected by lower-level
noise, whereas higher-level noise induces population extinction regardless of its persistence in its
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corresponding deterministic system. Interestingly, moderate level noise may induce diverse alterations
in the system state. Our results underscore the critical role of parameter π, which governs both the
persistence and extinction of species and determines the dynamical and phenomenological bifurcations
in the system. Furthermore, our study offers significant biological insights, including: (i) Noise-
induced state transitions that alter population density distributions and increase the risk of extinction;
and (ii) variations in the strength of the Allee effect that result in four distinct modifications to the
shape of the density function, accelerating the extinction process for endangered species.

The exploitation of biological resources and the harvesting of species are commonly employed
strategies for economic purposes. However, implementing effective harvest management policies
can safeguard populations facing extinction due to excessive harvesting [42, 43]. Let the harvesting
function of the population be denoted as h(x). Consequently, when subjected to harvesting, stochastic
model (2.2) can be formulated as follows:

dx = [
rx

x + n
(1 −

x
K

)(x − m) − h(x)]dt + σxdWt. (5.1)

It is important to mention that the function h(x) can be expressed in various forms, such as constant
harvesting, linear harvesting, and non-linear harvesting [44, 45]. For simplicity, we illustrate the
universality of the method used in this paper by taking only nonlinear harvesting (Michaelis-Menten
type harvesting) as an example, i.e.,

h(x) =
ax

b + x
, (5.2)

with both a and b as positive constants. Then, f (x) and g(x) in Eq (3.1) becomes

f (x) = x[
r

x + n
(1 −

x
K

)(x − m) −
a

b + x
−

1
2
σ2], g(x) = σx.

Denote

π =
mr
n
+

a
b
+
σ2

2
.

Further calculations show that ϕ(x) in Eq (3.6) is given by

ϕ(x) ≜e2
∫ x

1
f (θ)

g2(θ)
dθ

=e2
∫ x

1

r
θ+n (1− θK )(θ−m)− a

b+θ −
1
2σ

2

σ2θ
dθ

=e
2
σ2

∫ x
1 [−( mr

n +
a
b+
σ2
2 ) 1
θ+r(1+m+n

K +
m
n ) 1
θ+n+

a
b(θ+b)−

r
K ]dθ

=c1x−
2π
σ2 (x + n)

2r
σ2 (1+m+n

K +
m
n )(x + b)

2a
σ2b e−

2r
σ2K

x,

(5.3)

and here, c1 = (1 + n)−
2r
σ2 (1+m+n

K +
m
n )(1 + b)−

2a
σ2b e

2r
σ2K . Subsequently, by following the approach employed

in the proofs of Theorems 2.1 and 2.3, we deduce that, for stochastic model (5.1) with (5.2),
(i) if π ≥ 0, the population x(t) will become extinct;
(ii) if π < 0, stochastic model (5.1) possesses a unique stationary distribution with the density

function given by

ρ(x) =
x−

2π
σ2 −1(x + n)

2r
σ2 (1+m+n

K +
m
n )(x + b)

2a
σ2b e−

2r
σ2K

x∫ ∞
0
θ−

2π
σ2 −1(θ + n)

2r
σ2 (1+m+n

K +
m
n )(θ + b)

2a
σ2b e−

2r
σ2K
θdθ
.
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On the other hand, D-bifurcation and P-bifurcation can be discussed similarly. Therefore, the method
adopted in this article has broad applicability and can be extended to other models.

In this paper, we investigate has investigated the combined effects of noise and the Allee effect
on bifurcation dynamics within a stochastic single-species model incorporating multiplicative noise.
The results may have important implications for the management of ecological resources; however,
several unresolved issues remain, warranting further research. For instance, researchers could focus
on deriving the probability density function and analyzing bifurcation behavior in more realistic, high-
dimensional systems.
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