In this paper, we present two new concepts, called $ \alpha $-$ \psi $ -iterated function system and $ \alpha $-$ \psi $-proximal iterated function system, by using $ \alpha $-$ \psi $-contractions and $ \alpha $-$ \psi $ -proximal contractions. Hence, we extended and generalized some definitions existing in the literature. We present some results that determine the necessary conditions to obtain a fractal with an attractor in the mentioned systems. Finally, some interesting examples are presented to apply our results.
Citation: Mustafa Aslantas, Ali Hussein Bachay, Hakan Sahin, A. Duran Türkoğlu. Best proximity point results of iterated function systems for $ \alpha $-$ \psi $-contractions[J]. AIMS Mathematics, 2025, 10(8): 19106-19125. doi: 10.3934/math.2025854
In this paper, we present two new concepts, called $ \alpha $-$ \psi $ -iterated function system and $ \alpha $-$ \psi $-proximal iterated function system, by using $ \alpha $-$ \psi $-contractions and $ \alpha $-$ \psi $ -proximal contractions. Hence, we extended and generalized some definitions existing in the literature. We present some results that determine the necessary conditions to obtain a fractal with an attractor in the mentioned systems. Finally, some interesting examples are presented to apply our results.
| [1] |
S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181
|
| [2] |
M. Abbas, H. Iqbal, A. Petrusel, Fixed points for multivalued Suzuki type $(\theta, R)$-contraction mapping with applications, J. Funct. Space., 2019 (2019), 9565804. https://doi.org/10.1155/2019/9565804 doi: 10.1155/2019/9565804
|
| [3] |
H. Aydi, M. Aslam, D. Sagheer, S. Batul, R. Ali, E. Ameer, Kannan-type contractions on new extended-metric spaces, J. Funct. Space., 2021 (2021), 7613684. https://doi.org/10.1155/2021/7613684 doi: 10.1155/2021/7613684
|
| [4] |
M. Berinde, V. Berinde, On a general class of multi-valued weakly Picard mappings, J. Math. Anal. Appl., 326 (2007), 772–782. https://doi.org/10.1016/j.jmaa.2006.03.016 doi: 10.1016/j.jmaa.2006.03.016
|
| [5] |
S. Reich, Approximate selections, best approximations, fixed points and invariant sets, J. Math. Anal. Appl., 62 (1978), 104–113. https://doi.org/10.1016/0022-247X(78)90222-6 doi: 10.1016/0022-247X(78)90222-6
|
| [6] |
B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha$-$\phi$-contractive type mappings, Nonlinear Anal., 4 (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014
|
| [7] | S. S. Basha, P. Veeramani, Best approximations and best proximity pairs, Acta Sci. Math., 63 (1977), 289–300. |
| [8] |
M. Gabeleh, Solvability of a system of nonlinear mixed problems by applying a best proximity point theorem, J. Anal., 33 (2025), 1669–1685. https://doi.org/10.1007/s41478-025-00889-7 doi: 10.1007/s41478-025-00889-7
|
| [9] |
S. S. Basha, Extensions of Banach's contraction principle, Numer. Func. Anal. Opt., 31 (2010), 569–576. https://doi.org/10.1080/01630563.2010.485713 doi: 10.1080/01630563.2010.485713
|
| [10] | M. Imdad, H. Saleh, W. Alfaqih, Best proximity point theorems in metric spaces with applications in partial metric spaces, TWMS J. Appl. Eng. Math., 10 (2020), 190–200. |
| [11] |
M. Aslantas, A new contribution to best proximity point theory on quasi metric spaces and an application to nonlinear integral equations, Optimization, 72 (2023), 2851–2864. https://doi.org/10.1080/02331934.2022.2080550 doi: 10.1080/02331934.2022.2080550
|
| [12] |
H. Sahin, M. Aslantas, A. A. N. Nasir, Some extended results for multivalued F-contraction mappings, Axioms, 12 (2023), 116. https://doi.org/10.3390/axioms12020116 doi: 10.3390/axioms12020116
|
| [13] |
M. Jleli, B. Samet, Best proximity points for $\alpha $-$ \psi $-proximal contractive type mappings and applications, B. Sci. Math., 137 (2013), 977–995. https://doi.org/10.1016/j.bulsci.2013.02.003 doi: 10.1016/j.bulsci.2013.02.003
|
| [14] | M. Gabeleh, Global optimal solutions of non-self mappings, Sci. Bull. Politeh. Univ. Buchar., Ser. A, Appl. Math. Phys., 75 (2013), 67–74. |
| [15] | V. S. Raj, Best proximity point theorems for non-self mappings, Fixed Point Theory, 14 (2013), 447–454. |
| [16] |
J. E. Hutchinson, Fractals and self similarity, Indiana Univ. Math. J., 30 (1981), 713–747. https://doi.org/10.1512/iumj.1981.30.30055 doi: 10.1512/iumj.1981.30.30055
|
| [17] | M. F. Barnsley, Fractals everywhere, New York: Academic Press, 1993. |
| [18] |
R. Anjum, M. Din, M. Zhou, Fractals of two types of enriched $(q, \theta)$-Hutchinson–Barnsley operators, Chaos Soliton. Fract., 181 (2024), 114589. https://doi.org/10.1016/j.chaos.2024.114589 doi: 10.1016/j.chaos.2024.114589
|
| [19] |
M. Zahid, F. U. Din, M. Younis, H. Ahmad, M. Ozturk, Mathematical modeling of fractals via proximal F-iterated function systems, Axioms, 13 (2024), 881. https://doi.org/10.3390/axioms13120881 doi: 10.3390/axioms13120881
|
| [20] | Y. Q. Ji, Z. Liu, Song-il Ri, Fixed point theorems of the iterated function systems, Commun. Math. Res., 2 (2016), 142–150. |
| [21] |
I. Altun, H. Sahin, M. Aslantas, A new approach to fractals via best proximity point, Chaos Soliton. Fract., 146 (2021), 110850. https://doi.org/10.1016/j.chaos.2021.110850 doi: 10.1016/j.chaos.2021.110850
|
| [22] |
M. Aslantas, H. Sahin, I. Altun, A new method for the constrution of fractals via best proximity point theory, Fixed Point Theory, 25 (2024), 459–472. https://doi.org/10.24193/fpt-ro.2024.2.01 doi: 10.24193/fpt-ro.2024.2.01
|