Research article Special Issues

Boundedness in a quasilinear attraction–repulsion chemotaxis system with variable logistic source

  • Received: 28 June 2025 Revised: 19 August 2025 Accepted: 21 August 2025 Published: 28 August 2025
  • MSC : 35A01, 35K51, 35K55, 35Q92, 92C17

  • This paper deals with a quasilinear attraction–repulsion chemotaxis system with a source term of variable logistic type $ u_t = \nabla\cdot(\phi(u)\nabla u)-\nabla\cdot(\psi(u)\nabla v)+\nabla\cdot(\varphi(u)\nabla w)+g(u) $, $ \tau_1v_t = \Delta v-v+u $, $ -\Delta w = -w+u $ in a smooth bounded domain $ \Omega\subset \mathbb R^n $ ($ n\ge1 $), and endowed with nonnegative initial data and homogeneous Neumann boundary conditions. Moreover, the logistic source verifies $ g(x, s)\leq\eta s^{k(x)}-\mu s^{m(x)} $, $ s > 0 $ with $ g(x, 0)\ge0 $, $ x\in\Omega $, where $ \eta\ge0 $, $ \mu > 0 $ are constants, $ k, m $ are measurable functions fulfilling $ 0\leq k^-: = \underset{x\in\Omega}{ess\ \inf} k(x)\leq k(x)\leq k^+: = \underset{x\in\Omega}{ess\ \sup} k(x) < +\infty $ and $ 1 < m^-: = \underset{x\in\Omega}{ess\ \inf} m(x)\leq m(x)\leq m^+: = \underset{x\in\Omega}{ess\ \sup} m(x) < +\infty $, as well as $ \phi, \psi $, and $ \varphi $ are regular functions satisfying $ c_1s^p\leq\phi(s) $, $ \psi(s)\leq c_2s^q $, and $ \underline c_3s^l\leq\varphi(s)\leq c_3s^l $ with $ p, q, l\in\mathbb R $, $ c_1, c_2, \underline c_3, c_3 > 0 $ and $ s\ge s_0 > 1 $. We show that when $ q = m^{−} − 1 $ and $ l\leq m^{−} − 1 $, there exists $ \mu^* > 0 $ such that if $ \mu > \mu^* $, then the corresponding initial-boundary value problem possesses a unique globally bounded classical solution. Moreover, the same conclusion holds true provided that $ q < m^{−} − 1 $ and $ l\leq m^{−} − 1 $ for any $ \mu > 0 $.

    Citation: Zhan Jiao. Boundedness in a quasilinear attraction–repulsion chemotaxis system with variable logistic source[J]. AIMS Mathematics, 2025, 10(8): 19867-19877. doi: 10.3934/math.2025886

    Related Papers:

  • This paper deals with a quasilinear attraction–repulsion chemotaxis system with a source term of variable logistic type $ u_t = \nabla\cdot(\phi(u)\nabla u)-\nabla\cdot(\psi(u)\nabla v)+\nabla\cdot(\varphi(u)\nabla w)+g(u) $, $ \tau_1v_t = \Delta v-v+u $, $ -\Delta w = -w+u $ in a smooth bounded domain $ \Omega\subset \mathbb R^n $ ($ n\ge1 $), and endowed with nonnegative initial data and homogeneous Neumann boundary conditions. Moreover, the logistic source verifies $ g(x, s)\leq\eta s^{k(x)}-\mu s^{m(x)} $, $ s > 0 $ with $ g(x, 0)\ge0 $, $ x\in\Omega $, where $ \eta\ge0 $, $ \mu > 0 $ are constants, $ k, m $ are measurable functions fulfilling $ 0\leq k^-: = \underset{x\in\Omega}{ess\ \inf} k(x)\leq k(x)\leq k^+: = \underset{x\in\Omega}{ess\ \sup} k(x) < +\infty $ and $ 1 < m^-: = \underset{x\in\Omega}{ess\ \inf} m(x)\leq m(x)\leq m^+: = \underset{x\in\Omega}{ess\ \sup} m(x) < +\infty $, as well as $ \phi, \psi $, and $ \varphi $ are regular functions satisfying $ c_1s^p\leq\phi(s) $, $ \psi(s)\leq c_2s^q $, and $ \underline c_3s^l\leq\varphi(s)\leq c_3s^l $ with $ p, q, l\in\mathbb R $, $ c_1, c_2, \underline c_3, c_3 > 0 $ and $ s\ge s_0 > 1 $. We show that when $ q = m^{−} − 1 $ and $ l\leq m^{−} − 1 $, there exists $ \mu^* > 0 $ such that if $ \mu > \mu^* $, then the corresponding initial-boundary value problem possesses a unique globally bounded classical solution. Moreover, the same conclusion holds true provided that $ q < m^{−} − 1 $ and $ l\leq m^{−} − 1 $ for any $ \mu > 0 $.



    加载中


    [1] E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5
    [2] G. Viglialoro, Boundedness properties of very weak solutions to a fully parabolic chemotaxis-system with logistic source, Nonlinear Anal.-Real, 34 (2017), 520–535. https://doi.org/10.1016/j.nonrwa.2016.10.001 doi: 10.1016/j.nonrwa.2016.10.001
    [3] J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differ. Equations, 258 (2015), 1158–1191. https://doi.org/10.1016/j.jde.2014.10.016 doi: 10.1016/j.jde.2014.10.016
    [4] M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Commun. Part. Diff. Eq., 35 (2010), 1516–1537. https://doi.org/10.1080/03605300903473426 doi: 10.1080/03605300903473426
    [5] M. Winkler, Chemotaxis with logistic source: Very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348 (2008), 708–729. https://doi.org/10.1016/j.jmaa.2008.07.071 doi: 10.1016/j.jmaa.2008.07.071
    [6] J. I. Tello, M. Winkler, A chemotaxis system with logistic source, Commun. Part. Diff. Eq., 32 (2007), 849–877. https://doi.org/10.1080/03605300701319003 doi: 10.1080/03605300701319003
    [7] Y. Zhang, S. Zheng, Global boundedness of solutions to a quasilinear parabolic-parabolic Keller–Segel system with logistic source, Appl. Math. Lett., 52 (2016), 15–20. https://doi.org/10.1016/j.jmaa.2022.126482 doi: 10.1016/j.jmaa.2022.126482
    [8] R. Ayazoglu, Global boundedness of solutions to a quasilinear parabolic-parabolic Keller–Segel system with variable logistic source, J. Math. Anal. Appl., 516 (2022), 126482. https://doi.org/10.1016/j.jmaa.2022.126482 doi: 10.1016/j.jmaa.2022.126482
    [9] R. Ayazoglu, E. Akkoyunlu, Boundedness of solutions to a quasilinear parabolic-parabolic chemotaxis model with variable logistic source, Z. Angew. Math. Phys., 73 (2022), 212. https://doi.org/10.1007/s00033-022-01847-0 doi: 10.1007/s00033-022-01847-0
    [10] Y. Tao, M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differ. Equations, 252 (2012), 2520–2543. https://doi.org/10.1016/j.jde.2011.07.010 doi: 10.1016/j.jde.2011.07.010
    [11] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Differ. Equations, 248 (2010), 2889–2905. https://doi.org/10.1016/j.jde.2010.02.008 doi: 10.1016/j.jde.2010.02.008
    [12] M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system, J. Math. Pure. Appl., 100 (2013), 748–767. https://doi.org/10.1016/j.matpur.2013.01.020 doi: 10.1016/j.matpur.2013.01.020
    [13] H. Y. Jin, Boundedness of the attraction-repulsion Keller–Segel system, J. Math. Anal. Appl., 422 (2015), 1463–1478. https://doi.org/10.1016/j.jmaa.2014.09.049 doi: 10.1016/j.jmaa.2014.09.049
    [14] Q. Guo, Z. Jiang, S. Zheng, Critical mass for an attraction-repulsion chemotaxis system, Appl. Anal., 97 (2018), 2349–2354. https://doi.org/10.1080/00036811.2017.1366989 doi: 10.1080/00036811.2017.1366989
    [15] Y. Tao, Z. A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Mod. Meth. Appl. S., 23 (2013), 1–36. https://doi.org/10.1142/S0218202512500443 doi: 10.1142/S0218202512500443
    [16] K. Lin, C. Mu, Y. Gao, Boundedness and blow up in the higher-dimensional attraction-repulsion chemotaxis system with nonlinear diffusion, J. Differ. Equations, 261 (2016), 4524–4572. https://doi.org/10.1016/j.jde.2016.07.002 doi: 10.1016/j.jde.2016.07.002
    [17] S. Frassu, C. V. D. Mee, G. Viglialoro, Boundedness in a nonlinear attraction-repulsion Keller–Segel system with production and consumption, J. Math. Anal. Appl., 504 (2021), 125428. https://doi.org/10.1016/j.jmaa.2021.125428 doi: 10.1016/j.jmaa.2021.125428
    [18] S. Frassu, T. Li, G. Viglialoro, Improvements and generalizations of results concerning attraction-repulsion chemotaxis models, Math. Method. Appl. Sci., 45 (2022), 11067–11078. https://doi.org/10.1002/mma.8437 doi: 10.1002/mma.8437
    [19] T. Li, S. Frassu, G. Viglialoro, Combining effects ensuring boundedness in an attraction-repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., 74 (2023), 109. https://doi.org/10.1007/s00033-023-01976-0 doi: 10.1007/s00033-023-01976-0
    [20] Y. Wang, A quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic type with logistic source, J. Math. Anal. Appl., 441 (2016), 259–292. https://doi.org/10.1016/j.jmaa.2016.03.061 doi: 10.1016/j.jmaa.2016.03.061
    [21] X. Cao, Boundedness in a quasilinear parabolic-parabolic Keller–Segel system with logistic source, J. Math. Anal. Appl., 412 (2014), 181–188. https://doi.org/10.1016/j.jmaa.2013.10.061 doi: 10.1016/j.jmaa.2013.10.061
    [22] C. Yang, X. Cao, Z. Jiang, S. Zheng, Boundedness in a quasilinear fully parabolic Keller–Segel system of higher dimension with logistic source, J. Math. Anal. Appl., 430 (2015), 585–591. https://doi.org/10.1016/j.jmaa.2015.04.093 doi: 10.1016/j.jmaa.2015.04.093
    [23] G. Viglialoro, Influence of nonlinear production on the global solvability of an attraction-repulsion chemotaxis system, Math. Nachr., 294 (2021), 2441–2454. https://doi.org/10.1002/mana.201900465 doi: 10.1002/mana.201900465
    [24] Y. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller–Segel system with subcritical sensitivity, J. Differ. Equations, 252 (2012), 692–715. https://doi.org/10.1016/j.jde.2011.08.019 doi: 10.1016/j.jde.2011.08.019
    [25] M. Luca, A. C. Ross, L. E. Keshet, A. Mogilner, Chemotactic signaling, microglia, and Alzheimer's disease senile plaques: Is there a connection? B. Math. Biol., 65 (2003), 693–730. https://doi.org/10.1016/S0092-8240(03)00030-2 doi: 10.1016/S0092-8240(03)00030-2
    [26] H. Yuan, Q. Zhu, The well-posedness and stabilities of mean-field stochastic differential equations driven by G-Brownian motion, SIAM J. Control Optim., 63 (2025), 596–624. https://doi.org/10.1137/23M1593681 doi: 10.1137/23M1593681
    [27] Q. Zhu, Event-triggered sampling problem for exponential stability of stochastic nonlinear delay systems driven by Lévy processes, IEEE T. Automat. Contr., 70 (2025), 1176–1183. http://doi.org/10.1109/TAC.2024.3448128 doi: 10.1109/TAC.2024.3448128
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(297) PDF downloads(18) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog