Research article Special Issues

A new robust control framework for heat transfer equations through $ L_1 $ robust stability analysis and the design of a 2-DoF robust LQI controller

  • Received: 12 June 2025 Revised: 06 August 2025 Accepted: 20 August 2025 Published: 25 August 2025
  • MSC : 93D09

  • This paper developed a new robust control framework for uncertain heat transfer systems with a rapid thermal annealing (RTA) processes. We first employed the spatial discretization and Taylor linearization schemes in the nonlinear partial differential equation describing the dynamic behavior of heat transfer systems, by which a linear time-invariant (LTI) system with model uncertainties was derived. More precisely, the model uncertainties were decomposed into feedforward and feedback components, and they were shown to be bounded in terms of the $ L_\infty $(-induced) norm. This representation allowed us to establish an $ L_1 $ robust stability condition for uncertain heat transfer systems. We next designed a 2-degree-of-freedom (2-DoF) robust linear quadratic integral (LQI) controller to achieve the $ L_1 $ robust stability condition and reduce the effects of the model uncertainties on the associated tracking accuracy. Finally, some simulations were given to verify the effectiveness of the developed method.

    Citation: Taewan Kim, Jung Hoon Kim, Jihyun Park. A new robust control framework for heat transfer equations through $ L_1 $ robust stability analysis and the design of a 2-DoF robust LQI controller[J]. AIMS Mathematics, 2025, 10(8): 19217-19239. doi: 10.3934/math.2025859

    Related Papers:

  • This paper developed a new robust control framework for uncertain heat transfer systems with a rapid thermal annealing (RTA) processes. We first employed the spatial discretization and Taylor linearization schemes in the nonlinear partial differential equation describing the dynamic behavior of heat transfer systems, by which a linear time-invariant (LTI) system with model uncertainties was derived. More precisely, the model uncertainties were decomposed into feedforward and feedback components, and they were shown to be bounded in terms of the $ L_\infty $(-induced) norm. This representation allowed us to establish an $ L_1 $ robust stability condition for uncertain heat transfer systems. We next designed a 2-degree-of-freedom (2-DoF) robust linear quadratic integral (LQI) controller to achieve the $ L_1 $ robust stability condition and reduce the effects of the model uncertainties on the associated tracking accuracy. Finally, some simulations were given to verify the effectiveness of the developed method.



    加载中


    [1] W. Yu, D. M. France, D. S. Smith, D. Singh, E. V. Timofeeva, J. L. Routbort, Heat transfer to a silicon carbide/water nanofluid, Int. J. Heat Mass Transfer, 52 (2009), 3606-3612. https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.036 doi: 10.1016/j.ijheatmasstransfer.2009.02.036
    [2] H. Guan, W. Xu, X. Li, H. Peng, Y. Feng, J. Zhang, et al., Implementation of photothermal annealing on ZnO electron transporting layer for high performance inverted polymer solar cells, Mater. Lett., 163 (2016), 69-71. https://doi.org/10.1016/j.matlet.2015.10.016 doi: 10.1016/j.matlet.2015.10.016
    [3] M. Andresen, K. Ma, G. Buticchi, J. Falck, F. Blaabjerg, M. Liserre, Junction temperature control for more reliable power electronics, IEEE Trans. Power Electron., 33 (2018), 765-776. https://doi.org/10.1109/TPEL.2017.2665697 doi: 10.1109/TPEL.2017.2665697
    [4] J. Crank, P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Adv. Computat. Math., 6 (1996), 207-226. https://doi.org/10.1007/BF02127704 doi: 10.1007/BF02127704
    [5] G. Comini, S. Del Guidice, R. W. Lewis, O. C. Zienkiewicz, Finite element solution of non-linear heat conduction problems with special reference to phase change, Int. J. Numer. Methods Eng., 8 (1974), 613-624. https://doi.org/10.1002/nme.1620080314 doi: 10.1002/nme.1620080314
    [6] M. N. Özişik, H. R. B. Orlande, M. J. Colaço, R. M. Cotta, Finite difference methods in heat transfer, 2 Eds., CRC press, 2017. https://doi.org/10.1201/9781315121475
    [7] R. Goldstein, W. E. Ibele, S. V. Patankar, T. W. Simon, T. H. Kuehn, P. J. Strykowski, et al., Heat transfer-A review of 2003 literature, Int. J. Heat Mass Transfer, 49 (2006), 451-534. https://doi.org/10.1016/j.ijheatmasstransfer.2005.11.001 doi: 10.1016/j.ijheatmasstransfer.2005.11.001
    [8] W. K. Liu, S. Li, H. S. Park, Eighty years of the finite element method: birth, evolution, and future, Arch. Comput. Method Eng., 29 (2022), 4431-4453. https://doi.org/10.1007/s11831-022-09740-9 doi: 10.1007/s11831-022-09740-9
    [9] D. Edouard, H. Hammouri, X. G. Zhou, Control of a reverse flow reactor for VOC combustion, Chem. Eng. Sci., 60 (2005), 1661-1672. https://doi.org/10.1016/j.ces.2004.10.020 doi: 10.1016/j.ces.2004.10.020
    [10] S. K. Al-Dawery, A. M. Alrahawi, K. M. Al-Zobai, Dynamic modeling and control of plate heat exchanger, Int. J. Heat Mass Transfer, 55 (2012), 6873-6880. https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.094 doi: 10.1016/j.ijheatmasstransfer.2012.06.094
    [11] M. Kleindienst, M. Reichhartinger, M. Horn, F. Staudegger, Observer-based temperature control of an LED heated silicon wafer, J. Process Control, 70 (2018), 96-108. https://doi.org/10.1016/j.jprocont.2018.07.006 doi: 10.1016/j.jprocont.2018.07.006
    [12] O. R. Kang, J. H. Kim, The $l_{\infty}$-induced norm of multivariable discrete-time linear systems: upper and lower bounds with convergence rate analysis, AIMS Math., 8 (2023), 29140-29157. https://doi.org/10.3934/math.20231492 doi: 10.3934/math.20231492
    [13] T. Kim, J. H. Kim, A new optimal control approach to uncertain Euler-Lagrange equations: $H_{\infty}$ disturbance estimator and generalized $H_2$ tracking controller, AIMS Math., 9 (2024), 34466-34487. https://doi.org/10.3934/math.20241642 doi: 10.3934/math.20241642
    [14] H. Y. Park, J. H. Kim, Model-free control approach to uncertain Euler-Lagrange equations with a Lyapunov-based $L_{\infty}$-gain analysis, AIMS Math., 8 (2023), 17666-17686. https://doi.org/10.3934/math.2023902 doi: 10.3934/math.2023902
    [15] H. T. Choi, J. H. Kim, The $L_1$ controller synthesis for piecewise continuous nonlinear systems via set invariance principles, Int. J. Robust Nonlinear Control, 33 (2023), 8670-8692. https://doi.org/10.1002/rnc.6843 doi: 10.1002/rnc.6843
    [16] D. Kwak, J. H. Kim, T. Hagiwara, Generalized fast-hold approximation approach to sampled-data $L_1$ synthesis, IFAC-PapersOnLine, 56 (2023), 9818-9822. https://doi.org/10.1016/j.ifacol.2023.10.401 doi: 10.1016/j.ifacol.2023.10.401
    [17] D. Kwak, J. H. Kim, T. Hagiwara, A new quasi-finite-rank approximation of compression operators on $L_{\infty}[0, H)$ with applications to sampled-data and time-delay systems: Piecewise linear kernel approximation approach, J. Franklin Inst., 361 (2024), 107271. https://doi.org/10.1016/j.jfranklin.2024.107271 doi: 10.1016/j.jfranklin.2024.107271
    [18] U. Mackenroth, Robust control systems: theory and case studies, Springer Science & Business Media, 2004. https://doi.org/10.1007/978-3-662-09775-5
    [19] D. Kwak, J. H. Kim, T. Hagiwara, Generalized framework for computing the $L_{\infty}$-induced norm of sampled-data systems, Appl. Math. Comput., 437 (2023), 127518. https://doi.org/10.1016/j.amc.2022.127518 doi: 10.1016/j.amc.2022.127518
    [20] B. A. Francis, W. M. Wonham, The internal model principle of control theory, Automatica, 12 (1976), 457-465. https://doi.org/10.1016/0005-1098(76)90006-6 doi: 10.1016/0005-1098(76)90006-6
    [21] S. Boyd, M. Hast, K. J. Åström, MIMO PID tuning via iterated LMI restriction, Int. J. Robust Nonlinear Control, 26 (2016), 1718-1731. https://doi.org/10.1002/rnc.3376 doi: 10.1002/rnc.3376
    [22] H. Kwakernaak, R. Sivan, Linear optimal control systems, New York: Wiley-interscience, 1972.
    [23] K. Zhou, J. C. Doyle, K. Glover, Robust and optimal control, 1 Ed., Prentice hall, 1995.
    [24] J. R. Prekodravac, D. P. Kepić, J. C. Colmenares, D. A. Giannakoudakis, S. P. Jovanović, A comprehensive review on selected graphene synthesis methods: from electrochemical exfoliation through rapid thermal annealing towards biomass pyrolysis, J. Mater. Chem. C, 9 (2021), 6722-6748. https://doi.org/10.1039/D1TC01316E doi: 10.1039/D1TC01316E
    [25] R. Katsumata, C. Senger, J. N. Pagaduan, Recent advances and emerging opportunities in rapid thermal annealing (RTA) of polymers, Mol. Syst. Des. Eng., 8 (2023), 701-712. https://doi.org/10.1039/D2ME00283C doi: 10.1039/D2ME00283C
    [26] JEDEC Solid State Technology Association, JESD22-A104E: Temperature cycling, 2015.
    [27] L. Furieri, Y. Zheng, A. Papachristodoulou, M. Kamgarpour, Sparsity invariance for convex design of distributed controllers, IEEE Trans. Control Netw. Syst., 7 (2020), 1836-1847. https://doi.org/10.1109/TCNS.2020.3002429 doi: 10.1109/TCNS.2020.3002429
    [28] S. Hu, X. Ren, D. Zheng, Integral predictor based prescribed performance control for multi-motor driving servo systems, J. Franklin Inst., 359 (2022), 8910-8932. https://doi.org/10.1016/j.jfranklin.2022.07.021 doi: 10.1016/j.jfranklin.2022.07.021
    [29] E. Fridman, U. Shaked, Delay-dependent stability and $H_{\infty}$ control: constant and time-varying delays, Int. J. Control, 76 (2003), 48-60. https://doi.org/10.1080/0020717021000049151 doi: 10.1080/0020717021000049151
    [30] S. P. Nandanoori, A. Diwadkar, U. Vaidya, Mean square stability analysis of stochastic continuous-time linear networked systems, IEEE Trans. Autom. Control, 63 (2018), 4323-4330. https://doi.org/10.1109/TAC.2018.2830882 doi: 10.1109/TAC.2018.2830882
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(397) PDF downloads(29) Cited by(0)

Article outline

Figures and Tables

Figures(9)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog